SEMINARIO DI GEOMETRIA E ALGEBRA

UNIBA - POLIBA

Martedì 23 Settembre 2025 - Ore 15:30 Dipartimento di Matematica, aula XI, primo piano

Marian Ioan Munteanu

(Alexandru Ioan Cuza University of Iasi, Romania)

Vector fields as magnetic maps

Abstract. This talk is based on some joint papers with J. Inoguchi, (University of Hokkaido, Japan).

In our paper [IM14] we define the notion of magnetic map as a generalization of both magnetic curves and harmonic maps. A magnetic map is obtained as critical points of the LH functional, that is the energy functional together with a potential part. As a vector field can be thought of as a map from the manifold to its tangent bundle and since the tangent bundle carries a natural magnetic field obtained from its almost Kaehlerian structure, we may ask when a vector field is a magnetic map? Furthermore, we show that a unit vector field on an oriented Riemannian manifold is a critical point of the Landau Hall functional if and only if it is a critical point of the Dirichlet energy functional. Therefore, we provide a characterization for a unit vector field to be a magnetic map into its unit tangent sphere bundle.

References:

[IM14] J. Inoguchi and M.I. Munteanu, Magnetic maps, *Internat. J. Geom. Methods Mod. Phys.* 11 (2014) 6, art. n.1450058.

[IM15] J. Inoguchi and M.I. Munteanu, New examples of magnetic maps involving tangent bundles, *Rend. Semin.Mat. Univ. Politec. Torino* 73/1 (2015) 3-4, 101–116.

[IM18] J. Inoguchi and M.I. Munteanu, Magnetic vector fields: New examples, *Publ. Inst. Math. Beograd* 103 (117) (2018), 91–102.

[IM23] J. Inoguchi and M.I. Munteanu, Magnetic unit vector fields, *Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales*. Serie A. Matematicas, 117 (2023) 2, art. 71.

