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COS’È UN MODELLO MATEMATICO?

Un modello matematico è una possibile rappresentazione dell’evoluzione nel tempo 
di un fenomeno fisico, biologico, economico, tramite l’uso di concetti matematici.  

Uno degli scopi principali dei modelli matematici è, quindi, quello di fare previsioni. 

Un modo per misurare l’efficacia di un modello è vedere di quanto l’evoluzione 
reale del fenomeno stesso differisce da quella prevista dal modello, attraverso 
esperimenti o l’utilizzo di dati già acquisiti.



Molto spesso i modelli matematici sono codificati tramite “il calcolo 
differenziale”. Ci sono comunuque modelli costruiti utilizzando altre 
teorie matematiche (metodi iterativi, teoria dei giochi, calcolo 
combinatorio, calcolo stocastico,…) 

Sono spesso necessarie ipotesi semplificative. 

Un fenomeno può essere rappresentato attraverso più modelli, che 
ne evidenziano aspetti diversi.  

Allo stesso modo, un modello matematico può descrivere più 
fenomeni distinti. Per esempio, alcuni modelli sullo studio di come 
varia una popolazione nel tempo possono essere usati in Economia.



L’idea che si potesse rappresentare la realtà (o aspetti di essa) 
tramite la Matematica non è venuta naturalmente.  

Il fatto stesso che vi siano leggi che governano i fenomeni naturali 
(in particolare i fenomeni fisici) e che esse possano essere espresse 
in forma matematica è stato a lungo dibattuto, soprattutto per 
motivi religiosi, e solo a partire dal 1600 si è pervenuti a un’idea più 
moderna di Scienza.

UN PO’ DI STORIA



Pitagora (580/570 a. C.-495 a. C.) e la sua scuola 
furono tra i primi a intuire il ruolo della 
Matematica nella descrizione della realtà. La 
Cosmologia Pitagorica metteva al centro 
dell’Universo Hestia, un enorme fuoco che 
plasmava il mondo. Tutti i pianeti allora 
conosciuti (8) e il Sole le ruotavano attorno in  
orbite circolari e compiendo movimenti armonici 
rappresentati da precisi rapporti matematici, gli 
stessi che regolano gli accordi musicali.   

I Pitagorici ritenevano che il movimento delle 
orbite producesse un suono meraviglioso, detto 
“armonia delle sfere”, che l’orecchio umano non 
poteva percepire. 

La Cosmologia Pitagorica prevedeva un ulteriore 
pianeta, detto Antiterra. Era necessario per 
a r r i va re a l numero sac ro 10 ; pos to in 
opposizione tra la Terra ed Hestia, era invisibile 
all’uomo.



La visione della Matematica che 
prevalse nel mondo greco fu, però, 
quella di Aristotele (384/383 a. C. - 
322 a. C.).  

Per Aristotele, la Matematica aveva 
un ruolo importante nella creazione 
d i u n r i g o r o s o s i s t e m a d i 
r a g i o n a m e n t o l o g i c o , c h e 
riguardava enti astratti.



Negli Elementi di Euclide (quasi contemporaneo di Aristotele), gli 
enti matematici sono astrazioni di concetti in cui ci imbattiamo nella 
realtà, ma il viceversa non è vero; la realtà non si può esprimere 
tramite leggi matematiche. 

Quasi tutti i matematici greci successivi a Euclide (tranne pochissime 
eccezioni) si attennero a questa visione. Non vi fu il tentativo di 
comprendere le leggi che governano la natura, né di esprimerle in 
forma matematica.  

Ciò si evince anche dal fatto che il sistema cosmologico più diffuso 
nell’antica Grecia fu il Sistema Tolemaico o Geocentrico.



IL SISTEMA TOLEMAICO

I l S i s t e m a G e o c e n t r i c o f u 
proposto dall’astronomo Eudosso 
di Cnido nel V secolo a.C. e poi 
perfezionato da Aristotele e 
Tolomeo. 

Ebbe ampia diffusione anche 
dopo l’avvento del Cristianesimo 
perché porre la Terra al centro 
dell’Universo enfatizzava il ruolo 
dell’Uomo come suprema creatura 
di Dio. 



Secondo il sistema Tolemaico le orbite dei pianeti attorno alla Terra 
erano circolari e il cosmo era diviso in sfere concentriche.  

Vi era una rigida distinzione tra il mondo dei corpi celesti, simbolo 
della perfezione divina, e il mondo terrestre, imperfetto e 
corruttibile. 

Era possibile una trattazione quantitativa (e quindi tramite la 
Matematica) dello studio dei corpi celesti, ma essa riguardava solo il 
calcolo del loro moto, non lo studio delle cause di tale moto.



La concezione che non ci fossero leggi comprensibili all’uomo (e 
tantomeno esprimibili matematicamente) che regolassero la Natura 
intorno a noi perdurò fino al XVI secolo. 

In generale, lo sviluppo della Matematica si interruppe per lungo 
tempo (fino a tutto l’Alto Medioevo) ed essa fu relegata solo alle 
mere necessità pratiche del far di conto. 

A partire dal 1200, le cose cominciarono lentamente a cambiare. 
Nacquero nuove invenzioni tecniche, che contribuirono a creare 
benessere economico e venne introdotto in Europa il sistema 
numerico decimale. 

Un primo tentativo di utilizzare la Matematica per descrivere un 
fenomeno biologico risale a quest’epoca.



I NUMERI DI FIBONACCI

Leonardo da Pisa (1170-1242), detto Fibonacci, è noto soprattutto 
per aver scritto il Liber Abbaci (1202). 

Il Liber Abbaci era un trattato di Matematica destinato soprattutto 
ai mercanti, per aiutarli a gestire la propria contabilità, ad effettuare 
cambi di valute e calcolare il prezzo delle merci. 

Il libro contiene una delle prime trattazioni presentate nel mondo 
occidentale della numerazione posizionale indiana (unità, decine, 
centinaia…) che Fibonacci aveva appreso durante un suo soggiorno 
nell’attuale Algeria.



Il sistema numerico decimale, benché molto più pratico di quello fino 
ad allora in uso (in cui le cifre scritte usando i numeri romani e i calcoli 
erano svolti attraverso il cosiddetto abaco) stentò molto ad essere 
accettato in Europa. Addirittura nel 1280 la città di Firenze proibì l’uso 
delle cifre indo-arabe, soprattutto dello 0.  Si riteneva, infatti, che esso 
potesse essere utilizzato per inviare messaggi segreti e, infatti, il 
termine “cifra” deriva proprio da questo.



Nel Liber Abbaci, oltre all’introduzione del sistema numerico 
decimale, sono presentate altre importanti nozioni, come alcuni 
criteri di divisibilità, gli algoritmi per il calcolo di radici quadrate e 
cubiche, la definizione di numeri primi e numeri perfetti. 

Queste questioni sono affrontate anche attraverso una serie di 
esempi esplicativi e interessanti problemi. 

Nel XII capitolo del Liber Abbaci, viene presentato un problema su 
come evolve una certa popolazione ne tempo.



Il problema esposto da Fibonacci è il seguente: 

Un allevatore dispone di una una coppia di conigli (maschio e 
femmina) appena nati. Questa coppia diventa fertile al compimento 
del primo mese di età. Appena fertili, i conigli ogni mese danno vita 
a un’altra coppia di conigli (maschio e femmina). A loro volta, essi 
sono fertili al compimento del primo mese di vita e, da quel 
momento, generano una coppia di conigli (maschio e femmina) al 
mese.  

Quante coppie di conigli ci saranno nell’allevamento dopo un anno?



Si inizia con 1 coppia di conigli. 

Dopo 1 mese, essa sarà fertile. 

D o p o 2 m e s i , s i h a n n o a 
disposizione 2 (1+1) coppie di 
conigli, di cui, però, solo una 
fertile. 

Dopo 3 mesi, ci saranno 3 (2+1) 
coppie di conigli, perché solo 
una di esse ha potuto generare. 

Dopo 4 mesi, ci saranno 5 (3+2) 
coppie di conigli, in quanto solo 
2 delle coppie precedenti sono 
fertili. 

….e così via.

https://commons.wikimedia.org/wiki/File:FibonacciRabbit.svg?uselang=it



In questo modo, sono definiti infiniti numeri  , ove ogni   indica 
quante coppie di conigli ci sono dopo   mesi. 

In particolare,  ,   e, per ogni  ,  

La risposta alla domanda è  , ma certamente possiamo 
iterare il procedimento per ogni numero naturale  , ottenendo 
quella che prende il nome di sequenza (o successione) di Fibonacci. 

Esplicitamente, i numeri che compongono la sequenza di Fibonacci 
sono 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610….

Fn Fn
n

F0 = 1 F1 = 1 n ≥ 2

F12 = 233
n

 Fn = Fn−1 + Fn−2



I numeri di Fibonacci, hanno la straordinaria proprietà di comparire in Natura in 
molte situazioni inaspettate. 

Ad esempio, la maggior parte dei fiori hanno un numero di petali (3, 5, 8, 13, 21…) 
che è uno dei numeri di Fibonacci. 

Le inflorescenze che si trovano al centro di  girasoli,  margherite o nel cavolo 
romano si dispongono in spirali orarie e antiorarie, il cui numero è generalmente 
un numero di Fibonacci.



Una branca della Botanica, detta Filotassi, studia il modo in cui fiori, 
foglie o rami sono distribuite nello spazio, al fine di ottimizzare 
l’utilizzo delle risorse (sole, acqua…) e difendersi dagli agenti 
esterni.   

In genere, le foglie sui rami si dispongono in modo che esse non si 
coprano l’un l’altra e possano essere ugualmente esposte alla luce 
del sole. Se si prende come punto di partenza la foglia più esterna di 
un ramo e si conta quante foglie ci sono finché non se ne trova 
un’altra allineata a questa, il risultato è spesso un numero di 
Fibonacci. 



LA NASCITA DEL CALCOLO DIFFERENZIALE

I numeri di Fibonacci possono essere considerati poco più di un 
“gioco” matematico. Lo studio dei fenomeni naturali e biologici 
tramite la Matematica non si diffuse per molti anni ancora. 

A partire dal 1500, si fece strada la curiosità di investigare le cause 
ultime che generano i fenomeni naturali. La dualità Cielo/Terra 
venne meno, si cominciò a voler investigare sulla Natura in modo 
unificato. 

Il legame indissolubile tra Matematica e fenomeni naturali fu 
stabilito da Galileo Galilei (1564-1642).



Galileo, fermo sostenitore del 
sistema eliocentrico, ne “Dialogo 
sui massimi sistemi”, si propose di 
“ n o b i l i t a r e l a T e r r a ” ,  
considerandola alla stregua di tutti 
gli altri corpi celesti. 

Questo fu il vero motivo del 
conflitto tra Galileo e la Chiesa. Il 
mondo ecclesiastico sosteneva che 
Cielo e Terra fossero separati. Le 
cause ultime del moto dei corpi 
celesti erano espressione di leggi 
divine incomprensibili all’uomo. 
Galileo, invece, poneva Cielo e 
Terra sullo stesso piano, soggetti 
alle stesse leggi.



IL MONDO È MATEMATICO

Per Galileo, tutto ciò che è intorno a noi è scritto in leggi 
matematiche, ed è compito dello scienziato individuare queste leggi 
e comprenderle. 

Purtroppo, la Matematica a disposizione all’epoca di Galileo era 
inadeguata per questo compito. L’espressione in leggi matematiche 
che governano la realtà fisica attorno a noi necessitò della creazione 
di una nuova branca della Matematica, detta CALCOLO 
DIFFERENZIALE.



IL CALCOLO DIFFERENZIALE

I l Ca l co lo D i f fe renz ia le venne 
introdotto indipendentemente (anche 
se c’è un grosso dibattito sulla 
paternità della teoria) da Isaac 
Newton (1642-1726) e da Gottfried 
Leibniz (1646-1716).  

Fu Newton, però, che intuì che le 
leggi che governano il mondo attorno 
a noi possono essere espresse 
attraverso il Calcolo Differenziale. 

Per Newton tutti i fenomeni possono 
essere visti come il “moto” di un 
qualche ente e studiare come varia un 
fenomeno ne l tempo s ign i f i ca 
studiare la velocità di questo moto.



Nel suo libro più famoso, I Principia 
Mathematica, pubblicato nel 1687, 
Newton pose le basi della Fisica 
Classica (Leggi della Dinamica, 
Legge della Gravitazione Universale). 

In particolare, Newton riconobbe che 
la gravità che agisce sulla Terra è la 
stessa forza responsabile delle 
maree, del moto e dell’orbita dei 
pianeti. Il progetto di Galileo trovò 
qu indi p ieno compimento con  
Newton. 

La formulazione matematica delle 
leggi della Fisica classica è il primo 
esempio moderno d i Mode l lo 
Matematico.



Nel tempo, la Matematica ha aumentato il suo raggio d’azione al di 
fuori dal campo della Fisica e i modelli matematici  sono diventati un 
metodo di analisi in discipline come la Biologia, l’Economia o le 
Scienze sociali. 

Il problema fondamentale nel trasferimento dei metodi matematici in 
questi ambiti è proprio l’assenza di leggi “certe” come la Legge di 
Gravitazione Universale. La rappresentazione di un fenomeno 
biologico tramite modelli matematici vale solo da un punto di vista 
“formale”. 

Per questo, in taluni casi, i modelli matematici in queste scienze 
consentono di fare previsioni meno accurate. Nonostante ciò, 
l’approccio “matematico” sostanzialmente funziona.

MODELLI MATEMATICI IN BIOLOGIA



Presenteremo ora due modelli che descrivono il modo in cui una 
popolazione si evolve nel tempo, il modello di Malthus e il modello 
Logistico. 

Benché questi modelli possono essere descritti usando il calcolo 
differenziale, utilizzeremo un altro approccio, che è poi spesso usato 
come via per approssimare le soluzioni di problemi differenziali che 
possono essere difficili da studiare, i cosiddetti METODI ITERATIVI.



Cos’è un processo (o metodo) iterativo? 

Sia   una trasformazione che a un dato in entrata   associa un dato 
in uscita  .  

Applichiamo nuovamente la trasformazione   al dato   ottenendo 
così un valore  . 

Iterando il procedimento, al passo  -simo  avremo  . 

In questo modo, a partire dal dato   possiamo calcolare  .

T u0
u1 = T(u0)

T u1
u2 = T(T(u0)) = T(u1)

n un+1 = T(un)

un un+1



�
IL MODELLO DI MALTHUS

Il modello di Malthus è dovuto 
a l l ’ economis ta ing lese Thomas 
M a l t h u s ( 1 7 6 6 - 1 8 3 4 ) , c h e l o 
introdusse nel trattato “An essay on 
the principles of population as it 
effects the future improvement of the 
society” del 1798. 



Nei suoi studi di natura economica Malthus si riferiva alla 
popolazione umana, ma il modello si può applicare a molte altre 
specie, da mammiferi a batteri. 

Le ipotesi su modello sono 

• POPOLAZIONE ISOLATA (ossia non ci sono scambi con 
l’esterno, né in termini di risorse, né in termini si emigrazioni o 
immigrazioni); 

• POPOLAZIONE INDISTINGUIBILE per sesso ed età.



Immaginiamo di voler stimare come varia una popolazione anno 
dopo anno (o fissiamo un altro intervallo di tempo a nostro piacere). 

Denotiamo con    la popolazione al tempo iniziale. 

Denotiamo con   la popolazione attesa dopo un anno. 

 Denotiamo con   la popolazione attesa dopo   anni.

N0

N1

Nn n



Siamo interessati a studiare il cosiddetto tasso di crescita della 
popolazione, ossia, per ogni  ,  la quantità   

Il tasso di crescita rappresenta la variazione in termini assoluti tra la 
popolazione in due anni successivi rapportata con la popolazione  .

n ∈ ℕ

Nn

 
Nn+1 − Nn

Nn



Il modello di Malthus prevede che il tasso di crescita di una 
popolazione è costante nel tempo. 

 Detta   tale costante, che si determina sperimentalmente e varia da 
specie a specie, abbiamo  

La trasformazione che stiamo utilizzando è, quindi,

a

 
Nn+1 − Nn

Nn
= a ossia  Nn+1 = (1 + a)Nn

 T(x) = (1 + a)x



In particolare,  ; inoltre 

Iterando il procedimento 

Otteniamo, quindi, una formula “chiusa”, che dipende solo da  .  

Non sempre una cosa del genere è possibile.

N1 = (1 + a)N0

N0

 N2 = (1 + a)N1 = (1 + a)(1 + a)N0 = (1 + a)2N0 .

 Nn+1 = (1 + a)Nn = (1 + a)(1 + a)nN0 = (1 + a)n+1N0 .



Come varia il parametro  ? Sicuramente   in quanto le 
popolazioni sono numeri positivi, quindi  . 

Se 1+a>1, ossia  , allora   tende ad essere sempre più 
grande all’aumentare di  ; la popolazione, quindi, cresce molto 
velocemente al variare di  . 

Se  , ossia  , allora  , ossia la popolazione si 
mantiene costante nel tempo. 

Se  , ossia  ,   tende ad essere sempre 
più vicino a 0 al variare di  . La popolazione decresce in maniera 
molto rapida fino ad estinguersi.

a 1 + a > 0
a > − 1

a > 0 (1 + a)n

n
n

1 + a = 1 a = 0 Nn+1 = Nn

0 < 1 + a < 1 −1 < a < 0 (1 + a)n

n



Come si può determinare sperimentalmente il parametro  ? 

Bisogna avere a disposizione dei dati reali, ottenuti, per esempio, 
tramite un esperimento o un censimento. 

Poiché  , segue facilmente che  .  

Come valore per   e   per calcolare   scegliamo quelli relativi ai 
dati sperimentali al passo   e  .

a

N1 = (1 + a)N0 a =
N1

N0
− 1

N0 N1 a
n = 0 n = 1



Sia   il numero di membri di una certa popolazione all’istante   e 
denotiamo con   la velocità con cui la popolazione varia all’istante  . 

Chiamiamo   “tasso di aumento della popolazione”.  

Il modello di Malthus prevede che il tasso di aumento della popolazione 

è costante, ossia  , con  . 

Se   il modello di Malthus è rappresentato da 

L’ unica soluzione è  .

N(t) t
N′ �(t) t

N′ �(t)
N(t)

N′�(t)
N(t)

= K K ∈ ℝ

N(0) = N0

N(t) = N0eKt

 {N′�(t) = KN(t)
N(0) = N0



Come ogni modello matematico, il modello di Malthus deve essere 
sottoposto a verifiche sperimentali. Due esperimenti in particolare 
permettono di capire bene quali sono i punti di forza e di debolezza 
del Modello di Malthus. 

�
DISCUSSIONE SUL MODELLO



Nel 1975 il biologo Braun studiò dei piccoli roditori IN 
LABORATORIO. Le condizioni di vita erano quindi ideali e ai roditori 
venivano forniti cibo, acqua e risorse a volontà. 

La popolazione iniziale era composta da 2 individui e si osservò 
come essa cresceva nell’arco di alcuni mesi. L’accordo tra i dati 
sperimentali e i valori attesi utilizzando il modello di Malthus era 
pressoché perfetto.

MESI 0

MESI 2

MESI 6

MESI 10

0 30 60 90 120



Negli anno ’30 il biologo russo G. F. Gause (1910-1986) effettuò un 
altro esperimento. 

Mise 5 protozoi in una provetta che conteneva del brodo di coltura e 
contò il numero di protozoi ogni giorno per 6 giorni. 

Anche in questo caso, all’inizio c’era accordo tra dati reali e dati 
estrapolati dal modello di Malthus. 

A un certo punto, però, la crescita della popolazione rallentò e il 
numero dei protozoi si assestò su una popolazione pressoché 
costante di poche centinaia di individui.  

Secondo le stime ottenute attraverso il modello di Malthus, al sesto 
giorno ci sarebbero dovuti essere migliaia e migliaia di protozoi.



Il modello di Malthus, quindi, descrive la crescita di una popolazione 
in condizioni ottimali di cibo e risorse. Se ci sono abbastanza risorse 
la crescita di una popolazione è molto rapida. 

Se le risorse cominciano a scarseggiare a seguito dell’aumento della 
popolazione, nelle fasi iniziali il modello di Malthus descrive bene la 
situazione, ma a un certo punto la crescita frena e sembrerebbe 
assestarsi su un valore “costante”. 



�
IL MODELLO LOGISTICO

Il modello logistico fu introdotto 
dal biologo-matematico P. F. 
Verhulst (1804-1849) nel 1837. 

Esso rappresenta, in un certo 
senso, un “corrett ivo” de l 
modello di Malthus.



Sia   la popolazione a  , denotiamo con   la popolazione  attesa 
dopo un anno e, ricorsivamente, con   la popolazione attesa dopo   
anni. 

Nel modello logistico, risulta che esistono    costanti positive tali che  

Di qui segue che 

Quando   è un numero “piccolo” (quindi nelle prime fasi in cui 
studiamo il fenomeno), la quantità   è anch’essa “piccola”, quindi il 
modello logistico all’inizio si comporta quasi come quello di Malthus; 
all’aumentare della popolazione la presenza di   diventa più 
rilevante.

N0 t = 0 N1
Nn n

a, b

Nn
bN2

n

bN2
n

 .
Nn+1 − Nn

Nn
= a − bNn

 Nn+1 = Nn(a − bNn) + Nn = (1 + a)Nn − bN2
n



Anche in questo caso si possono determinare   e   in maniera 
“sperimentale”, avendo a disposizione dei dati reali: in particolare, 
dobbiamo considerare il sistema  

Come valori di   ed   consideriamo i dati reali ottenuti tramite 
le rilevazioni demografiche o esperimenti.

a b

N0, N1 N2

 {N1 = (1 + a)N0 − bN2
1

N2 = (1 + a)N1 − bN2
2 .



USANDO IL CALCOLO DIFFERENZIALE

Assumendo che, all’istante   
la popolazione sia  , il modello 
logistico  è   

con   costanti opportune. 

La soluzione di questo problema 
è 

Il grafico di questa funzione è 
rappresentato d i f ianco; in 
particolare,  .

t = 0
N0

H, K

lim
t→+∞

N(t) = K/H

 {N′�(t) = (K − HN(t))N(t)
N(0) = N0,

 N(t) = N0
K/HeKt

K/H − N0 + N0eKt



I dati sperimentali mostrano che il modello logistico si accorda molto 
meglio del modello di Malthus per rappresentare la crescita di una 
popolazione (vedasi l’esperimento di Gause). 

Sussistono però delle criticità. Per esempio, due economisti, Pearl e 
Reed, utilizzando il modello logistico, analizzarono la popolazione 
degli USA dal 1790 al 1910, ottenendo un accordo molto buono con 
i dati reali. Secondo le loro stime, però, il valore “costante” verso 
cui si sarebbe assestata la popolazione era di circa 200.000.000 
abitanti, mentre la popolazione degli USA al 2018 consta di più di 
327.000.000 di abitanti. 

Il modello logistico, quindi, è sicuramente più efficace di quello 
malthusiano nel rappresentare la realtà, ma può esso stesso essere 
soggetto a correttivi.

�
DISCUSSIONE SUL MODELLO



GRAZIE PER 
L’ATTENZIONE!


