UNIBA
WEBMAIL
ESSE3
E-LEARNING
IRIS
LOG IN

Pubblicazioni

Pubblicazioni edite su riviste internazionali

  1. B. Allal and G. Fragnelli, Controllability of degenerate parabolic equation with memory, Math. Methods Appl. Sci. 44 (2021), 9163–9190.
  2. B. Allal, G. Fragnelli and J. Salhi, Null controllability for the singular heat equation with a memory term, Electron. J. Qual. Theory Differ. Equ. 2021 (2021), 1–24.
  3. M. Almousa, J. Assettini, M. Gallo and M. Squassina, Concavity properties for quasilinear equations and optimality remarks, Differential Integral Equations 37 (1-2) (2024), 1-26.
  4. D. Arcoya and C. Sportelli, Relativistic equations with singular potentials, Z. Angew. Math. Phys.74 (2023), Paper No. 91, 22 pp.
  5. R. Bartolo, A.M. Candela and A. Salvatore,Multiple solutions for perturbed quasilinear elliptic problems, Topol. Methods Nonlinear Anal. 61, No. 1 (2023), 549–574.
  6. I. Boutaayamou and G. Fragnelli, A degenerate population system: Carleman estimates and controllability, Nonlinear Anal. 195 (2020), Article 111742.
  7. A. Camasta and G. Fragnelli, Fourth-order differential operators with interior degeneracy and generalized Wentzell boundary conditions, Electron. J. Differ. Equ. 2022 (2022), 1-22.
  8. A. Camasta and G. Fragnelli, Boundary controllability for a degenerate beam equation, Math. Meth. Appl. Sci. (2023), 1-21.
  9. A. Camasta and G. Fragnelli, A stability result for a degenerate beam equation, SIAM J. Control Optim. (in stampa)
  10. A.M. Candela, G. Fragnelli and D. Mugnai, Quasilinear problems without the Ambrosetti-Rabinowitz condition, Minimax Theory Appl. 6 (2021), 239-250.
  11. M. Candela, K. Perera and C. Sportelli, On a class of supercritical N-Laplacian problems, Nonlinear Anal. Real World Appl. 71 (2023), Article 103817
  12. A. M. Candela and A. Salvatore, Existence of radial bounded solutions for some quasilinear elliptic equations in RNNonlinear Anal. 191(2020), Article 111625.
  13. A.M. Candela, A. Salvatore and C. Sportelli, Existence and multiplicity results for a class of coupled quasilinear elliptic systems of gradient type, Adv. Nonlinear Stud. 21 (2021), 461-488.
  14. M. Candela, A. Salvatore and C. Sportelli, Bounded solutions for quasilinear modified Schrödinger equations, Calc. Var. Partial Differential Equations 61 (6) (2022), Article 220.
  15. M. Candela and C. Sportelli, Soliton solutions for quasilinear modified Schrödinger equations in applied sciences,Discrete Contin. Dyn. Syst. Ser. S 15 (12) (2022), 3557-3570.
  16. M. Candela and C. Sportelli, Multiple solutions for coupled gradient-type quasilinear elliptic systems with supercritical growth, Ann. Mat. Pura Appl. 201 (5) (2022), 2341–2369.
  17. M. Candela and C. Sportelli, Nontrivial solutions for a class of gradient-type quasilinear elliptic systems, Topol. Methods Nonlinear Anal. 59 (2) (2022), 957–986.
  18. W. Chen, S. Lucente and A. Palmieri, Nonexistence of global solutions for generalized Tricomi equations with combined nonlinearity, Nonlinear Anal. Real World Appl. 61 (2021) 103354.
  19. F. Chiarello, G. Girardi and S. Lucente, Fujita modified exponent for scale invariant damped semilinear wave equations, J. Evol. Equ. 21 (2021), 2735-2748.
  20. S. Cingolani, D. Bonheure and S. Secchi, Concentration phenomena for the Schrödinger-Poisson system in R2, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 1631-1648.
  21. S. Cingolani and M. Gallo, On the fractional NLS equation and the effects of the potential well’s topology, Adv. Nonlinear Stud. 21 (2021), 1-40.
  22. Cingolani and M. Gallo, On some qualitative aspects for doubly nonlocal equations, Discrete Contin. Dyn. Syst. Ser. S 15 (12) (2022), 3603-3620.
  23. Cingolani, M. Gallo and K. Tanaka, Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation, Nonlinearity 34 (2021), 4017-4056.
  24. S. Cingolani, M. Gallo and K. Tanaka, Symmetric ground states for doubly nonlocal equations with mass constraint, Symmetry 13 (2021), 1199.
  25. Cingolani, M. Gallo and K. Tanaka, Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities, Calc. Var. Partial Differential Equations 61 (2022), pp. 34.
  26. Cingolani, M. Gallo and K. Tanaka, On fractional Schrödinger equations with Hartree type nonlinearities, Math. Eng. 4 (2022), 1-33.
  27. S. Cingolani, M. Gallo and K. Tanaka, Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities, Adv. Nonlinear Stud. (to appear).
  28. S. Cingolani and K. Tanaka, Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well, Rev. Mat. Iberoam. 35 (2019), 1885-1924
  29. S. Cingolani and K. Tanaka, Deformation argument under PSP condition and applications, Anal. Theory Appl. 37(2021), 191-208.
  30. S. Cingolani and K. Tanaka, Semi-classical Analysis around Local Maxima and Saddle Points for Degenerate Nonlinear Choquard Equations, J. Geom. Anal. 33:316 (2023)
  31. S. Cingolani and T. Weth, Trudinger-Moser type inequality with logarithmic convolution potentials, J. London Math. Soc. 105 (2022), 1897 –1935.
  32. F. Esposito, L. Selicato and C. Sportelli, Theoretical aspects in penalty hyperparameters optimization. Mediterr. J. Math. 20 (2023), Paper No. 300, 13 pp.
  33. G. Fragnelli, Controllability for a population equation with interior degeneracy, Pure and Applied Functional Analysis4 (2019), 803-824
  34. G. Fragnelli, Null controllability for a degenerate population model in divergence from via Carleman estimates, Adv. Nonlinear Anal. 9 (2020), 1102-1129.
  35. G. Fragnelli, J.A. Goldstein, R.M. Mininni and S. Romanelli, Operators of order 2n with interior degeneracy, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 3417-3426.
  36. G. Fragnelli and D. Mugnai, Turing patterns for a coupled two-cell generalized Schnakenberg model, Complex Var. Elliptic Equ. 65 (2020), 1343-1359.
  37. G. Fragnelli and D. Mugnai, Singular parabolic equations with interior degeneracy and non smooth coefficients: the Neumann case, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 1495-1511.
  38. G. Fragnelli and M. Yamamoto, Carleman estimates and controllability for a degenerate structured population model, Appl. Math. Optim. 84 (2021), 999-1044.
  39. M. Gallo, Asymptotic decay of solutions for sublinear fractional Choquard equations, Nonlinear Analysis (to appear), pp. 32.
  40. S. Lucente and A. Palmieri, A blow-up result for a generalized Tricomi equation with nonlinearity of derivative type, Milan J. Math. 89 (2021), 45-57.
  41. F. Mennuni and A. Salvatore, Existence of minimizers for a quasilinear elliptic system of gradient type, Discrete Contin. Dyn. Syst. Ser. S 15 (2022), 3745–3763.
  42. F. Mennuni and A. Salvatore, Generalized quasilinear elliptic equations in IRN, Mediterr. J. Math. 20, No. 205 (2023), 27 pp.
  43. K.Perera and C. Sportelli, New linking theorems with applications to critical growth elliptic problems with jumping nonlinearities, J. Differential Equations 349 (2023), 284–317
  44. K. Perera and C. Sportelli, A multiplicity result for critical elliptic problems involving differences of local and nonlocal operators, Topol. Methods Nonlinear Anal. (in stampa) arXiv.2210.14230
  45. A. Salvatore and C. Sportelli, On existence and multiplicity of solutions for generalized (p, q)–Laplacian equations on unbounded domains, Adv. Differential Equations (in stampa)

Capito di libro con referee

  1. R. Bartolo, A.M. Candela and A. Salvatore, An existence result for perturbed (p,q)-quasilinear elliptic problems, In: “Recent  Advances in Mathematical Analysis” (A.M. Candela, M. Cappelletti Montano & E. Mangino Eds), 135-164,Trends Math., Birkhäuser Cham, 2023.
  2. A. Camasta and G. Fragnelli, A degenerate operator in non divergence form, In: “Recent Advances in Mathematical Analysis” (A.M. Candela, M. Cappelletti Montano & E. Mangino Eds), 209-235, Trends Math., Birkhäuser Cham, 2023.
  3. A. Camasta and G. Fragnelli, Degenerate fourth order parabolic equations with Neumann boundary conditions, In: “Analysis and Numerics of Design, Control and Inverse Problems” (G. Floridia & E. Zuazua Eds), Springer INdAM Series, Springer Singapore (in stampa)
  4. S. Cingolani and K. Tanaka, Ground state solutions for the nonlinear Choquard equation with prescribed mass, In: “Geometric Properties for Parabolic and Elliptic PDE’s” (V. Ferone, T. Kawakami, P. Salani & F. Takahashi Eds), 23 - 42, Springer INdAM Series 47, Springer Singapore 2021.
  5. S- Cingolani and K. Tanaka, A Deformation Theory in Augmented Spaces and Concentration Results for NLS Equations Around Local Maxima, In: “Recent Advances in Mathematical Analysis” (A.M. Candela, M. Cappelletti Montano & E. Mangino Eds), 309-331, Trends Math., Birkhäuser Cham, 2023.
  6. V. Georgiev and S. Lucente, Quasilinear Wave Equations with Decaying Time-Potential, In: “Qualitative Properties of Dispersive PDEs” (V. Georgiev, A. Michelangeli & R. Scandone Eds), 187-204, Springer INdAM Series 52, Springer Singapore, 2022.
  7. F. Mennuni and A. Salvatore, Existence of bounded solutions for a weighted quasilinear elliptic equation in IRN, In: “Recent Advances in Mathematical Analysis” (A.M. Candela, M. Cappelletti Montano & E. Mangino Eds), 371-395, Trends Math., Birkhäuser Cham, 2023.

 

Monografia con riferimento al PRIN

  1. G. Fragnelli and D. Mugnai, Control of degenerate and singular parabolic equation, BCAM SpringerBrief, ISBN 978-3-030-69348-0, 2021

Articoli sottomessi per la pubblicazione su riviste con referee

  1. M. Candela, G. Ruiz Goldstein, J.A. Goldstein and S. Romanelli, Chaos for generalized Black-Scholes equations. Preprint (sottomesso per la pubblicazione)
  2. F. Esposito, L. Selicato and C. Sportelli, Estimating penalty hyperparameter in Nonnegative Matrix Factorization with Hilbert spaces representation. Preprint (sottomesso per la pubblicazione)
  3. F. Mennuni and A. Salvatore, Radial bounded solutions for modified Schrödinger equations, Preprint (sottomesso per la pubblicazione)
  4. G. Molica Bisci, K. Perera, R. Servadei and C. Sportelli, Nonlocal critical growth elliptic problems with jumping nonlinearities. Preprint (sottomesso per la pubblicazione)
  5. A. Camasta, G. Fragnelli, New results on controllability and stability for degenerate Euler-Bernoulli type equations (sottomesso per la pubblicazione)

Tesi di dottorato con tematiche collegate al progetto:

  1. tesi di dottorato “Solutions of Nonlinear PDEs: Variational and Topological Approaches” di Caterina Sportelli (XXXV ciclo, Dottorato di Ricerca in Informatica e Matematica, Università degli Studi di Bari Aldo Moro, titolo conseguito il 21 marzo 2023), advisor Anna Maria Candela e co-advisor Kanishka Perera (Florida Institute of Technology, Melbourne, FL, USA)
  2. tesi di dottorato “Nonlocal Elliptic PDEs with General Nonlinearities” di Marco Gallo (XXXV ciclo, Dottorato di Ricerca in Informatica e Matematica, Università degli Studi di Bari Aldo Moro, titolo conseguito il 21 marzo 2023), advisor Silvia Cingolani e co-advisor Denis Bonheure (University Librè de Bruxelles, Bruxelles, Belgio)
  3. tesi di dottorato Quasilinear Elliptic Variational Problems” di Federica Mennuni (XXXVI ciclo, Dottorato di Ricerca in Informatica e Matematica, Università degli Studi di Bari Aldo Moro, titolo da conseguire entro marzo 2024), advisor Addolorata Salvatore
  4. tesi di dottorato che Alessandro Camasta presenterà nell’ambito del progetto “Degenerate Operators and Controllability Problems of the Associated Evolution Equations” (XXXVII ciclo, Dottorato di Ricerca in Informatica e Matematica, Università degli Studi di Bari Aldo Moro, titolo da conseguire entro marzo 2025), advisor Genni Fragnelli
« dicembre 2025 »
month-12
lu ma me gi ve sa do
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 1 2 3 4