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René Descartes = Cartesio (1596 – 1650)
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All’inizio del seicento Cartesio rivoluzionò la

Matematica:

la retta e le curve geometriche come circonferenza,

parabola, ellissi potevano essere rappresentate da

equazioni algebriche per cui la Geometria poteva

essere ridotta in buona parte a calcolo.

Da questa idea nasce la Geometria Analitica.

Il metodo algebrico si dimostrò molto potente per

risolvere tanti problemi:

- l’intersezione tra due curve si riduce a un sistema

di equazioni,

- l’interpolazione della curva per n punti si riduce

ugualmente a un sistema di equazioni,

- ....
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La tangente di una parabola

In Geometria Analitica:

Data la parabola di equazione

γ : y = x2

una retta si dice tangente a γ se ha con essa un unico

punto di intersezione.

In particolare, la retta tangente nel punto P(1, 1) è la

retta del fascio per P determinata da{
y = x2

y − 1 = m(x − 1)
⇐⇒ x2 −mx + m − 1 = 0,

che avrà un’unica soluzione se ha discriminante uguale a

zero, cioè

∆ = m2 − 4(m − 1) = 0 ⇐⇒ m = 2.

Quindi l’equazione della retta tangente cercata è

y = 2x − 1 con coefficiente angolare mP = 2.
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E nel caso della funzione seno?

Grafico della funzione y = senx
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Altro approccio

La retta tangente alla parabola

γ : y = x2

nel punto P(1, 1) è la “retta limite” delle rette per P
secanti la parabola.

Se Q(x , x2), x 6= 1, è un secondo punto di γ, la retta per

P e Q è la retta del fascio

y − 1 = m(x − 1)

con coefficiente angolare

mQ =
x2 − 1

x − 1
.

Si presume che Q tende a P =⇒ mQ tende a

mP = 2,

cioè
x2 − 1

x − 1
→ 2 se x → 1.
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Più in generale

Più in generale, data la funzione

y = f (x), x ∈]a, b[,

e fissato il punto P(x0, f (x0)) appartenente al grafico

della funzione,

se esiste, si ha che la retta tangente in P al grafico

della funzione, con coefficiente mP , è la “retta limite”

delle rette per P che intersecano il grafico in un altro

punto Q(x , f (x)), x 6= x0,
dove la retta per P e Q è la retta del fascio

y − f (x0) = m(x − x0)

con coefficiente angolare

mQ =
f (x)− f (x0)

x − x0
.

Si presume che Q tende a P =⇒ mQ tende a mP , cioè

f (x)− f (x0)

x − x0
→ mP se x → x0 .
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La velocità istantanea

Un atleta che corre i 100 m in 10 secondi netti, ha una

velocità media di

100

10
= 10m/sec (metri al secondo).

Per definizione la velocità media di un corpo è il

quoziente tra spazio percorso e tempo impiegato a

percorrerlo:

vm =
∆s

∆t
dove ∆s = s(t)− s(t0)= spazio percorso,

∆t = t − t0 = tempo impiegato a percorrerlo.

In quei dieci secondi però l’atleta non ha corso sempre

alla stessa velocità.

Si può calcolare la velocità istantanea come

s(t)− s(t0)

t − t0
→ vi se t → t0 .
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“Retta tangente” vs “velocità
istantanea”

Coefficiente angolare della retta tangente in x0 alla

funzione y = f (x):

f (x)− f (x0)

x − x0
→ mP se x → x0 .

vs

Velocità istantanea lungo il percorso s(t) all’istante t0:

s(t)− s(t0)

t − t0
→ vi se t → t0 .
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Le origini

Le origini del Calcolo Infinitesimale si possono far

risalire a:

- i ragionamenti di Zenone di Elea (489 a.C. - 431

a.C.)

- le dimostrazioni di Eudosso di Cnido (408 a.C. -

355 a.C.)

- i calcoli di Archimede di Siracusa (287 a.C. circa - 212

a.C.)

- . . .

- i lavori di Bonaventura Cavalieri (1598 - 1647),

Galileo Galilei (1564 - 1642), Evangelista Torricelli

(1608 - 1647), Blaise Pascal (1623 - 1662) e Pierre de

Fermat (1601 - 1665) che creano le condizioni

perché si possa costruire in modo organico il

Calcolo sublime
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Calcolo sublime



Le origini

Le origini del Calcolo Infinitesimale si possono far

risalire a:

- i ragionamenti di Zenone di Elea (489 a.C. - 431

a.C.)

- le dimostrazioni di Eudosso di Cnido (408 a.C. -

355 a.C.)

- i calcoli di Archimede di Siracusa (287 a.C. circa - 212

a.C.)

- . . .

- i lavori di Bonaventura Cavalieri (1598 - 1647),

Galileo Galilei (1564 - 1642), Evangelista Torricelli

(1608 - 1647), Blaise Pascal (1623 - 1662) e Pierre de

Fermat (1601 - 1665) che creano le condizioni

perché si possa costruire in modo organico il

Calcolo sublime



Le origini

Le origini del Calcolo Infinitesimale si possono far

risalire a:

- i ragionamenti di Zenone di Elea (489 a.C. - 431

a.C.)

- le dimostrazioni di Eudosso di Cnido (408 a.C. -

355 a.C.)

- i calcoli di Archimede di Siracusa (287 a.C. circa - 212

a.C.)

- . . .

- i lavori di Bonaventura Cavalieri (1598 - 1647),

Galileo Galilei (1564 - 1642), Evangelista Torricelli

(1608 - 1647), Blaise Pascal (1623 - 1662) e Pierre de

Fermat (1601 - 1665) che creano le condizioni

perché si possa costruire in modo organico il

Calcolo sublime



La disputa tra Newton e Leibniz

                      

  

Isaac Newton  

(1642 - 1727) 

Gottfried Wilhelm  
von Leibniz  

(1646 - 1716) 

                                      



La disputa tra Newton e Leibniz

                      

  

Isaac Newton  

(1642 - 1727) 

Gottfried Wilhelm  
von Leibniz  

(1646 - 1716) 

                                      



Isaac Newton

Newton considera le quantità matematiche come

descritte da un moto continuo.

Chiama fluenti queste quantità che sono considerate

variabili per gradi e sono indicate, per esempio, con le

lettere x , y , z .
Le velocità con le quali le fluenti variano sono dette

flussione e sono denotate con ẋ , ẏ , ż .
Newton si avvicina molto al concetto moderno di

derivata ma lo fa in modo confuso.
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Gottfried Wilhelm von Leibniz

Partendo da una curva y = f (x), si tracci la retta

tangente uscente da un punto (x , y) della curva.

Dato poi ad x un incremento qualsiasi, detto

differenza e indicato con dx ,
Leibniz sceglie il differenziale della funzione dy in modo

che il rapporto
dy
dx sia esattamente il coefficiente

angolare della retta tangente alla curva.
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La disputa

- 1666: Newton inventa il metodo delle flussioni

- 1676: In due lettere, da comunicare a Leibniz,

Newton spiega il suo metodo delle serie che lega,

con un anagramma, al metodo delle flussioni

- 1672-75: Leibniz trova i fondamenti del Calcolo

Differenziale

- 1684: Leibniz pubblica la “Nova methodus”

- 1704: Newton pubblica l’ “Opticks” con in appendice il

“Tractatus de quadratura curvarum”, che contiene il

metodo delle flussioni
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Una definizione formale

Nell’Ottocento il problema delle basi dell’Analisi fu preso

di petto e risolto in modo radicale principalmente ad

opera di Augustin Cauchy.

Cauchy ridefinì derivate e integrali in termini di limiti

invece che di infinitesimi.

Successivamente Karl Weierstrass diede una

definizione rigorosa di limite:

se f : A→ R, x0 ∈ R di accumulazione per A e ` ∈ R si ha

che

lim
x→x0

f (x) = `

equivale a dire

∀ε > 0 ∃δ > 0 t.c. x ∈ A, 0 < |x − x0| < δ =⇒ |f (x)− `| < ε.
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Più in generale

Dato x0 ∈ R ∪ {−∞,+∞}, si dice intorno di x0 ogni

insieme del tipo:

]x0 − ε, x0 + ε[ se x0 ∈ R,

per ogni ε > 0;

]a,+∞[ se x0 = +∞,

per ogni a ∈ R ∪ {−∞},

]−∞, a[ se x0 = −∞,

per ogni a ∈ R ∪ {+∞},
per cui, data la funzione f : A→ R, x0 ∈ R ∪ {−∞,+∞} di

accumulazione per A e ` ∈ R ∪ {−∞,+∞} si ha che

lim
x→x0

f (x) = ` ⇐⇒

∀V intorno di ` ∃U intorno di x0 t.c.

x ∈ A ∩ (U \ {x0}) =⇒ f (x) ∈ V .
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La derivata

Data una funzione f : ]a, b[ → R e fissato x0 ∈ ]a, b[ si

dice che f è derivabile in x0 se

∃ lim
x→x0

f (x)− f (x0)

x − x0
∈ R.

Tale limite è detto derivata prima di f in x0 e si denota

con

f ′(x0),
df

dx
(x0).

Usando tale definizione:

- il coefficiente angolare della retta tangente in x0
alla funzione y = f (x) è proprio f ′(x0);

- la velocità istantanea lungo il percorso s(t)
all’istante t0 è proprio s ′(x0).
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L’Analisi non Standard

Newton e Leibniz fondano il Calcolo Differenziale sul

concetto di infinitesimo, numero infinitamente piccolo

eppure diverso da zero, usato per definire le derivate

come rapporti di infinitesimi;

successivamente gli infinitesimi vengono ritenuti

superflui poiché si passa al rigore formale di Cauchy e

Weierstrass.

Tra il 1960 e il 1966 il matematico Abraham Robinson

(1918 - 1974) dà un fondamento logico rigoroso agli

infinitesimi di Leibniz e tale teoria prende il nome di

Analisi non Standard.

La scelta di utilizzare questo approccio piuttosto che il

concetto formale di limite ha due motivazioni:

- le dimostrazioni sono più semplici e intuitive;

- l’Aritmetica inizia con i numeri interi naturali,

quindi considera gli interi relativi, i razionali, gli

irrazionali. In quest’ottica il passo successivo

sembra essere l’introduzione degli infinitesimi.
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infinitesimi di Leibniz e tale teoria prende il nome di

Analisi non Standard.

La scelta di utilizzare questo approccio piuttosto che il

concetto formale di limite ha due motivazioni:

- le dimostrazioni sono più semplici e intuitive;

- l’Aritmetica inizia con i numeri interi naturali,

quindi considera gli interi relativi, i razionali, gli

irrazionali. In quest’ottica il passo successivo

sembra essere l’introduzione degli infinitesimi.
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Il calcolo integrale

Si presentano due problemi:

- data una funzione f : I → R, dire se esiste F : I → R
tale che F è derivabile in I e F ′(x) = f (x) per ogni

x ∈ I
se esiste, F è detta primitiva di f in I ;

- data una funzione f : [a, b]→ R limitata e positiva,

se possibile calcolare l’area della regione

Rf = {(x , y) ∈ R2 : x ∈ [a, b], 0 ≤ y ≤ f (x)}

detto rettangoloide relativo a f di base [a, b].
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Calcolo dell’area del cerchio

Già nel 430 a.C. Antifonte tentò di determinare

l’area del cerchio inscrivendovi dei triangoli sempre più

piccoli fino a quando la sua area non ‘esaurisce’.

Archimede determinò con buona approssimazione l’area

del cerchio (e quindi di π!) costruendo poligoni regolari

inscritti in un cerchio (metodo di esaustione) e

poligoni regolari circoscritti (metodo di compressione):

all’aumentare del numero dei lati dei poligoni le figure

tendono ad avvicinarsi alla forma del cerchio ‘per

difetto’ e ‘per eccesso’.
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Approssimazione dell’area del
cerchio

Metodo di esaustione e metodo di compressione



Il calcolo integrale

Il metodo di esaustione e il metodo di compressione

sono alla base del concetto di integrale di una funzione

sviluppato nel Seicento da

- Isaac Newton (1643 – 1727),

- Gottfried Wilhelm von Leibniz (1646 – 1716) e

- Johann I Bernoulli (1667 – 1748).
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Il calcolo integrale
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Formula fondamentale del calcolo
integrale

Data una funzione f : [a, b]→ R continua e positiva, si

ha che

l’area del rettangoloide relativo a f di base [a, b], cioè

Rf = {(x , y) ∈ R2 : x ∈ [a, b], 0 ≤ y ≤ f (x)},

è calcolabile come:

area(Rf ) =

∫ b

a
f (x)dx = F (b)− F (a)

con F : [a, b]→ R primitiva di f , cioè tale che F è

derivabile con F ′(x) = f (x) per ogni x ∈ [a, b].
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