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R.ené Descartes = Cartesio (1596 — IL50)
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All'inizio del seicento Cartesio rivoluziono la
Matematica:

lIa retta e le curve ceometriche come circonferenza,
pararola, ellissi potevano essere rappresentate da
eQuazioni alaekriche per cui la Geometria poteva
essere ridotta in BUONa parte a calcolo.

Da questa idea Nasce la Geometria Analitica.

Il metodo alae’rico si dimostrd molto potente per
risolvere tarvti proglemi:

- lintersezione tra due curve si riduce a un sistema
di equazioni,

- linterpolazione della curva per n purcti si riduce
ucualvente a un sistema di equazioni,
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In Geometria Analitica:
Data la pararola di equazione

v oy=x
una retta si dice tangente a v se ha con essa un unico
punto di intersezione.
In particolare, la retta tanaente nel punto P(1,1) € la
retta del fascio per P determinata da

e 2

che avra un'unica soluzione se ha diseriminante ucuale a
2ero, cioe

I
2

A:m2—4(m—1):0 — m

QuiNdi 'equazione della retts tanaente cercata &

V= 2x =1 con coefficiente anaolare mp = 2.
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La retta tanaente alla pararola

vioy=x

nel punto P(1,1) € la "retta limite" delle rette per P
secantti la pararola.

Se Q(x,x?), x # 1, & un secondo punto di v, la retta per
Pe Q e la retta del fascio

y—1l=m(x-1)

con coefficiente angolare

- x2—1
mQ = ~—1 .
Si presume che @Q tende a P = mg tende a
mp = 2,
cioe
B

— 2 se x — 1.

x—1
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Pil in generale, data la funzione

y="f(x), xE€la b,
e fissato il punto P(xp, f(xp)) appartenente al arafico
della funzione,
se esiste, si ha che la retta tanaente in P al arafico
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Pil in generale, data la funzione
y =f(x), x€]a,bl,

e fissato il punto P(xp, f(xp)) appartenente al arafico
della funzione,

se esiste, si ha che la retta tanaente in P al arafico
della funzione, con coetficiente mp, € la "retta limite"
delle rette per P che intersecano il arafico in un aHro
punto Q(x,f(x)), x # xo,

dove la retta per P e Q & la retta del fascio

y — f(x0) = m(x — xp)

con coebbiciente anaolare
~ f(x) — f(x0)

X — Xp

Si presume che Q tende a P — mg tende a mp, cice
f(x) — f(x0)

X — Xp

— mp se X — Xp.
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Un atleta che corre i I0O m In IO secondi netti, ha una
velocitd media di
100

S 10m/sec (metri al secondo).

Per definizione la velocita media di un corpo & il
QuUOZiente tra spazio percorso e tempo iIMmpieaato a
percorrerio:

JANS
At
dove As = s(t) —s(tg)= g
At=t—t) =
In Quei dieci secondi pero l'atleta Nnon ha corso sempre
alla stessa velocita.
Si puod caleolare la velocita istantanea come
s(t) — s(to)

t—tp

Vm =

=\ se t — tp.
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Coefficiente angolare della retta tanaente in xp alla
funzione y = f(x):

f(x) = f(x)

X — Xo

mp S X — Xp.

Velocita istantanea lunao il percorso s(t) allistante ty:

s(t) — s(t)

= se t — tp.
t— to
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Le oriaini del Calcolo Infinitesimale si possono far
risalire a:

- | ragionamentti di Zenone di Elea (+89 aC. - 43I
a.C)

- le dimostrazioni di Eudosso di Cnido (H+O8 aC. -
355 alC)

- i caleoli di Archimede di Siracusa (287 a.C. circs - 212
a.C)

- i lavori di Bonaventura Cavalieri (1598 - 164,
Galileo Galilei (IS4 - IEH2), Evancelista Torricelli
(ILO8 - L4, Blaise Pascal (1623 - IbL2) e Pierre de
Fermat (ILOI - I6LS) che ereano le condizioni
perché si pOssa costruire in mModo oraanico il
Calcolo surlime
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Newrton considera le Quantitd matematiche come
descritte da un moto continuo.

Chiama fluenti Queste Quantita che sono considerate
variagili per aradi e sono indicate, per esempio, con le
lettere x, y, z

Le velocitad con le auali le fluenti variano sono dette
flussione e sono denotate con x, y, z

Newrton si awicina molto al concetto moderno di
derivata ma lo £a In modo confuso.
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Partendo da una curva y = f(x), si tracai la retta
tanaente uscente da un punto (x, y) della curva.

Dato poi ad x un incremento Qualsiasi, detto
differenza e indicato con dx,

Leieniz scealie il differenziale della funzione dy in modo
che il rapporto % sia esattamente il coefficiente
angolare della retta tangente alla curva.
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: Newrton inventa il metodo delle flussioni

: In due lettere, da comunicare a Leigniz,
Newrton spieaa il suo metodo delle serie che leaa,
QON uN anaaramma, al metodo delle flussioni

: Leieniz trova i fondamenti del Calcolo

Differenziale

: Leirniz pugglica la "Nova methodus”

: Newrton pugglica ' "Opticks" con in appendice il
"Tractatus de Quadratura curvarum', che contiene il
metodo delle flussioni
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NellOttocento il proelema delle gasi del’lAnalisi fu preso
di petto e risoHto in Modo radicale principalvmente ad
opera di Auaustin Cauchy.

Cauchy ridefini derivate e intearali in termini di limiti
invece che di infinitesimi.

Successivamente Karl Weierstrass diede una
definizione rigorosa di limite:
se f: A= R, xp € R di accumulazione per Ae £ € R si ha
che

lim f(x)=14¢

X—>X0

equivale a dire

Ve>030>0texeA 0<|x—x| <0 = |f(x)—{| <e.






Dato xg € RU {—00,+00}, si dice intorno di xg oani
insieme del tipo:



Dato xg € RU {—00,+00}, si dice intorno di xg oani
insieme del tipo:

]X0—€,X0—|-€[ se xp € R,
per oani € > 0;



Dato xg € RU {—00,+00}, si dice intorno di xg oani
insieme del tipo:

]X0—€,X0—|-€[ se xp € R,
per oani € > 0;

la,+oo[ se xg = +oo,

per oani a € RU {—o0},
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Dato xg € RU {—00,+00}, si dice intorno di xg oani
insieme del tipo:

]X0—67X0—|-€[ se xp € R,
per oani € > 0;

la,+o0[  se xp = 400,

per oani a € RU {—o0},

] —o0,a] se xg=—o0,

per oani a € RU {400},
per cui, data la funzione f: A= R, xg € RU {—00,+0c0} di
accumulazione per Ae £ € RU{—oo,+0oo} si ha che

lim f(x)=14¢ =
X—rX0

VVintorno di ¢ JU intorno di xg te
xe AN(U\{x}) = f(x)eV.
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Data una funzione f : ]Ja,b[ — R e fissato xp € ]a, b si
dice che f e derivakile in xp se

HlimMER.

X—r X0 X — Xo

Tale limite & detto derivata prima di f in xp e si denota
con

f'(x0), - %0)-

Usando tale definizione:
- il coefficiente angolare della retta tangente in xg
alla funzione y = f(x) & proprio f’(x);
- la velocita istantanea lun&o il percorso s(t)
allistante ty € proprio s'(xp).
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Newrton e Leieniz fondano il Calcolo Differenziale sul
concetto di infinitesimo, numero infinitamente piccolo
eppure diverso da zero, usato per definire le derivate
come rapporti di infinitesimi;

successivamente ali infinitesimi venaono ritenuti
superflui poiché si passa al rigore formale di Cauchy e
Weierstrass.

Tra il 1960 e il 1966 il matematico Arraham R.oBiNsoN
(1918 - 1974 da un fondamento I0GIco riGoroso aali
infinitesimi di Leieniz e tale teoria prende il nome di
Analisi non Standard.

La scelta di utilizzare Questo approceio piuttosto che il
concetto formale di limite ha due motivazioni:

- le dimostrazioni sono pi semplici e intuitive;

- PAritmetica inizia con i nuweri interi naturali,
Quindi considera ali inter relativi, | razionali, ali
irrazionali. In Quest’ottica il passo successivo
semBra essere lintroduzione deali infinitesimi.
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Si presentano due proelemi:

- data una funzione f : | — R, dire se esiste F: | - R
tale che F e derivagile in | e F'(x) = f(x) per oani
x €l
se esiste, F & detta primitiva di f in I,

- data una funzione f : [a, b] — R limitata e positiva,
se pOssigile calcolare l'area della reaione

Re = {(x,y) €R?: x€ab], 0<y<f(x)}

detto rettancoloide relativo a f di Base |[a, b.






Gia nel 30 aC. Antitonte tentd di determinare
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Data una funzione f : [a, b] — R continua e positiva, si
ha che
larea del rettanaoloide relativo a f di Base [a, b], cioe

Re = {(x,y) €R?*: x€[a,b], 0<y<f(x)},

& caleolarile come:

b
o = / T ()

a

con F : [a, b] — R primitiva di f, cioe tale che F &
derivagile con F'(x) = f(x) per oani x € [a, b).
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