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Prefazione

Oggetto di questa tesi è lo studio di alcuni problemi nonlineari “critici” nel
senso delle immersioni di Sobolev per particolari classi di operatori subellittici.

In questo speciale contesto, si sono affrontati principalmente i due seguenti
temi:
1. la presenza di eventuali termini di resto nelle disuguaglianze di immersione

di tipo Sobolev relative ad imbedding non compatti ;
2. il fenomeno delle dimensioni critiche alla Brezis-Nirenberg.

Si è indagato in particolare il ruolo assunto nei problemi di cui sopra dalla
soluzione fondamentale dell’operatore subellittico coinvolto.

La principale classe di operatori da noi considerata è costituita dai cosid-
detti Sublaplaciani su Gruppi di Carnot. Lo studio di questi operatori, che
intervengono in svariati campi della geometria e dell’analisi, ha ricevuto grande
impulso nell’ultimo decennio e riveste oggi sempre maggiore interesse.

A conclusione di questo ciclo di studi, desidero innanzitutto ringraziare
il Dipartimento di Matematica dell’Università di Bologna e la sua Scuola di
Dottorato, per avermi più volte ospitata in questi anni, consentendomi preziosi
approfondimenti legati alle mie ricerche.

Rivolgo un ringraziamento particolare al Prof. Ermanno Lanconelli, per la
sua squisita disponibilità, i suoi insegnamenti e l’interesse mostrato per questo
lavoro.

Desidero, infine, esprimere la mia più sentita gratitudine al Prof. Enrico
Jannelli, relatore di questa tesi, per avermi seguita e sostenuta durante tutti
questi anni, infondendomi costantemente entusiasmo ed interesse.

Bari, Novembre 2003

Annunziata Loiudice
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Introduzione

Oggetto di questa tesi è lo studio di alcuni problemi legati a fenomeni di espo-
nente critico per alcune classi di operatori subellittici. Particolare attenzione
viene rivolta in questa analisi al ruolo assunto dalla soluzione fondamentale
degli operatori coinvolti.
Cominciamo, innanzitutto, col tracciare un quadro dei risultati noti nel con-
testo ellittico dai quali trae origine la nostra ricerca.

Nel celebre lavoro [7] del 1983, Brezis e Nirenberg studiavano il problema
semilineare critico:




−∆u = u2∗−1 + λu in Ω

u > 0 in Ω
u = 0 su ∂Ω

(1)

ove Ω è un aperto regolare di RN , N ≥ 3 e 2∗ = 2N
N−2 è l’esponente critico

per l’embedding di Sobolev H1
0 (Ω) ↪→ Lp. Essi mettevano in evidenza un

interessante fenomeno: le condizioni per l’esistenza di soluzioni del problema
(1) risultano sorprendentemente differenti quando N = 3 e quando, invece,
N ≥ 4. Infatti, valgono i seguenti risultati:
Teorema A Se N ≥ 4, allora il problema (1) ha almeno una soluzione
u ∈ H1

0 (Ω) per 0 < λ < λ1.
Teorema B Se N = 3, il problema (1) ha almeno una soluzione u ∈ H1

0 (Ω)
per λ∗ < λ < λ1, dove λ∗ è un opportuno numero positivo; inoltre, se Ω è
strettamente stellato, esiste λ∗∗ > 0 tale che il problema non ammette soluzione
per 0 < λ < λ∗∗.
Teorema C Se N = 3 e Ω è una sfera, allora λ∗ = 1

4λ1 e il problema non ha
soluzione per λ ≤ λ∗.
Teorema D Se N = 3, esiste una costante C = C(Ω) tale che la disugua-
glianza di Sobolev può essere migliorata come segue:

‖∇u‖2
2 ≥ S‖u‖2

6 + C‖u‖2
2 ∀u ∈ H1

0 (Ω) (2)

1



2 Introduzione

dove S è la miglior costante per l’immersione di Sobolev H1
0 (Ω) ⊂ L6(Ω).

Questi risultati mostrano che la dimensione N = 3 gioca un ruolo partico-
lare per il problema (1). Infatti, se N ≥ 4 il problema ha soluzione per ogni
λ ∈ (0, λ1), mentre per N = 3 esistono domini di R3 per i quali il problema
non ha soluzione per λ in un opportuno intorno destro di 0. Secondo una
terminologia ormai consolidata, questo fatto si esprime dicendo che N = 3 è
una dimensione critica per il problema (1).
Infine, il Teorema D rivela un altro interessante fenomeno. Esso stabilisce
che la classica disuguaglianza di Sobolev con costante ottimale S può essere
“migliorata” su aperti limitati in dimensione 3; inoltre, come conseguenza del
Teorema A, non è difficile provare che la (2) non vale per N ≥ 4, quindi la
dimensione 3 gioca nuovamente un ruolo speciale.
A partire dal lavoro [7], i Teoremi A, B, C da una parte, e il Teorema D dal-
l’altra, sono stati oggetto di numerose generalizzazioni.
Per quanto riguarda il problema delle dimensioni critiche, esso è stato affronta-
to in svariati contesti ellittici: si veda ad esempio [46], [13], [31]. Per quanto
riguarda il Teorema D, esso è stato, innanzitutto, perfezionato mediante l’uso
delle norme deboli ed esteso a tutte le dimensioni da Brezis e Lieb [6] nel
seguente modo:

Teorema D1 Se Ω ⊂ RN è un aperto limitato, esiste una costante C =
C(Ω) > 0 tale che

‖∇u‖2
2 ≥ S‖u‖2

2∗ + C‖u‖2
N

N−2
,w

∀u ∈ H1
0 (Ω)

ove ‖ · ‖q,w denota la norma Lq-debole.

Il teorema precedente è stato, poi, doppiamente generalizzato. Da una parte,
l’esponente di sommabilità 2 è stato sostituito da 1 < p < N ; dall’altra,
sono stati considerati spazi di Sobolev di ordine k. Le disuguaglianze, dovute
rispettivamente a Egnell-Pacella-Tricarico [14] e a Gazzola-Gruneau [28], sono
le seguenti:

‖∇u‖p
p ≥ Sp‖u‖p

p∗ + C‖u‖p
q , ∀q : 0 < q <

N(p− 1)
N − p

∀u ∈ W 1,p
0 (Ω);

‖u‖2
Hk

0
≥ S‖u‖2

k∗ + C‖u‖2
N

N−2k
,w

∀u ∈ Hk
0 (Ω).
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Le disuguaglianze precedenti hanno in comune alcune caratteristiche. Esse
possono essere riscritte come segue

J(u) ≥ S|u|p∗ + C(Ω)‖u‖p

ove p è l’esponente di sommabilità dello spazio di Sobolev W p
0 (Ω), J(u) è il

funzionale p-omogeneo della norma delle derivate, |u|∗ è la norma nello spazio
Lq∗ dove l’embedding di Sobolev è continuo ma non compatto, C(Ω) è una
costante positiva, C(tΩ) → 0 per t →∞, ed infine, ‖u‖ è una norma Lr (forte
o debole), con r < q∗.

Un’analisi attenta dei risultati presenti in letteratura riguardo alle proble-
matiche sopra richiamate ha portato in [31] e [32] alla formulazione di due
principi unificanti, che interpretano il fenomeno delle dimensioni critiche e la
presenza di termini di resto nella disuguaglianza di immersione di Sobolev alla
luce delle proprietà di sommabilità della soluzione fondamentale dell’operatore
ellittico coinvolto. I due principi sono i seguenti:

Principio 1 Un operatore ellittico L si comporta “criticamente” in dimen-
sione N se e solo se L ha almeno una funzione di Green G(x0, x) nello spazio
L2

loc(RN ).

Principio 2 La disuguaglianza di Sobolev

J(u) ≥ S|u|p∗
può essere migliorata aggiungendo ogni norma che sia localmente finita per la
soluzione fondamentale dell’operatore associato.

Dunque, combinando i principi 1 e 2, si deduce che un operatore lineare el-
littico L si comporta criticamente se e solo se la disuguaglianza di Sobolev
associata ammette la norma L2 come termine di resto.

In questo quadro di risultati si innesta la nostra ricerca.
Il nostro obiettivo è stato quello di indagare la validità dei principi sopra enun-
ciati in un contesto completamente differente, non ellittico bens̀ı subellittico.
Ricordiamo che un operatore differenziale L del secondo ordine formalmente
autoaggiunto si dice subellittico di ordine ε (0 < ε < 1) nel punto x ∈ RN se
esiste un intorno V di x e una costante C > 0 tale che, per ogni u ∈ C∞

0 (V ),
vale la stima:

‖u‖2
Hε ≤ C(|(Lu, u)| + ‖u‖2

2)
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ove ‖ · ‖Hε è la norma nello spazio di Sobolev classico di ordine ε.
La principale classe di operatori da noi esaminata è costituita dai cosiddetti

Sublaplaciani su gruppi di Lie stratificati, o Gruppi di Carnot. Si tratta di
un’ampia classe di operatori differenziali del secondo ordine, invarianti rispetto
alle traslazioni a sinistra su particolari gruppi di Lie e omogenei di grado due
rispetto alle dilatazioni naturali sul gruppo. Esempio ben noto è il Laplaciano
di Kohn sul Gruppo di Heisenberg Hn.
Questi operatori costituiscono una sottoclasse particolarmente interessante
degli operatori ipoellittici introdotti da Hormander nel 1967.
Lo studio dei sublaplaciani e delle equazioni alle derivate parziali sub-ellittiche
ad essi associate riveste, oggi, un ruolo fondamentale in svariati campi della
geometria e dell’analisi.

La nostra attenzione, oltre che ai sublaplaciani, è rivolta ad un’altra classe
di operatori del secondo ordine, il cui esempio modello è costituito dall’ope-
ratore L = ∆x + |x|2α∆y, con α > 0. Quest’ultimo è anch’esso omogeneo
di grado due rispetto ad una famiglia di dilatazioni anisotrope su RN , ma
non risulta invariante rispetto ad alcuna operazione di gruppo su RN . Esso
rientra nella classe di operatori subellittici introdotta e studiata da Franchi e
Lanconelli in [19],[20].

Come si potrà osservare nel seguito, una caratteristica particolarmente in-
teressante dell’analisi degli operatori sinora citati sta nel fatto che il ruolo
della dimensione spaziale è assunto dalla dimensione omogenea dello spazio
ambiente rispetto alle dilatazioni.

Il lavoro di tesi si compone come segue.

Il capitolo 1 è dedicato alla descrizione delle principali proprietà degli
operatori da noi esaminati. Nella prima parte si presentano i sublaplaciani e
la ricca struttura algebrico-geometrica ad essi associata.
Nella seconda, invece, si introduce l’operatore L = ∆x + |x|2α∆y e si descrive
la particolare geometria generata dai campi vettoriali che realizzano L come
“somma di quadrati”. Per tali campi si ricava una disuguaglianza di Sobolev
globale, come conseguenza dei teoremi di embedding per campi non regolari
dimostrati da Franchi e Lanconelli in [21].
Un’ampia sezione viene poi dedicata allo studio dell’esistenza e delle proprie-
tà di integrabilità delle funzioni di Green di L, ottenute col metodo delle
cosiddette funzioni di Green approssimate. Queste stime costituiscono un in-
grediente fondamentale per le dimostrazioni del capitolo 3.
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Il capitolo 2 contiene il risultato principale da noi ottenuto in quanto a
generalità, ovvero l’estensione della disuguaglianza di Brezis-Lieb richiamata
nel Teorema D1 al contesto astratto dei Sublaplaciani. Si è, infatti, provato
che se G è un gruppo di Carnot di dimensione omogenea Q, vale il seguente:

Teorema D2 Se Ω ⊂ G è un aperto limitato, esiste una costante positiva
C = C(Ω) tale che

‖∇Gu‖2
2 ≥ S‖u‖2

2∗ + C‖u‖2
Q

Q−2
,w

∀u ∈ S1
0(Ω). (3)

ove 2∗ = 2Q
Q−2 ed S è la miglior costante per l’embedding di Sobolev-Folland-

Stein.

Si è, inoltre, dimostrata una disuguaglianza più forte della (3), recante come
termine di resto la norma ‖∇Gu‖ Q

Q−1
,w

.

Tenuto conto della particolare forma assunta dalla soluzione fondamentale dei
Sublaplaciani (si veda la sezione 1.1), la disuguaglianza (3) si rivela in perfet-
to accordo col Principio 2. Inoltre, la (3) suggerisce che l’unica dimensione
critica per un sublaplaciano possa essere la dimensione omogenea Q = 3. Ma
poichè l’unico gruppo di Carnot di dimensione 3 è banalmente (R3,+) con
il Laplaciano classico come sublaplaciano canonico, si può intuire che l’unico
sublaplaciano a presentare il fenomeno delle dimensioni critiche sia il Lapla-
ciano euclideo.
Questa deduzione è supportata dal fatto che il più semplice gruppo di Carnot
non abeliano di passo 2, ovvero il gruppo di Heisenberg Hn, che ha dimensione
omogenea Q = 2n + 2 ≥ 4, non presenta dimensioni critiche, come dimostrato
da Citti in [12] (si veda la Sezione 4.2).
Una sezione a se stante del capitolo viene dedicata al caso particolare del grup-
po di Heisenberg Hn, ove la conoscenza esplicita dei minimizzanti di Sobolev
consente di approfondire la nostra analisi. In particolare, dimostriamo che la
disuguaglianza di Sobolev per il gradiente di Heisenberg può essere miglio-
rata non solo sui limitati, ma sull’intero spazio, in termini della “distanza”
dall’insieme dei minimizzanti. Questo nostro risultato estende al gruppo di
Heisenberg il risultato ottenuto in ambito euclideo da Bianchi ed Egnell in [3].

Nel capitolo 3, in analogia con quanto dimostrato per i sublaplaciani, ci
si è chiesto se fosse possibile ottenere risultati simili per altri operatori subel-
littici. Si è, dunque, preso in esame l’operatore L = ∆x + |x|2α∆y, con α > 0.
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Il tentativo di estendere i risultati raggiunti a questo tipo di operatore ha
presentato difficoltà nuove, dovute alla mancanza di invarianza rispetto a
traslazioni di gruppo. Ciononostante, si è dimostrato l’analogo della disu-
guaglianza (3) per tutti gli aperti limitati Ω ⊂ RN intersecanti l’insieme di
degenerazione dell’operatore, ovvero l’insieme {x = 0}. La dimostrazione ha
richiesto un’attenta analisi delle proprietà di sommabilità Lp-deboli uniformi
rispetto al polo delle funzioni di Green di L.

Il capitolo 4, infine, è dedicato allo studio del problemo critico (1) per gli
operatori ∆Hn e L = ∆x + |x|2∆y. Nella prima parte, si riportano i risultati
noti nel caso del laplaciano di Kohn ∆Hn , attestanti l’assenza di dimensioni
critiche per questo operatore. Nella seconda, invece, formuliamo il problema
critico per l’operatore L = ∆x + |x|2∆y e presentiamo alcuni nostri risultati,
che rivelano la criticità della dimensione omogenea Q = 3. Mediante un argo-
mento di tipo Pohozaev si individua, infatti, una classe di domini limitati in
dimensione omogenea Q = 3 per i quali l’analogo del problema (1) per L non
ammette soluzione per λ sufficientemente piccoli.

In relazione ai principi 1 e 2 sopra enunciati, i risultati da noi ottenuti si
possono sintetizzare nelle due tabelle seguenti:

Operatore G(0, ξ) L2
loc-sommabilità dimensioni critiche

di G(0, ξ)

−∆Hn
C

|ξ|Q−2
Hn

nessuna dim. nessuna

−(∆x + |x|2∆y) C
d(ξ)Q−2 Q < 4 Q = 3
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Operatore G(0, ξ) sommabilità termine di resto
ottimale di G(0, ξ) ottimale

−∆G C
|ξ|Q−2
G

L Q
Q−2

,w
‖ · ‖ Q

Q−2
,w

−(∆x + |x|2α∆y) C
dα(ξ)Q−2 L Q

Q−2
,w

‖ · ‖ Q
Q−2

,w

Come si può notare, vi è una perfetta corrispondenza tra le ultime due colonne
di ciascuna tabella, proprio come osservato in [31] e [32] nel caso degli opera-
tori ellittici.
Questa nostra analisi, dunque, conferma la validità dei principi 1 e 2 nei
casi subellittici esaminati ed evidenzia anche in questo contesto il ruolo
chiave assunto dalle proprietà di sommabilità della soluzione fondamentale nei
problemi caratterizzati da mancanza di compattezza.





Capitolo 1

Alcuni operatori subellittici e
loro soluzioni fondamentali

Introduzione

In questo capitolo presentiamo gli operatori che saranno oggetto di indagine
nella tesi e ne studiamo alcune proprietà.

La prima parte del capitolo è dedicata ai cosiddetti Sublaplaciani su gruppi
di Lie stratificati, o “Gruppi di Carnot”.
Questi operatori, invarianti per traslazione su particolari Gruppi di Lie non
Abeliani e omogenei di grado due rispetto alle dilatazioni naturali sul tali grup-
pi, costituiscono una sottoclasse particolarmente interessante degli operatori
introdotti da Hormander nel 1967.
Più precisamente, i Sublaplaciani svolgono nell’ambito degli operatori ellittico-
degeneri di tipo Hormander un ruolo analogo a quello ricoperto nel contesto
ellittico dagli operatori a coefficienti costanti, invarianti per traslazione sul
gruppo di Lie Abeliano RN . Esempio ben noto di sublaplaciano è il cosiddetto
Laplaciano di Kohn ∆Hn sul Gruppo di Heisenberg Hn.
Illustreremo brevemente le principali caratteristiche di questi operatori e la
ricca struttura algebrico-geometrica ad essi associata.

Nella seconda parte del capitolo ci occupiamo, invece, di un’altra classe di
operatori subellittici, introdotti e studiati da Franchi e Lanconelli in [19], [20]
e [21], il cui esempio modello è costituito dall’operatore L = ∆x + |x|2α∆y,
con α > 0.
A differenza dei sublaplaciani, questi operatori non sono invarianti rispetto
a traslazioni di gruppo e non sono in generale di tipo Hormander, perchè i

9



10 Capitolo 1. Alcuni Operatori Subellittici

campi Xj che li realizzano come “somme di quadrati” non sono sufficiente-
mente regolari affinchè la condizione sul rango sia formulabile. Nonostante
ciò, le “buone” proprietà della metrica di controllo associata ai campi ci con-
sentono anche in questo caso un’analisi soddisfacente delle problematiche in
esame.
Si riesce, ad esempio, ad ottenere un quadro completo delle disuguaglianze di
tipo-Sobolev associate a questi campi.
A tal proposito, si fa vedere in particolare come una disuguaglianza di Sobolev
globale si possa ricavare dai risultati dimostrati in [21], facendo uso di teoremi
di embedding per spazi di Sobolev ordinari anisotropi.
Un’ampia sezione viene poi dedicata al delicato studio dell’esistenza e delle
proprietà di sommabilità delle funzioni di Green di tali operatori. Questi
risultati vengono ottenuti stimando preliminarmente le cosiddette funzioni di
Green approssimate. Le stime Lp-deboli uniformi rispetto al polo per le fun-
zioni di Green di L provate in questo capitolo costituiranno un ingrediente
fondamentale per le dimostrazioni del Capitolo 3.

1.1 Sublaplaciani su gruppi di Lie stratificati

Prima di introdurre la definizione di gruppo di Lie stratificato, o “Gruppo
di Carnot”, richiamiamo per comodità di lettura alcune nozioni riguardanti i
gruppi e le algebre di Lie, che ricorreranno nel seguito.

Sia h un’algebra di Lie e denotiamo con [·, ·] l’operazione di bracket su h.
Se V e W sono due sottoinsiemi di h, indicheremo con [V, W ] il seguente
sottospazio di h:

[V, W ] := span{ [v, w] | v ∈ V, w ∈ W}.
Ricordiamo che un’algebra di Lie si dice nilpotente di passo m se, definiti
induttivamente i seguenti ideali di h:

h(1) = h, h(j) = [h, h(j−1)]

risulta h(m+1) = {0} e h(m) 6= {0}.

Sia, ora, M una varietà differenziabile N -dimensionale e si consideri l’alge-
bra di Lie dei campi vettoriali su M, dotata dell’usuale operazione di commu-
tazione, definita per ogni coppia di campi X e Y come:

[X, Y ]f = Y (Xf)−X(Y f)



1.1. Sublaplaciani su gruppi di Lie stratificati 11

per ogni funzione regolare f su M .
Richiamiamo la definizione di algebra di Lie generata da una famiglia di campi
vettoriali e relativo rango.

Definizione 1.1.1. Data una famiglia di campi vettoriali X1, . . . , Xm su una
varietà N -dimensionale M, denoteremo con Lie{X1, . . . , Xm} e chiameremo
algebra di Lie generata da X1, . . . , Xm lo spazio vettoriale generato dai campi
X1, . . . , Xm e dai loro commutatori di qualsiasi ordine.

Dunque, un campo Z appartiene a Lie{X1, . . . , Xm} se e soltanto se Z è
combinazione lineare finita di termini della forma

[Xi1 [Xi2 , . . . , [Xik−1
, Xik ]]]

con k ∈ N e 1 ≤ ih ≤ m per 1 ≤ h ≤ k.

Per ogni fissato x ∈ M , l’insieme

V (x) := {Z(x) | Z ∈ Lie{X1, . . . , Xm}}
è un sottospazio vettoriale di RN . Si pone:

rangoLie{X1, . . . , Xm}(x) = dimV (x).

Nel caso in cui la varietà sia un gruppo di Lie (G, ◦), allora l’insieme dei campi
vettoriali invarianti a sinistra rispetto all’operazione di gruppo su G costituisce
una sottoalgebra dell’algebra dei campi vettoriali su G, detta l’algebra di Lie
di G.

Dopo questi brevi richiami, passiamo a dare la definizione classica astratta
di gruppo di Carnot presente in letteratura.

Definizione 1.1.2. Un Gruppo di Carnot (o gruppo stratificato) H è un
gruppo di Lie connesso e semplicemente connesso la cui algebra di Lie h

ammette una stratificazione, ovvero una decomposizione diretta del tipo:

h =
r⊕

j=1

Vj

ove gli spazi vettoriali Vj verificano le seguenti condizioni:

[V1, Vj−1] = Vj per 2 ≤ j ≤ r; [V1, Vr] = {0}.
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Dunque, in particolare, h è nilpotente di passo r.
Assegnata una qualunque base X = (X1, . . . , Xm) del primo strato V1 dell’al-
gebra h, l’operatore differenziale

L =
m∑

j=1

X2
j

è detto il Sublaplaciano su H associato ad X.

Introdurremo, ora, una definizione di gruppo di Carnot più operativa, che
viene più spesso usata in un contesto analitico e che noi adotteremo per il
seguito.
Innanzitutto diamo la definizione di gruppo di Lie omogeneo (si veda ad es.
[48], cap. XIII.5).

Sia G = (RN , ◦) un gruppo di Lie su RN . Supponiamo, inoltre, che su RN

sia data una famiglia di dilatazioni della seguente forma:

δλ(x) = δλ(x(1), x(2), · · · , x(r)) = (λα1 x(1), λα2 x(2), · · · , λαr x(r)) (1.1.1)

ove x(i) ∈ RNi per i = 1, . . . , r e N1 + N2 + . . . + Nr = N e gli esponenti
α1, . . . , αr sono numeri reali strettamente positivi, e che le dilatazioni δλ siano
automorfismi del gruppo G = (RN , ◦), ovvero che

δλ(x ◦ y) = (δλx) ◦ (δλy) ∀x, y ∈ G.

Allora, la terna G = (RN , ◦, δλ) si dirà un gruppo di Lie omogeneo.
Il numero

Q =
r∑

j=1

αjNj

naturalmente legato alle dilatazioni {δλ}λ>0, essendo λQ lo jacobiano della
mappa

x 7−→ δλ(x) ∀x ∈ G
è detta dimensione omogenea del gruppo G e gioca il ruolo della dimensione
topologica in questo contesto. In particolare osserviamo che, denotata con |E|
la misura di Lebesgue di un qualunque insieme misurabile E, risulta:

|δλ(E)| = λQ|E|.
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Riguardo all’operazione di gruppo ◦ su un gruppo di Lie omogeneo, si osserva
facilmente che l’elemento neutro per ◦ è sempre costituito dallo zero di RN .
Infatti, poichè ogni δλ è un automorfismo di gruppo, se e è lo zero di G deve
risultare δλ(e) = e ∀λ > 0. Ciò prova che e = (0, . . . , 0).

Diamo, ora, la definizione di Gruppo di Carnot che noi adotteremo e che
risulta equivalente alla definizione classica astratta a meno di isomorfismi (per
una dimostrazione dettagliata di questa equivalenza si veda ad es. [4]).

Definizione 1.1.3. (Gruppo di Carnot). Sia G = (RN , ◦) un gruppo di
Lie omogeneo dotato di dilatazioni della forma:

δλ(x(1), x(2), · · · , x(r)) = (λx(1), λ2 x(2), · · · , λr x(r)) (1.1.2)

dove x(i) ∈ RNi per i = 1, . . . , r e N1 + N2 + . . . + Nr = N .
Denotata con g l’algebra di Lie di G, per i = 1, . . . , N1 sia Xi l’unico campo
vettoriale di g che coincide con la derivata parziale ∂

∂xi
nell’origine. Suppo-

niamo, ora, che valga la seguente ipotesi:

(H) rango Lie{X1, . . . , XN1}(x) = N ∀x ∈ G.

Allora, G = (RN , ◦) si dirà un Gruppo di Carnot di passo r con N1 generatori.

Dunque, in breve, un gruppo di Carnot è un particolare gruppo di Lie
omogeneo su RN con l’ipotesi aggiuntiva (H).
La dimensione omogenea di un gruppo di Carnot è il numero

Q =
r∑

j=1

jNj .

L’operatore differenziale del secondo ordine

∆G =
N1∑

i=1

X2
i

è chiamato il Sublaplaciano canonico su G, mentre un sublaplaciano su G è
ogni operatore della forma

L =
N1∑

i=1

Y 2
i

con Y1, . . . , YN1 base di span{X1, . . . , XN1}.
Osserviamo che l’operatore L è invariante rispetto alle traslazioni del gruppo,
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ovvero denotata con τx : y 7→ x ◦ y la traslazione a sinistra di elemento x,
risulta

L(u ◦ τx) = Lu ◦ τx

per ogni x ∈ RN e u ∈ C∞
0 (RN ).

L risulta, inoltre, omogeneo di grado 2 rispetto alle dilatazioni del gruppo,
ovvero

L(u ◦ δλ) = λ2Lu ◦ δλ ∀λ > 0.

Si noti che l’ipotesi (H) equivale a richiedere che l’algebra di Lie generata
da X1, . . . , XN1 coincida con l’algebra di Lie g dei campi invarianti a sinistra
su G.

Osservazione 1.1.4. I campi “canonici” X1, . . . , XN1 , ovvero i campi coin-
cidenti nell’origine rispettivamente con le derivate parziali ∂

∂x1
, . . . , ∂

∂xN1
, si

ottengono direttamente dalle prime N1 colonne della matrice jacobiana delle
traslazioni calcolata in 0. Basta, infatti, tener conto che, denotata con τx

la traslazione a sinistra di elemento x, vale la seguente caratterizzazione dei
campi invarianti a sinistra su G:

X ∈ g ⇔ X(x) = Jτx(0) ·X(0) ∀x ∈ G
dove X(x) denota il vettore dei coefficienti del campo X =

∑N
i=1 Xi(x) ∂

∂xi
.

Osservazione 1.1.5. L’ipotesi (H) implica che ogni sublaplaciano L è ipoel-
littico, in virtù del famoso teorema sulla ipoellitticità di Hormander [30].
Quest’ultimo, infatti, afferma che se X1, . . . , Xm sono campi C∞ su un aperto
Ω di RN e

rango Lie{X1, . . . , Xm}(x) = N ∀x ∈ Ω

allora l’operatore L =
∑m

i=1 X2
i è ipoellittico nell’aperto Ω, ovvero se u è una

distribuzione su Ω tale che Lu ∈ C∞(Ω), allora u ∈ C∞(Ω).

Esempi. Il più semplice esempio di gruppo di Carnot è ovviamente G =
(RN ,+) con le usuali dilatazioni isotrope δλ(x) = λx. In questo caso il clas-
sico operatore di Laplace ∆ è il sublaplaciano canonico su G e la dimensione
omogenea Q coincide con N .

L’esempio più semplice di gruppo di Carnot non abeliano è il gruppo di
Heisenberg Hn = (R2n+1, ◦), ove la legge di gruppo ◦ è definita come segue.
Denotati con

ξ = (z, t) = (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t) (1.1.3)



1.1. Sublaplaciani su gruppi di Lie stratificati 15

i punti di R2n+1, la legge ◦ opera nel modo seguente:

ξ ◦ ξ′ = (z + z′, t + t′ + 2(< x′, y > − < x, y′ >)) (1.1.4)

dove <,> denota il prodotto interno in Rn.
Hn è un gruppo omogeneo con le dilatazioni

δλ(ξ) = (λz, λ2t), λ > 0 (1.1.5)

per cui la dimensione omogenea dello spazio risulta essere Q = 2n + 2.
Calcoliamo, ora, i campi invarianti a sinistra su Hn e coincidenti nell’origine
con le prime 2n derivate parziali ∂

∂xi
. Essendo la matrice jacobiana delle

traslazioni calcolata in 0 la seguente:

Jτξ
(0) =




In 0 0
0 In 0
2y −2x 1




dalle prime 2n colonne si ottengono i campi:

Xj = ∂xj + 2yj∂t, j = 1, . . . , n

Yj = ∂yj − 2xj∂t j = 1, . . . , n
(1.1.6)

e poichè
[Xj , Yk] = −4δj,k ∂t, (1.1.7)

risulta

rango Lie{X1, . . . , Xn, Y1, . . . , Yn}(ξ) = 2n + 1

in ogni punto ξ ∈ R2n+1. Dunque, Hn è un gruppo di Carnot di passo due con
2n generatori, e l’operatore

∆Hn =
n∑

j=1

(X2
j + Y 2

j ) (1.1.8)

è il suo Sublaplaciano canonico, noto anche come Laplaciano di Kohn.
Si noti che le relazioni (1.1.7) corrispondono alle relazioni di commutazione
canoniche tra momento e posizione nella meccanica quantistica. Infatti, il
gruppo di Heisenberg fu introdotto da Weyl proprio nella sua formulazione
matematica della meccanica quantistica (si veda ad es. [48]).
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Elenchiamo, ora, alcune proprietà dell’operazione di gruppo ◦ su un gene-
rico gruppo di Carnot G, direttamente derivanti dalla definizione.
Dalla sola ipotesi di omogeneità del gruppo G = (RN , ◦) si deduce che l’ope-
razione di gruppo è polinomiale ed ha una ben determinata forma esplicita.
Infatti, se (RN , ◦, δλ) è un gruppo di Lie omogeneo, posto, in accordo con le
notazioni (1.1.1):

x ◦ y =
(
(x ◦ y)(1), (x ◦ y)(2), . . . , (x ◦ y)(r)

)
(1.1.9)

risulta:

(x ◦ y)(1) = x(1) + y(1)

(x ◦ y)(i) = x(i) + y(i) + Q(i)(x, y) 2 ≤ i ≤ r
(1.1.10)

dove

1. Q(i) dipende al più dalle variabili x(1), . . . , x(i−1) e y(1), . . . , y(i−1);

2. le componenti di Q(i) sono polinomi misti nelle variabili x ed y;

3. Q(i)(δλx, δλy) = λiQ(i)(x, y).

Per una dimostrazione del risultato appena enunciato si veda ad esempio [48],
cap. XIII.5.

Dalla particolare forma dell’operazione di gruppo su G, si deduce ad esem-
pio l’invarianza della misura di Lebesgue rispetto alle traslazioni a sinistra
e a destra sul gruppo. Infatti, se consideriamo, ad esempio, le traslazioni a
sinistra, ovvero mappe della forma

τx : y 7→ x ◦ y

con x ∈ G fissato, e ne calcoliamo la matrice Jacobiana, otteniamo una matrice
triangolare inferiore della seguente forma:

A =




IN1 0 . . . 0
∗ IN2 . . . 0
...

...
. . . 0

∗ . . . ∗ INr




Il suo determinante è 1, il che dimostra che la misura di Lebesgue dx è in-
variante rispetto alle traslazioni a sinistra. Analogamente si vede che dx è
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invariante rispetto alle traslazioni a destra. Dunque, la misura di Lebesgue è
una misura di Haar su G.

Richiamiamo, ora, la definizione di norma omogenea | · | su un gruppo
omogeneo G.

Definizione 1.1.6. Si definisce norma omogenea su G = (RN , ◦) ogni fun-
zione continua | · | : RN → [0, +∞[, regolare fuori dall’origine e verificante le
condizioni:

i) |δλ(x)| = λ|x|
ii) |x−1| = |x|
iii) |x| = 0 se e solo se x = 0

Dalla definizione segue, inoltre, che ogni norma omogenea soddisfa la
seguente disuguaglianza pseudo-triangolare

|x ◦ y| ≤ β(|x|+ |y|) ∀x, y ∈ G
ove β è una opportuna costante, β ≥ 1.
Quindi, posto d(x, y) = |y−1 ◦ x|, risulta che

d(x, y) ≤ β (d(x, z) + d(z, y)) ∀x, y, z ∈ G
Inoltre, poichè |x| = |x−1|, risulta anche

d(x, y) = d(y, x)

Chiameremo d-sfere su G le sfere definite mediante la “pseudometrica” d,
ovvero gli insiemi

Bd(x, r) = {y ∈ G | d(x, y) < r}
Poichè la misura di Lebesgue è una misura di Haar su G, si ha che

|Bd(x, r)| = |Bd(0, r)| = rQ|Bd(0, 1)|.
Ricordiamo, inoltre, che ∀ 0 ≤ r1 < r2 e per ogni funzione misurabile

f : R→ R, vale la seguente formula per le coordinate polari:
∫

Bd(0,r2)\Bd(0,r1)
f(d(x)) dx = Q |Bd(0, 1)|

∫ r2

r1

f(ρ) ρQ−1 dρ,

se almeno uno dei due integrali esiste.
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La soluzione fondamentale. Una notevole proprietà dei sublaplaciani su
gruppi di Carnot è l’esistenza di una soluzione fondamentale. Vale, infatti, il
seguente teorema, per la cui dimostrazione si veda [16], [22].

Teorema 1.1.7. Sia G è un gruppo di Carnot di dimensione omogenea Q ≥ 3
ed L un sublaplaciano su G. Allora esiste una norma omogenea | · | su G tale
che la funzione

Γx(y) =
CQ

|x−1 ◦ y|Q−2

è una soluzione fondamentale di L con polo in x, dove CQ è una opportuna
costante positiva.

Espressione radiale dei Sublaplaciani. Sia L un sublaplaciano su un
gruppo di Carnot G e denotiamo con d la norma omogenea su G prevista dal
teorema precedente. Vediamo qual è l’espressione assunta da L su funzioni
“radiali”, ovvero dipendenti dalla sola d. Sia f : R→ R una funzione regolare
e sia u(x) = f(d(x)). Allora, per calcolo diretto si ha

Lu = f ′′(d)|Xd|2 + f ′(d)Ld (1.1.11)

e poichè Γ ≈ d2−Q è la soluzione fondamentale di L, calcolando la precedente
in f(d) = d2−Q si ha:

0 = Ld2−Q = (2−Q)(1−Q)d−Q|Xd|2 + (2−Q)d1−QLd, d 6= 0.

da cui si ottiene
Ld = (Q− 1)d−1|Xd|2

per cui, sostituendo nella (1.1.11), si ha la seguente espressione

Lf(d) = ψ

[
f ′′(d) +

Q− 1
d

f ′(d)
]

ove si è posto
ψ = |Xd|2.

Si osservi che la funzione ψ è omogenea di grado 0 rispetto alle dilatazioni del
gruppo e quindi limitata in G. Nel caso euclideo la densità ψ è identicamente
uguale a 1, e quindi il laplaciano ordinario trasforma funzioni radiali in funzioni
radiali. Questo, invece, non si verifica nel caso dei sublaplaciani. Ad esempio,
nel caso del gruppo di Heisenberg Hn, descritto nel paragrafo dedicato agli
esempi e con le notazioni ivi introdotte, la densità ψ ha simmetria “cilindrica”,
risultando ψ = |z|2/d2.
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1.2 L’operatore L = ∆x + |x|2α∆y, α > 0

Consideriamo, ora, un’altra classe di operatori differenziali del secondo ordine
differente da quella dei sublaplaciani, il cui esempio modello è costituito dal
seguente operatore, largamente studiato in letteratura, definito su RN = Rm

x ×
Rn

y da
L = ∆x + |x|2α∆y, α > 0.

L è un operatore ellittico sull’insieme x 6= 0 e degenera sulla varietà {0}×Rn.
Questo operatore rientra nell’ampia classe di operatori subellittici introdotta
e studiata da Franchi e Lanconelli in [19], [20], [21].
L’operatore L, analogamente ai sublaplaciani, possiede una naturale famiglia
di dilatazioni anisotrope, ovvero:

δλ(x, y) = (λx, λα+1y), λ > 0. (1.2.1)

Si verifica facilmente che L risulta omogeneo di grado due rispetto a {δλ}λ>0,
i.e.

L ◦ δλ = λ2δλ ◦ L
Lo jacobiano delle dilatazioni δλ è pari a λQ, dove

Q = m + (α + 1)n.

e quindi, denotata con dxdy la misura di Lebesgue su Rm+n, si ha che

d ◦ δλ(x, y) = λQ dxdy.

Come vedremo, il numero Q, ovvero la dimensione omogenea di RN rispetto
alle dilatazioni δλ, gioca il ruolo di una dimensione spaziale globale nell’analisi
dell’operatore L.
Osserviamo esplicitamente che questo operatore, omogeneo al pari dei sub-
laplaciani rispetto ad una famiglia di dilatazioni anisotrope, non risulta in-
variante rispetto ad alcuna legge di gruppo su RN .
Si noti che L può essere scritto in forma di “somma di quadrati”

L =
N∑

i=1

X2
i (1.2.2)

scegliendo
Xi = ∂

∂xi
per i = 1, . . . , m

Xi+m = |x|α ∂
∂yi

per i = 1, . . . , n
(1.2.3)
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Se α è un intero positivo, i campi Xj soddisfano la condizione sul rango di
Hormander, ma nel caso generale questa condizione è priva di senso poichè i
campi vettoriali non sono sufficientemente regolari.
Sottolineamo che esiste una stretta connessione tra l’operatore L quando α = 1
e il sublaplaciano canonico sul gruppo di Heisenberg. Infatti, supponiamo che
la dimensione del primo gruppo di variabili sia un intero pari m = 2k, con
k ∈ N, e sia z = (x, y) ∈ R2k e t ∈ R. Allora, nelle coordinate (z, t) il
sublaplaciano sul gruppo di Heisenberg Hk può essere scritto nella forma

∆Hk = ∆z + 4|z|2 ∂2

∂t2
+ 4

∂

∂t
T,

dove T è il campo vettoriale trasversale

T =
k∑

j=1

(yj
∂

∂xj
− xj

∂

∂yj
).

Se si osserva che Tu = 0 se e solo se u è radiale nella variabile z = (x, y), si
deduce che il sublaplaciano agisce sulle funzioni a simmetria cilindrica proprio
come l’operatore L con α = 1. Ricordiamo che una distanza di controllo
naturalmente associata all’operatore L è stata introdotta e studiata da Franchi
e Lanconelli in [19], [20]. Qui di seguito richiamiamo le principali proprietà di
questa metrica.

La geometria indotta dai campi. Come già osservato, i campi introdotti
in (1.2.3) costituiscono un caso particolare dei campi introdotti e studiati in
[19], [20], [21]. Si tratta di campi della forma Xj = λj∂j per j = 1, . . . , N ,
ove λ1, λ2, . . . , λN sono funzioni continue non-negative in RN soddisfacenti le
seguenti proprietà:

(P1) λ1 = 1, λj(x) = λj(x1, . . . , xj−1) ∀x = (x1, . . . , xn) ∈ RN , j = 2, . . . , N ;

(P2) posto Π = {x ∈ RN :
∏N

k=1 xk = 0}, allora λj(x) > 0 ∀x ∈ RN \Π e

λj ∈ C(RN ) ∩ C1(RN \Π), j = 1, . . . N ;

(P3) λj(x1, . . . ,−xi, . . . , xN ) = λj(x1, . . . , xi, . . . , xN ) ∀ i = 1, . . . , j − 1

e j = 2, . . . , N ;
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(P4) esistono numeri non-negativi bji tali che:

0 ≤ xi(∂iλj)(x) ≤ bjiλj(x)

∀x ∈ RN \Π, ∀i < j, j = 2, . . . , N .

Osservazione 1.2.1. Osserviamo che la proprietà (P4) equivale a richiedere
la seguente:

∀ 0 < θ < 1 e ∀x ∈ RN :

θbjiλj(x) ≤ λj(x1, . . . , θxi, . . . xj−1) 2 ≤ j ≤ N, 1 ≤ i ≤ j − 1

come verificato in [21], Prop. 4.2.

Dedichiamo questa breve premessa ad illustrare la particolare geometria
introdotta da Franchi e Lanconelli per questo tipo di campi. Essi dimostrano
che un sistema di campi soddisfacente le proprietà sopraelencate genera una
distanza d su RN , tale che (RN , d, m) risulta uno spazio di tipo omogeneo (nel
senso di Coifman e Weiss) rispetto alla misura di Lebesgue m.
Ricordiamo che una tripla (M, d, µ) è chiamata uno spazio metrico omogeneo
se d e µ sono, rispettivamente, una distanza e una misura di Borel regolare su
M , t.c.

A := sup
x∈M,r>0

µ(Bd(x, 2r))
µ(Bd(x, r))

< ∞

ove Bd(x, r) denota la d-sfere con centro x e raggio r. Ovviamente A ≥ 1. Il
numero reale

Q = log2 A

è chiamato la dimensione omogenea di (M,d, µ).
Qui di seguito diamo la definizione di d e ne elenchiamo le proprietà.

Cominciamo con l’introdurre le nozioni di vettore subunitario e curva sub-
unitaria rispetto al sistema di campi X.

Un vettore γ = (γ1, . . . , γN ) ∈ RN si dice X-subunitario in un punto x se



N∑

j=1

γjξj




2

≤
N∑

j=1

< Xj(x), ξ >2 ∀ξ ∈ RN

Una curva γ : [0, T ] → RN si dice X-subunitaria se è assolutamente
continua e γ̇(t) è un vettore X-subunitario nel punto γ(t) per q.o. t ∈ [0, T ].
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Definizione 1.2.2. Per ogni x, y ∈ RN definiamo d : RN × RN → R+
0 come

segue:

d(x, y) = inf{T ∈ R | esiste γ : [0, T ] → RN curva subunitaria
t. c. γ(0) = x, γ(T ) = y} (1.2.4)

Osservazione 1.2.3. d è una distanza ben definita. Infatti, le ipotesi sui coef-
ficienti λj garantiscono l’esistenza di una curva X-subunitaria congiungente
x ed y, per ogni coppia di punti x, y. Inoltre, si prova che ∃C > 0 t.c.
|x− y| ≤ Cd(x, y) ∀ (x, y) ∈ RN .

Per i nostri scopi, è utile introdurre una quasi-distanza (non-simmetrica)
δ equivalente a d, più esplicitamente definita e che consente di ricavare delle
significative stime per la metrica d. Ricordiamo che δ è stata definita e studiata
in [19].

Se x ∈ RN e t ∈ R si pone:

H0(x, t) = x

Hk+1(x, t) = Hk(x, t) + tλk+1(Hk(x, t))ek+1 per k = 0, . . . , N − 1.

ove {ek}N
k=1 indica la base canonica di RN .

La funzione s 7→ Fj(x, s) = sλj(Hj−1(x, s)) è strettamente crescente su (0,∞)
per ogni x = (x1, . . . , xN ) t.c. xk ≥ 0, k = 1, . . . , j − 1 e per j = 1, . . . , N .
Dunque, è possibile definire la funzione inversa di Fj(x, ·), ovvero si pone
φj(x, ·) = (Fj(x, ·))−1 per j = 1, . . . , N .

Definizione 1.2.4. Per ogni x, y ∈ RN definiamo δ : RN × RN → R+
0 come

segue:
δ(x, y) = max

j=1,...,N
φj(x∗, |xj − yj |)

ove x∗ = (|x1|, . . . , |xN |).
Nel seguito useremo le seguenti notazioni per le d-sfere, le δ-sfere e le loro

dilatazioni:

S(x, r) = {y ∈ RN | d(x, y) < r}
Q(x, r) = {y ∈ RN | δ(x, y) < r}

αS(x, r) = S(x, αr), αQ(x, r) = Q(x, αr), α > 0.

La seguente proposizione contiene le proprietà fondamentali delle funzioni
Fj , φj , d e δ.
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Proposizione 1.2.5. Posto G1 = 1 e Gj = 1 +
∑j−1

i=1 Gibji per j = 2, . . . , N ,
risulta:

(i) ∀x ∈ RN , s > 0, θ ∈ (0, 1) si ha:

θGj ≤ Fj(x, θs)
/
Fj(x, s) ≤ θ

θ ≤ φj(x∗, θs)
/
φj(x∗, s) ≤ θ1/Gj

(ii) ∃ a > 1 tale che
1
a
≤ d(x, y)

δ(x, y)
≤ a ∀x, y.

(iii) Indicata con |S(x, r)| la misura di Lebesgue di S, risulta

a−1 ≤ |S(x, r)|/
∏

j=1

Fj(x∗, r) ≤ a

(iv) Posto εj = (Gj)−1, risulta

d(x, y) ≤ C
N∑

j=1

|xj − yj |εj (1.2.5)

da cui la locale hölderianità di d.
Infatti d(x, y) ≤ b|x− y|ε se |x− y| ≤ 1, dove ε = minj εj.

Osservazione 1.2.6. La (iii) della precedente descrive la misura delle sfere
per la metrica d e assicura la proprietà di duplicazione seguente:

|S(x, 2r)| ≤ C |S(x, r)| ∀r > 0, ∀x ∈ RN .

ove C = a22
P

j Gj , da cui (RN , d, m) è uno spazio metrico omogeneo.

Osservazione 1.2.7. Se si calcola la misura delle sfere metriche nel ca-
so particolare dei campi su RN = Rm+n definiti nella (1.2.3), ovvero per
Xi = ∂

∂xi
per i = 1, . . . , m e Xi+m = |x|α ∂

∂yi
per i = 1, . . . , n, si ottiene la

seguente espressione esplicita:

∃C1, C2 > 0 t.c. ∀ z = (x, y) ∈ Rm+n e ∀ r > 0:

C1 ≤ |S(z, r)|
rm+n(|x|+ r)αn

≤ C2 (1.2.6)
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dalla quale risulta evidente la dipendenza della misura delle sfere dalla distanza
del centro dall’insieme di degenerazione {x = 0}. In particolare, le sfere con
centro su {x = 0} hanno misura

C1 rQ ≤ |S(z, r)| ≤ C2 rQ

ove Q = m + (α + 1)n è la dimensione omogenea di RN rispetto al sistema di
campi X, mentre per sfere di centro qualsiasi vale solo la stima dal basso

C rQ ≤ |S(z, r)| ∀ r > 0.

Disuguaglianze di tipo Sobolev. Facciamo vedere, ora, come si possano
ricavare disuguaglianze di Sobolev per i campi vettoriali definiti nella (1.2.3)
a partire dai teoremi di embedding dimostrati da Franchi e Lanconelli in [21].
Il problema che ci poniamo è il seguente: esistono esponenti q tali che per
qualche costante C > 0 si abbia

‖Xu‖L2(RN ) ≥ C‖u‖Lq(RN ) (1.2.7)

per ogni u ∈ C∞
0 (RN )?

Usando le dilatazioni {δλ}λ>0, si ottiene immediatamente che una condizione
necessaria perchè valga la (1.2.7) è data da

1
2
− 1

q
=

1
Q

. (1.2.8)

Infatti, se la (1.2.7) vale per u, allora essa vale anche per i riscalamenti

uλ(x, y) = u(λx, λα+1y)

ma
‖uλ‖q

q =
∫
|u(λx, λα+1y)|qdxdy = λ−Q‖u‖q

q (1.2.9)

e

‖Xuλ‖2
2 =

∫
|Xuλ(x, y)|2dxdy =

∫
|λXu(λx, λα+1y)|2

= λ2−Q

∫
|Xu|2dxdy = λ2−Q‖Xu‖2

2 (1.2.10)

Dunque, dalla disuguaglianza (1.2.7) applicata a uλ, si ha

λ1−Q(1/2−1/q)‖Xu‖2 ≥ C‖u‖q ∀λ > 0
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da cui, considerando i casi limite per λ → 0 e λ → +∞, segue necessariamente
la (1.2.8).
Non è banale dimostrare che la (1.2.8) è anche sufficiente perchè valga la
(1.2.7). Facciamo vedere che tale conclusione può essere dedotta dai risultati
di embedding di Franchi e Lanconelli in [21]. Questi ultimi provano, tra gli
altri risultati, che se X = (X1, . . . , XN ) è un sistema di campi vettoriali della
forma

Xj = λj∂j j = 1, . . . , N

dove i λj sono le funzioni non-negative possibilmente degeneri sugli assi coor-
dinati con andamento polinomiale introdotte nel paragrafo precedente, allora,
denotato con

W 1,2
X (RN ) = W 1,2

(λ1,...,λN )(R
N ) = {u ∈ L2(RN ) |Xju = λj∂j u ∈ L2(RN )}

lo spazio di Sobolev naturalmente associato ai campi Xj , e denotato con

H(ε1,...,εN )(RN ) = W (ε1,...,εN ),2(RN )

lo spazio di Sobolev ordinario anisotropo di ordine ~ε = (ε1, . . . , εN ), dotato
della norma

‖u‖H~ε =
N∑

j=1

(∫ 1

0

∫

RN

|u(x + hej)− u(x)|2
h1+2εj

)1/2

dxdh + ‖u‖L2

vale il seguente embedding continuo

W 1,2
(λ1,...,λN )(R

N ) ↪→ H(ε1,...,εN )(RN ) (1.2.11)

dove gli εj sono numeri reali positivi dipendenti dai coefficienti (λ1, . . . , λN ).
Essi sono esattamente:

ε1 = 1, εj =

(
1 +

j−1∑

i=1

(εi)−1bji

)−1

per j = 2, . . . , N (1.2.12)

ovvero gli inversi dei Gj definiti nella Proposizione 1.2.5. Si osservi che essi
dipendono esclusivamente dai numeri bji caratterizzanti l’andamento polino-
miale delle funzioni λj .
Quindi, cos̀ı come Fefferman e Phong provano che, nel caso λj ∈ C∞, la
disuguaglianza

d(x, y) ≤ C |x− y|ε
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conduce alla stima sub-ellittica

‖u‖Hε ≤ C


∑

j

‖Xju‖L2 + ‖u‖L2


 ,

Franchi e Lanconelli [21] dimostrano un risultato analogo nel caso non rego-
lare in esame, tenuto conto della stima hölderiana (1.2.5). Più precisamente
sussiste il seguente:

Teorema 1.2.8. ∃C > 0 tale che ∀u ∈ C∞
0 (RN ) risulta

N∑

j=1

(∫ 1

0

∫

RN

|u(x + hej)− u(x)|2
h1+2εj

)1/2

dxdh ≤ C
N∑

j=1

‖Xju‖L2(RN )

ove gli εj sono definiti dalla (1.2.12).

Ora, se calcoliamo gli εj nel nostro caso, ovvero per i campi vettoriali
Xj = λj∂j con {

λ1 = . . . = λm = 1
λm+1 = . . . = λm+n = |x|α α > 0

otteniamo esattamente gli inversi degli esponenti di omogeneità nelle dilatazioni
(1.2.1), ovvero: {

ε1 = . . . = εm = 1
εm+1 = . . . = εm+n = 1

1+α

Quindi

W 1,2
(1,...,1,|x|α,...,|x|α)(R

N ) ↪→ H(1,...,1, 1
1+α

,..., 1
1+α

)(RN ) (1.2.13)

Ricordiamo a questo punto il seguente teorema di embedding per spazi di
Sobolev ordinari anisotropi (si veda ad es. [2], [35]):

H(ε1,...,εN )(RN ) ↪→ Lq(RN ) (1.2.14)

per
1
2
− 1

q
=

1∑N
j=1 1/εj

Allora, combinando gli embedding (1.2.13) e (1.2.14), si ottiene che lo spazio
di Sobolev W 1,2

X associato ai campi vettoriali in esame si immerge in maniera
continua in Lq per

1
2
− 1

q
=

1
Q

(1.2.15)
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e dalla disuguaglianza di immersione risultante:

∀u ∈ C∞
0 (RN ) ‖u‖q ≤ C (‖Xu‖2 + ‖u‖2) per q =

2Q

Q− 2
(1.2.16)

segue che la (1.2.7) vale per ogni funzione u ∈ C∞
0 (RN ) se e soltanto se q =

2Q/(Q − 2), tenuto conto della disuguaglianza di Poincarè e della “criticità”
dell’esponente q. Infatti, dalla (1.2.16) e dalla disuguaglianza di Poincarè,
dimostrata per i campi Xj in [20], segue che se Ω è un aperto limitato, allora
vale la seguente

∀u ∈ C∞
0 (Ω) ‖u‖q ≤ C(Ω) ‖Xu‖2.

Ora, se u ∈ C∞
0 (RN ), sia B(0, R) una sfera contenente il supporto di u.

Riscaliamo opportunamente u, in modo tale che uλ(x, y) = u(λx, λ1+αy) abbia
supporto nella sfera unitaria B1 = B(0, 1). Allora per uλ varrà la seguente

‖uλ‖q ≤ C(B1) ‖Xuλ‖2

da cui, tenendo conto delle (1.2.9) e (1.2.10), si ottiene la disuguaglianza

‖u‖q ≤ C(B1) λ1−Q(1/2−1/q)‖Xu‖2

ovvero
‖u‖q ≤ C(B1) ‖Xu‖2

con costante C indipendente da u, come annunciato.

Il risultato dimostrato è in perfetta analogia con quello euclideo e conferma
il ruolo di Q quale effettiva dimensione in questo tipo di problemi. Inoltre,
esso conferma l’ottimalità dei risultati di embedding per gli spazi associati ai
campi negli spazi di Sobolev ordinari anisotropi contenuti in [21].

Come vedremo nel paragrafo seguente, la dimensione Q, oltre ad avere il
ruolo di una dimensione globale, gioca un ruolo importante nell’analisi locale
dell’operatore L nei punti dell’insieme di degenerazione {0} × Rn. Lontano
da questi punti, invece, l’operatore diventa uniformemente ellittico e, quindi,
torna a prevalere la dimensione topologica N = m + n. Questa differen-
za di omogeneità da punto a punto costituisce una caratteristica tipica delle
equazioni degeneri ed è evidenziata dalla nozione di dimensione locale omoge-
nea.
Qui di seguito illustriamo questa definizione e facciamo vedere come nel no-
stro caso, accanto alla disuguaglianza di Sobolev “globale” ora dimostrata,



28 Capitolo 1. Alcuni Operatori Subellittici

sussistano, come nel caso degli operatori di Hormander, disuguaglianze di
tipo-Sobolev “locali”, coinvolgenti la dimensione locale omogenea.

Sia X = (X1, . . . , Xm) un sistema di campi vettoriali localmente Lip-
schitziani su RN che generi una distanza di Carnot-Caratheodory d, ovvero
una distanza definita mediante le curve subunitarie in maniera analoga a quan-
to visto nella (1.2.4), e sia U un aperto limitato di RN . Si supponga, inoltre,
che valga la seguente proprietà di doubling locale:

∃C > 0, e 0 < R0 < ∞ tali che

|B(x, 2R)| ≤ C|B(x,R)| ∀x ∈ U e ∀ 0 < R < R0 (1.2.17)

Allora, posto C1 = sup |B(x,2R)|
|B(x,R)| al variare di x ∈ U e 0 < R < R0, il numero

Q(U) = log2 C1 (1.2.18)

si dirà dimensione locale omogenea relativa ad U (e al sistema X).

Si osservi che in molti casi di interesse la proprietà di duplicazione (1.2.17)
è soddisfatta globalmente, ovvero con R0 = ∞. Questo è ovviamente il caso
di RN con X = ( ∂

∂x1
, . . . , ∂

∂xN
) e la distanza euclidea, nel qual caso C1 = 2N .

Più in generale, se G è un gruppo di Lie stratificato nilpotente e dx denota
una misura di Haar su G, allora la (1.2.17) vale ancora con l’uguaglianza per
ogni 0 < R < ∞ e con C1 = 2Q, dove Q è la dimensione omogenea del gruppo.

Anche la metrica generata dai nostri campi Xj = λj∂j gode di una pro-
prietà di doubling globale, come evidenziato nell’osservazione 1.2.6. In parti-
colare, se consideriamo i campi Xi = ∂

∂xi
per i = 1, . . . , m e Xi+m = |x|α ∂

∂yi

per i = 1, . . . , n, possiamo osservare che la dimensione omogenea “globale”
Q = m + (α + 1)n coincide sempre con la dimensione omogenea “locale” per
gli insiemi limitati intersecanti l’asse di degenerazione {x = 0}. Invece, per gli
insiemi limitati U discosti dall’insieme {x = 0}, tenuto conto dell’espressione
polinomiale della misura delle sfere (1.2.6), si può sempre scegliere R0 < ∞
per il quale risulti Q(U) < Q e si può osservare che per R0 → 0, risulta
Q(U) → N = m + n.

In [25] Garofalo e Nhieu provano alcune disuguaglianze di tipo Sobolev-
Poincarè facendo uso della dimensione locale omogenea, per campi soddisfa-
centi ipotesi abbastanza generali. Essi assumono, infatti, che i campi siano
localmente Lipschitziani su RN e che generino una distanza d di Carnot-
Carathéodory, soddisfacente le due seguenti proprietà:
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Ipotesi. Per ogni insieme U ∈ RN con diam(U) < ∞, esistono costanti
C1, C2 > 0, 0 < R0 < ∞, ed α ≥ 1 tali che, per ogni x ∈ RN e 0 < R < R0, si
abbiano le seguenti:

(H.1) |B(x, 2R)| ≤ C1|B(x,R)|
(H.2) Per ogni funzione Lipschitziana u in B(x, αR), vale la seguente disugua-

glianza di Poincarè debole 1-1:

|{x ∈ B : |u(x)− uB| > λ}| ≤ C2

λ
R

∫

αB
|Xu(y)|dy ∀λ > 0

ove uB denota la media 1
|B|

∫
B udx di u su B.

Osserviamo subito che fanno parte della precedente classe tutti i sistemi
di campi di tipo Hormander e, quindi, in particolare i sistemi di generatori
di gruppi di Carnot. Rientrano nel caso trattato da Garofalo e Nhieu anche i
nostri campi Xj = λj∂j . Infatti, come già osservato, essi soddisfano la (H.1),
e la (H.2) è provata nella forma forte per gli Xj in [20]. Il risultato dimostrato
in [25] è il seguente:

Teorema 1.2.9. (Disuguaglianza di Sobolev-Poincarè) Supponiamo che val-
gano (H1) e (H2) e sia U ⊂ RN un insieme limitato di dimensione locale
omogenea Q := Q(U) > 2. Allora, esiste C = C(C1, C2, α) > 0 tale che, per
ogni sfera B = B(x, r) con centro x ∈ U e raggio 0 < r < R0, vale la seguente:

(
−
∫

B
|u− uB|q dx

)1/q

≤ C r

(
−
∫

B
|Xu|2 dx

)1/2

per 2 ≤ q ≤ 2Q/(Q− 2), per ogni u ∈ C1(B).

Dimostrazione. Per la dimostrazione si veda [25, coroll. 1.6]. ¤

Dalla precedente disuguaglianza di Sobolev-Poincarè si deduce il seguente:

Teorema 1.2.10. Sia β > 0 fissato. Nelle ipotesi del teorema precedente, se
B = B(x, r) è una d-sfera, B ⊂ U , con r < R0, allora, per ogni u ∈ C1(B)
verificante

|E| := {x ∈ B : u(x) = 0}| ≥ β|B|,
vale la disuguaglianza

(
−
∫

B
|u|q dx

)1/q

≤ C r

(
−
∫

B
|Xu|2 dx

)1/2
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per 2 ≤ q ≤ 2Q/(Q − 2), con C dipendente da β e dalle costanti in (H1) e
(H2).

Dimostrazione. Essendo uB = |B|−1
∫
B u , risulta

|uB| = |E|−1

∫

E
|uB − u| ≤ β−1|B|−1

∫

B
|uB − u|

≤ β−1|B|−1

(∫

B
|uB − u|q

)1/q

· |B|1/q′

= β−1

(
−
∫

B
|uB − u|q

)1/q

da cui, usando la disuguaglianza triangolare e il risultato del teorema prece-
dente, si ha

(
−
∫

B
|u|q

)1/q

≤
(

1
|B|

∫

B
|u− uB|q

)1/q

+
(

1
|B|

∫

B
|uB|q

)1/q

=
(
−
∫

B
|u− uB|q

)1/q

+ |uB|

≤ C ′
β

(
−
∫

B
|u− uB|q

)1/q

≤ Cβ r

(
−
∫

B
|Xu|2

)1/2

ovvero la tesi. ¤

Dal teorema appena dimostrato segue facilmente la seguente disuguaglian-
za di Sobolev per le sfere:

Teorema 1.2.11. (Disuguaglianza di Sobolev). Sia B una d-sfera come nel
precedente. Allora, per ogni u ∈ C1

0

(
1
2B

)
, si ha

(
1
|B|

∫

1/2B
|u|q dx

)1/q

≤ Cr

(
1
|B|

∫

1/2B
|Xu|2 dx

)1/2

per 2 ≤ q ≤ 2Q/(Q− 2), ove la costante C dipende solo dalle costanti in (H1)
e (H2).

Dimostrazione. Basta applicare il Teorema 1.2.10 alla sfera B, tenendo
conto del fatto che, dalla proprietà di doubling, segue immediatamente che
|B − (1/2)B| ' |B|. ¤
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Compattezza. Concludiamo questa parentesi dedicata alle disuguaglianze
di immersione di tipo-Sobolev per sistemi di campi vettoriali localmente Lip-
schitziani, enunciando alcuni teoremi di compattezza che risultano essere molto
utili nelle applicazioni.
Sia X = (X1, . . . , Xm) un sistema di campi vettoriali su RN soddisfacenti
le ipotesi (H1) e (H2) sopra introdotte. Sia Ω ⊂ RN un aperto limitato e
Q = Q(Ω) ≥ N la sua dimensione (locale) omogenea, secondo la definizione
1.2.18. Allora vale il seguente teorema, per la cui dimostrazione si veda ad
esempio [25, Teor.1.28]:

Teorema 1.2.12. Sia Ω ⊂ RN un aperto limitato di dimensione locale omo-
genea Q con diamΩ < R0

2 . Allora, posto 2∗ = 2Q/(Q− 2), si hanno i seguenti
embedding:

(i) se Q > 2 e 1 ≤ q < 2∗, l’embedding
o

W
1,2

X (Ω) ↪→ Lq(Ω) è compatto;

(ii) se Q = 2 e 1 ≤ q < ∞, l’embedding
o

W
1,2

X (Ω) ↪→ Lq(Ω) è compatto.

Si osservi che il precedente vale senza alcuna restrizione sul diametro di Ω
che non sia diamΩ < ∞ nei casi in cui la proprietà di duplicazione (1.2.17) vale
globalmente, come ad esempio nel caso dei campi da noi esaminati in questa
sezione.

1.2.1 La soluzione fondamentale di L con polo nell’origine

In questa sezione descriviamo la soluzione fondamentale dell’operatore L =
∆x + |x|2α∆y avente polo nell’origine (si veda, ad es. [23]).
Considerata la funzione

d(x, y) =
(
|x|2(α+1) + (α + 1)2|y|2

)1/2(α+1)
(1.2.19)

d risulta essere una norma δλ-omogenea su RN = Rm
x × Rm

y , ovvero

i) d ≥ 0, d(x, y) = 0 se e solo se (x, y) = (0, 0)

ii) d ◦ δλ = λd ∀λ > 0.

Proveremo che la funzione

Γ(x, y) =
Cα,Q

d(x, y)Q−2
(1.2.20)
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è una soluzione fondamentale di −L con polo in (x, y) = (0, 0).

Nel seguito sarà utile riguardare L come un operatore in forma di diver-
genza. A questo scopo, si consideri la matrice N ×N :

A =
(

IRm 0
0 |x|2αIRn

)

Allora
L = div(A∇)

dove div e ∇ sono gli usuali operatori di divergenza e gradiente in RN . Per
una funzione u in RN , denotato con X il sistema di campi definito nella (1.2.3)
risulta:

|Xu|2 = A∇u · ∇u = |∇xu|2 + |x|2α|∇yu|2

Un facile calcolo mostra che, se f ∈ C2(0, +∞) e definiamo u(x, y) = f(d(x, y)),
ove d è data dalla (1.2.19), allora

Lu = f ′(d)Ld + f ′′(d)|Xd|2

da cui, calcolando Ld e posto

ψα = |Xd|2 =
|x|2α

d(x, y)2α

si ottiene la seguente formula

Lu = ψα

(
f ′′(d) +

Q− 1
d

f ′(d)
)

per funzioni u = f(d). Questa notevole formula, analoga a quella vista per i
sublaplaciani su funzioni “radiali”, mostra che la funzione u = d2−Q è soluzione
di Lu = 0 in RN \ {(0, 0)}.
Da quest’ultima proprietà si ottiene che Γ = C d2−Q è una soluzione fonda-
mentale di −L con singolarità nell’origine, tenuto conto del seguente risultato:

Proposizione 1.2.13. Se d è una norma δλ-omogenea tale che Ld2−Q = 0
in RN \ {0}, allora ∃C > 0 tale che Γ = C d2−Q verifica LΓ = −δ0.

Dimostrazione. Osserviamo, innanzitutto, che Γ ∈ L1
loc, essendo Γ =

O(d2−Q). Dimostriamo che esiste C > 0 tale che, posto Γ = C d2−Q, risulta
∫

RN

ΓLφ dξ = −φ(0) ∀φ ∈ C∞
0 (RN )
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Valutiamo
∫

RN

ΓLφ dξ = lim
ε→0

∫

d(ξ)>ε
ΓLφdξ =

= lim
ε→0

(∫

d>ε
φLΓ +

∫

d=ε
Γ < A∇φ, ν > dσ −

∫

d=ε
φ < A∇Γ, ν > dσ

)

(1.2.21)

Ora, il primo dei tre integrali nel secondo membro della precedente è nullo per
l’armonicità di Γ fuori dall’origine; restano da valutare, dunque, i due integrali
di superficie.
Posto I

(1)
ε =

∫
d=ε Γ < A∇φ, ν > dσ e I

(2)
ε =

∫
d=ε φ < A∇Γ, ν > dσ, si prova

che
I(1)
ε → 0 per ε → 0 (1.2.22)

e
I(2)
ε → C ′φ(0) per ε → 0 (1.2.23)

Infatti,

|I(1)
ε | ≤

∫

d=ε
Γ| < A∇φ, ν > | dσ

≤ C ε2−Q

∫

d=ε
| < A∇φ,

∇d

|∇d| > |dσ (essendo ν = − ∇d

|∇d|)

≤ C ε2−Q

∫

d=ε
|Xφ||Xd| dσ

|∇d|
≤ C ε2−Q sup |Xφ| · sup

d=1
|Xd|

∫

d=ε

1
|∇d| dσ

e poichè

∫

d=ε

1
|∇d| dσ =

d
dε

∫ ε

0

(∫

d=t

1
|∇d| dσ

)
dt =

d
dε

∫

d≤ε
dξ =

=
d
dε

εQ

∫

d≤1
dξ = m0QεQ−1

si ha che |I(1)
ε | ≤ C ε e quindi la (1.2.22).

Passiamo, ora, a valutare I
(2)
ε . Usando il fatto che ∇Γ = C(2−Q)d1−Q∇d

si ha:
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I(2)
ε = −

∫

d=ε
φ < A∇Γ,

∇d

|∇d| > dσ

= −C(2−Q)ε1−Q

∫

d=ε
φ < A∇d,∇d >

1
|∇d| dσ

= −C(2−Q)ε1−Q

∫

d=ε
K

φ

|∇d| dσ

ove si è posto K =< A∇d,∇d >, funzione δλ-omogenea di grado 0. Scompo-
nendo come segue

∫

d=ε
K

φ

|∇d| dσ = φ(0)
∫

d=ε
K

1
|∇d| dσ +

∫

d=ε
K

(φ− φ(0))
|∇d| dσ

e valutando il primo dei due integrali a secondo membro della precedente,
grazie alla formula della coarea, si ha che

∫

d=ε
K

1
|∇d| dσ =

d
dε

∫ ε

0

(∫

d=t

K

|∇d| dσ

)
dt =

d
dε

∫

d≤ε
Kdξ =

=
d
dε

εQ

∫

d≤1
Kdξ = m1QεQ−1

da cui
I(2)
ε = C(Q− 2) (Qm1φ(0) + o(1))

Quindi, per ε → 0
I(2)
ε −→ CQ(Q− 2)m1φ(0)

da cui si deduce la tesi per C−1 = Q(Q− 2)
∫
d≤1 K dξ. ¤

Osservazione 1.2.14. Dall’invarianza dell’operatore L rispetto alle traslazioni
euclidee nella variabile y ∈ Rn, segue che ∀y0 ∈ Rn, la funzione

Γ(x, y − y0) = Cα,Q d(x, y − y0)2−Q

è una soluzione fondamentale di −L con polo in (0, y0).

Osservazione 1.2.15. Se α = 1, n = 1 e m = 2k, con k ∈ N, allora la
funzione Γ sopra definita (con Q = 2k + 2), a meno di un riscalamento in y
di un fattore 4, coincide con la soluzione fondamentale di −∆Hk trovata da
Folland.
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1.2.2 Esistenza e stime di integrabilità per le funzioni di Green
di L

Dedichiamo questa sezione allo studio delle funzioni di Green associate all’ope-
ratore L.
Per ottenere esistenza e stime per le funzioni di Green si userà il metodo delle
cosiddette “funzioni di Green approssimate”. Questo metodo, introdotto da
Grüter e Widman in [29] per operatori uniformemente ellittici a coefficienti
non regolari, ovvero per operatori del tipo:

Lu = −
∑

i,j

∂

∂xj

(
aij(x)

∂

∂xi
u

)

con matrice dei coefficienti A = (aij) verificante:

λ|ξ|2 ≤< Aξ, ξ >≤ Λ|ξ|2, ∀ ξ ∈ RN

è stato successivamente utilizzato come utile strumento di indagine in vari casi
ellittico-degeneri (si confrontino, ad esempio, i lavori [9], [8], [42], [47]).
Ad esempio, Chanillo e Wheeden in [9] trattano il caso degli operatori degeneri
del tipo:

Lu = −
∑

i,j

∂

∂xj

(
aij(x)

∂

∂xi
u

)

con matrice dei coefficienti A = (aij) verificante:

w(x)|ξ|2 ≤< Aξ, ξ >≤ v(x)|ξ|2, ∀ ξ ∈ RN

per opportuni pesi v e w.
Cancelier e Xu [8], invece, usando lo stesso approccio, dimostrano l’esistenza
delle funzioni di Green per l’operatore

Lu =
∑

i,j

X∗
j (aij(x)Xiu)

ove X = (X1, . . . , Xm) è un sistema di campi C∞ di tipo Hormander, X∗
j

denota l’aggiunto formale di Xj , e i coefficienti aij sono misurabili, limitati,
simmetrici e uniformemente ellittici. Il loro risultato, quindi, generalizza il
teorema di Bony sull’esistenza della funzione di Green G associata ad operatori
di Hormander H =

∑
j X∗

j Xj (si veda [5]).
In [42] viene trattato il caso di operatori del tipo

Lu =
∑

i,j

X∗
j (aij(x)Xiu)
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dove gli Xj sono campi C∞ di tipo Hormander, X∗
j denota l’aggiunto formale

di Xj , e la matrice dei coefficienti A = aij soddisfa la condizione

c−1 w(x)|ξ|2 ≤< Aξ, ξ >≤ cw(x)|ξ|2, ∀ ξ ∈ RN

con w peso opportuno.
Infine, Salinas in [47] studia il problema per l’operatore

Lu = −
∑

i,j

∂

∂xj

(
aij(x)

∂

∂xi
u

)

dove la matrice A = aij è simmetrica, misurabile e soddisfa la seguente
condizione:

v(x)
N∑

i=1

λ2
i (x)ξ2

i ≤
N∑

i,j=1

aij(x)ξiξj ≤ w(x)
N∑

i=1

λ2
i (x)ξ2

i

ove le funzioni λj soddisfano esattamente le ipotesi introdotte da Franchi e
Lanconelli per i coefficienti dei campi trattati in [19], da noi precedentemente
richiamate, e le condizioni sui pesi v e w sono stabilite in termini della geome-
tria indotta dai campi.
I nostri operatori rientrano, quindi, nella classe studiata da Salinas per pesi v
e w identicamente uguali a costanti positive. Il metodo delle funzioni di Green
approssimate ci consente di derivare l’esistenza e alcune significative stime per
la funzione di Green di una d-sfera S, quando il polo appartiene ad 1

2S.

Funzioni di Green approssimate per L. Denoteremo con
o

D1
X(Ω) lo

spazio ottenuto come completamento di C∞
0 (Ω) rispetto alla norma u 7→

‖Xu‖2. Per dimostrare l’esistenza e studiare le proprietà di sommabilità delle
funzioni di Green relative all’operatore L, si studia preliminarmente il seguente
problema “approssimante”.
Sia Ω un aperto limitato di RN ; per y ∈ Ω e δ > 0 sufficientemente piccolo

tale che Qρ = Q(y, ρ) ⊂ Ω, si studiano le soluzioni deboli Gρ
y ∈

o

D1
X(Ω) del

problema

a(Gρ
y, ϕ) ≡

∫

Ω
< XGρ

y(x), Xϕ(x) > dx = −
∫

Q(y,ρ)
ϕ(x)dx ∀ϕ ∈

o

D1
X(Ω)

(1.2.24)
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Gρ
y è chiamata funzione di Green ρ-approssimata di L con polo in y.

L’esistenza e l’unicità di una funzione Gρ
y ∈

o

D1
X(Ω) per cui valga la (1.2.24) è

assicurata dal teorema di rappresentazione di Riesz, poichè la mappa

`(ϕ) = −
∫

Q(y,ρ)
ϕ(x)dx

è un funzionale lineare continuo su
o

D1
X(Ω).

Infatti, grazie alla disuguaglianza di Sobolev, risulta:

| −
∫

Qρ

ϕ | ≤ 1
|Qρ|

∫

Qρ

|ϕ| ≤ 1

|Qρ|1/2∗ ‖ϕ‖2∗ ≤ C ‖Xϕ‖2

Vediamo, ora, alcune proprietà soddisfatte dalla funzione Gρ
y.

Proposizione 1.2.16. Gρ
y è non negativa su Ω.

Dimostrazione. Poichè |Gρ
y| ∈

o

D1
X(Ω), essa può essere scelta come funzione

test nella definizione di Gρ
y, per cui si ha che:

a(Gρ
y, G

ρ
y) = −

∫

Q(y,ρ)
Gρ

y ≤ −
∫

Q(y,ρ)
|Gρ

y| = a(Gρ
y, |Gρ

y|)

Esiste, quindi, k ≥ 1 tale che

a(Gρ
y, G

ρ
y) = k−1a(Gρ

y, |Gρ
y|)

quindi
a(Gρ

y, G
ρ
y) = a(Gρ

y, k
−1|Gρ

y|) (1.2.25)

e
a(k−1|Gρ

y|, k−1|Gρ
y|) = k−2a(Gρ

y, G
ρ
y) ≤ a(Gρ

y, k
−1|Gρ

y|) (1.2.26)

Sottraendo la (1.2.25) dalla (1.2.26), si ha:

0 ≤ a(k−1|Gρ
y| −Gρ

y, k
−1|Gρ

y| −Gρ
y) ≤ 0 (1.2.27)

per cui risulta k−1|Gρ
y| −Gρ

y = 0, da cui k = 1 e Gρ
y ≥ 0. ¤

La seguente proposizione contiene una interessante stima di integrabilità uni-
forme per Gρ

y.
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Proposizione 1.2.17. ∃ ρ0 > 0 e C > 0, C indipendente da y, tale che, per
ogni 0 < ρ ≤ ρ0, risulta ‖Gρ

y‖
L

Q
Q−2
w (Ω)

≤ C.

Dimostrazione. Ricordando che la norma Lp
w, 1 < p < ∞, definita in

(2.1.6) è equivalente a

‖f‖Lp
w(Ω) = sup

t>0
t|{x ∈ Ω | |f(x)| > t}|1/p,

stimiamo la funzione di distribuzione di Gρ
y. Usando ϕ(x) = max{0, 1/t −

1/Gρ
y}, t > 0, come funzione test nella (1.2.24) e posto Ωt = {x ∈ Ω| |f(x)| >

t}, abbiamo

a(Gρ
y, ϕ) =

∫

Ωt

< XGρ
y, XGρ

y > (Gρ
y)
−2 = −

∫

Bρ

ϕ ≤ 1/t.

Ora, tenendo conto che Xj(log Gρ
y) = (Gρ

y)−1XjG
ρ
y su Ωt ∀j = 1, . . . N , e

applicando la disuguaglianza di Sobolev alla funzione

v(x) = max{0, log Gρ
y(x)− log t} ∈

o

D1
X(Ω)

si ottiene che [∫

Ωt

(log
Gρ

y

t
)

2Q
Q−2

]Q−2
Q

≤ C t−1

ove C è la miglior costante nella disuguaglianza di Sobolev relativa al sistema
di campi X.
Si ha, allora:

(log 2)2|Ω2t|
Q−2

Q ≤
[∫

Ω2t

(log
Gρ

y

t
)

2Q
Q−2

]Q−2
Q

≤
[∫

Ωt

(log
Gρ

y

t
)

2Q
Q−2

]Q−2
Q

≤ C t−1

Dunque, ∀s > 0, si ottiene:

s|Ωs|
2Q

Q−2 ≤ C,

ovvero la tesi. ¤
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Facciamo notare che la precedente stima, uniforme rispetto a ρ e al polo
y, oltre a costituire il primo fondamentale passo nella costruzione della fun-
zione di Green, può essere direttamente utilizzata per ottenere stime L∞ per
le soluzioni del problema di Dirichlet associato all’operatore L, come vedremo
alla fine di questo capitolo.

Stime per XGρ
y. Procediamo, ora, col derivare delle stime di integrabilità

per XGρ
y, quando Ω è una sfera per la distanza di controllo d. Si prova, in

particolare, una stima per la norma ‖XGρ
y‖Ls uniforme in ρ per s < Q/(Q−1),

come enunciato nella seguente proposizione:

Proposizione 1.2.18. Sia S = S(x0, R) una d-sfera in RN , con N > 2. Allo-
ra per ogni 0 < q < Q/(Q−1) e per q.o. y ∈ 1

2S, esiste C = C(q, y, x0, R) > 0
tale che ∫

S
|XGρ

y|q ≤ C ∀ 0 < ρ < R/2a.

La dimostrazione della proposizione precedente necessita di alcuni risultati
preliminari, che sono contenuti nei seguenti lemmi. Il primo lemma fornisce
una stima di XGρ

y in termini di Gρ
y.

Lemma 1.2.19. (di tipo Caccioppoli) Sia S = S(x0, R) una d-sfera. Allora
esiste C > 0, C indipendente da y, r e ρ, tale che

∫

S\Q(y,r)
|XGρ

y|2 ≤
C

r2

∫

Q(y,r)\Q(y,r/2)
(Gρ

y)
2

per ogni y ∈ 1
2S, 0 < r < R/2a e 0 < ρ < r/2.

Dimostrazione. La dimostrazione è analoga a quella del Lemma 4.2 in
[9] e si basa sull’esistenza di opportune funzioni di troncatura, dimostrata
da Franchi e Lanconelli in [20] per le δ-sfere Q. Grazie a questo risultato,
possiamo considerare una funzione di cut-off siffatta:

η ∈ C∞(RN ) t. c. η ≡ 0 su Q(y, r/2), η ≡ 1 fuori da Q(y, r) e |Xη| ≤ C/r.
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Usando la funzione ϕ = Gρ
y η2 ∈

o

D1
X(S) come funzione test nella definizione

di Gρ
y, risulta, per ρ < r/2:

0 = −
∫

Bρ

Gρ
y η2 =

∫

S
< XGρ

y, X (Gρ
y η2) >

=
∫
|XGρ

y|2 η2 + 2
∫

< Gρ
y XGρ

y, ηXη >

Dunque ∫
|XGρ

y|2 η2 = −2
∫

< X Gρ
y, Xη > η Gρ

y

da cui
∫
|XGρ

y|2 η2 ≤ ε

∫
|XGρ

y|2 η2 +
1
ε

∫
|Xη|2 (Gρ

y)
2 ∀ε > 0

Ora, scegliendo ad es. ε = 1/2 e ricordando che Xη ≡ 0 in Q(y, r/2) e fuori
da Q(y, r) e |Xη| ≤ c/r in Q(y, r) \Q(y, r/2), si ottiene

∫
|XGρ

y|2 η2 ≤ C

r2

∫

Q(y,r)\Q(y,r/2)
(Gρ

y)
2

e dunque
∫

S\Q(y,r)
|XGρ

y|2 ≤
∫

S\Q(y,r/2)
|XGρ

y|2 η2 ≤ C

r2

∫

Q(y,r)\Q(y,r/2)
(Gρ

y)
2

ove C è indipendente da y, r e ρ. ¤

Lemma 1.2.20. Sia S = S(x0, R) una d-sfera. Allora per q.o. y ∈ 1
2S, esiste

C = C(y, x0, R) > 0 tale che

sup
r/2<d(x,y)<r

Gρ
y(x) ≤ C min

{∫ R

r

t2

|S(y, t)|
dt

t
,

∫ R

r

1
|S(y, t)|1/σ

dt

t

}
(1.2.28)

per ogni 0 < r < R/2 e 0 < ρ < r/4a, ove si è posto σ = Q/(Q− 2).

Dimostrazione. È sufficiente dimostrare che

sup
r/2<d(x,y)<r

Gρ
y(x) ≤ C

∫ R

r

t2

|S(y, t)|
dt

t
(1.2.29)
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Infatti, dalla proprietà di doubling di d, essendo |S(x, tr)| ≥ CtQ|S(x, r)| per
ogni 0 < t ≤ 1, risulta:

(
t

a2R

)Q

≤ |S(y, t)|
|S(y, R)| 0 < t ≤ R,

da cui
t2

|S(y, t)| ≤
CR

|S(y, t)|1/σ
per 0 < t ≤ R,

che implica la restante parte della tesi

sup
r/2<d(x,y)<r

Gρ
y(x) ≤ C

∫ R

r

1
|S(y, t)|1/σ

dt

t

Procediamo, dunque, col dimostrare la (1.2.29).
Consideriamo dapprima il caso y = x0, cioè proviamo la stima (1.2.29) per la
funzione di Green di S avente polo coincidente col centro di S. Il caso generale
si deriva come segue.
Se y ∈ (1/2)S, allora S(x0, R) ⊂ S(y, 2R), e quindi, per la proprietà di mono-
tonia delle funzione di Green rispetto al dominio, denotata con Gρ

r la funzione
di Green di S(y, r) con polo in y, risulta

Gρ ≤ Gρ
2R su S(x0, R).

Dunque, se la stima vale per funzioni di Green di sfere aventi polo coincidente
col centro della sfera e quindi per Gρ

2R, si ottiene:

sup
r/2<d(x,y)<r

ess Gρ(x) ≤ sup
r/2<d(x,y)<r

ess Gρ
2R(x) ≤ C

∫ 2R

r

t2

|S(y, t)|
dt

t

= C

(∫ R

r
+

∫ 2R

R

)
≤ C

∫ R

r
, ∀0 < ρ < r/4a

poichè per la doubling
∫ 2R

R
≈

∫ R

R/2
≤

∫ R

r
.

Quindi possiamo restringerci a considerare solo funzioni di Green di sfere con
polo coincidente col centro della sfera.
Sia s > 0; per comodità useremo la notazione Ss = S(y, s) e Gρ

s ≡ funzione di
Green di S(y, s) con polo y.
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Sia r < R/2 ed m ∈ N tale che (3/2)m−1r < R < (3/2)mr. Allora, su Sr \Sr/2

risulta:

Gρ
R ≤ Gρ

r(3/2)m = Gρ
r +

m∑

j=1

[
Gρ

r(3/2)j − Gρ
r(3/2)j−1

]
(1.2.30)

Stimiamo ogni termine nel lato destro di (1.2.30).
Per quanto riguarda il primo termine Gρ

r , si prova che:

sup
Sr\Sr/2

ess Gρ
r(x) ≤ C

r2

|S(y, r)| (1.2.31)

Per gli altri termini in (1.2.30), si può provare, adattando la dimostrazione del
Lemma 2.7 in [9], che

sup
Ss

(Gρ
(3/2)s − Gρ

s) ≤ C
s2

|S(y, s)| .

In conclusione, dalla (1.2.30) e dalla doubling, segue che

sup
Sr\Sr/2

ess Gρ
R ≤ C

m∑

j=0

(
(3/2)jr

)2

|S(3/2)jr|
, r < R/2

ovvero la tesi. ¤

Lemma 1.2.21. Sia S = S(x0, R) una d-sfera in RN , con N > 2. Allora, per
q.o. y ∈ 1

2S, esiste C = C(y, x0, R) > 0 tale che

∫

S\Q(y,r)
|XGρ

y|2 ≤ C

∫ R

r/2a

1
|S(y, t)|1/σ

dt

t

per ogni 0 < r < R/2a e 0 < ρ < R/2a, ove σ = Q/(Q− 2).
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Dimostrazione. Sia 0 < ρ < r/8a2; allora, usando i lemmi precedenti si ha
∫

S\Q(y,r)
|XGρ

y|2 ≤
C

r2

∫

Q(y,r)\Q(y,r/2)
(Gρ

y)
2

≤ C

r2
|Q(y, r)|

(
sup

r/2<δ(y,x)<r
Gρ

y(x)

)2

≤ C

r2
|Q(y, r)|

(
sup

r/2a<d(y,x)<ar
Gρ

y(x)

)2

≤ C

r2
|Q(y, r)|




j≤log2 a2∑

j=0

sup
ar

2j+1 <d(y,x)< ar

2j

Gρ
y(x)




2

≤ C

r2
|Q(y, r)|

(
min

∫ R

r/2a

t2

|S(y, t)|
dt

t
,

∫ R

r/2a

1
|S(y, t)|1/σ

dt

t

)2

≤ C

r2
|Q(y, r)|

(∫ R

r/2a

t2

|S(y, t)|
dt

t

) (∫ R

r/2a

1
|S(y, t)|1/σ

dt

t

)

(1.2.32)

ove la limitazione 0 < ρ < r/8a2 è servita per utilizzare il Lemma 1.2.20 nella
(1.2.32). D’altra parte, per le proprietà della metrica d, risulta

∫ R

r/2a

t2

|S(y, t)|
dt

t
≤

+∞∑

j=0

∫ 2j+1r
2a

2jr
2a

t2

|S(y, t)|
dt

t

≤
+∞∑

j=0

(
2jr

2a

)2 1

|S(y, 2jr
a )|

≤ C
r2

|S(y, r)|
+∞∑

j=0

2j(2−N)

= C
r2

|S(y, r)|

(1.2.33)

ove si è usato che |S(y,
2jr

a
)| ≥ (2j)N |S(y,

r

a
)|, e l’ipotesi N > 2.

Dalle (1.2.32) e (1.2.33) si ottiene esattamente la tesi per ρ nel suindicato
intervallo.
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Sia, ora, r/8a2 < ρ < R/2a; applicando la disuguaglianza di Sobolev, si ha:

a(Gρ
y, G

ρ
y) =

∫

S
|XGρ

y|2 = −
∫

Qρ

Gρ
y ≤

1
|Q(y, ρ)|1/2σ

(∫

S
|Gρ

y|2σ

)1/2σ

≤ C

|Q(y, ρ)|1/2σ

(∫

S
|XGρ

y|2
)1/2

=
C

|Q(y, ρ)|1/2σ
a(Gρ

y, G
ρ
y)

1/2

da cui ∫

S\Q(y,r)
|XGρ

y|2 ≤ a(Gρ
y, G

ρ
y) ≤

C

|Q(y, ρ)|1/σ

≤ C

( |S(y, r)|
|Q(y, r/8a2)|

)1/σ ∫ R

r/2a

1
|S(y, t)|1/σ

dt

t

e dunque la tesi per il restante intervallo di ρ. ¤

Dimostrazione della Proposizione 1.2.18. Sia y ∈ 1
2S e 0 < ρ < R/2a.

Valutiamo la funzione di distribuzione di XGρ
y. Dal Lemma 1.2.21 segue che

|{x ∈ S | |XGρ
y| > s}| = |{x ∈ S | |XGρ

y|2 > s2}|
≤ 1

s2

∫

S\Q(y,r)
|XGρ

y|2 + |Q(y, r)|

≤ C

(
1
s2

∫ R

r/2a

1
|S(y, t)|1/σ

dt

t
+ |Q(y, r)|

)

per q.o. y ∈ 1
2S, per ogni r ∈ (0, R/2a) ed s > 0, dove C = C(y, S). Ora,

usando le proprietà di d e di δ, si ha che

|{x ∈ S | |XGρ
y| > s}| ≤ C


|Q(y, r)| +

1
s2

+∞∑

j=0

∫ 2j+1r
2a

2jr
2a

1
|S(y, t)|1/σ

dt

t




≤ C


|Q(y, r)| +

1
s2|S(y, r)|1/σ

+∞∑

j=0

2−Nj/σ




≤ C

(
|Q(y, r)| +

1
s2|Q(y, r)|1/σ

)
.

da cui, scegliendo r in modo che |Q(y, r)| = s
− Q

Q−1 , si ottiene

|{x ∈ S | |XGρ
y| > s}| ≤ C s

− Q
Q−1 (1.2.34)
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per ogni s > |Q(y, R/2a)|− Q
Q−1 (essendo r < R/2a), per ogni r ∈ (0, R/2a) e

per q.o. y ∈ 1
2S.

Dalla precedente stima segue immediatamente la tesi, poichè, posto s0 =
|Q(y, R/2a)|− Q

Q−1 e q0 = Q/(Q− 1) e tenendo conto della stima banale

|{x ∈ S | |XGρ
y| > s}| ≤ |S|, ∀ s > 0

si ha che
∫

S
|XGρ

y(x)|q dx = q

∫ +∞

0
sq−1|{x ∈ S | |XGρ

y| > s}|ds

≤ q

∫ s0

0
sq−1 |S|ds + q C

∫ +∞

s0

sq−1−q0 ds < ∞

per ogni q < q0. ¤

Osserviamo che è possibile ottenere anche per XGρ
y come per Gρ

y delle
stime di integrabilità uniformi rispetto al polo y. Per la dimostrazione di
questo risultato si veda ad esempio [47, Sezione 6].

Esistenza della funzione di Green Gy. I risultati finora ottenuti cir-
ca Gρ

y e XGρ
y ci consentono di provare l’esistenza della funzione di Green

Gy(·) = G(y, ·) di S con polo y. Vale, infatti, il seguente:

Teorema 1.2.22. Sia S una d-sfera in RN , N > 2. Allora, per q.o. y ∈ 1
2S,

esiste una funzione non negativa Gy tale che:

i) Gy(·) ∈ Xt,s ∀t < Q
Q−2 e ∀s < Q

Q−1 , dove Xt,s denota la chiusura di
Lip0(S) rispetto alla norma ‖f‖Lt + ‖Xf‖Ls;

ii) ∀ϕ ∈ C∞
0 (S) e per q.o. y ∈ 1

2S risulta
∫

S
< XGy(x), Xϕ(x) > dx = ϕ(y);

iii) Se f ∈ Lt′, con t′ esponente coniugato di t < Q/(Q − 2), allora la

soluzione u in
o

D1
X(S) del problema

{ −Lu = f in S
u = 0 su ∂S

(1.2.35)
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verifica

u(y) =
∫

S
Gy(x)f(x)dx per q.o. y ∈ 1

2
S;

iv) ∃C > 0, C indipendente da y, tale che ‖Gy‖
L

Q
Q−2
w (S)

≤ C.

Dimostrazione. Posto σ = Q/(Q− 2) ed s0 = Q/(Q− 1), abbiamo finora
provato che Gρ ∈ Lt uniformemente in ρ e y per t < σ, e che XGρ ∈ Ls

uniformemente in ρ per s < s0. Dunque Gρ
y ∈ Xt,s e {‖Gρ

y‖Xt,s(S)} è uni-
formemente limitata in ρ per 1 < t < σ e 1 < s < s0 per q.o. y ∈ (1/2)S.
Poichè t, s > 1, Xt,s è riflessivo, per cui esiste una successione {ρν} ↘ 0 tale
che {Gρν} tende debolmente ad un elemento G ∈ Xt,s. Inoltre, scegliendo
due successioni {tν} ↗ σ e {sν} ↗ s0 ed usando un procedimento diagonale,
possiamo scegliere G indipendente da t e da s per t < σ e s < s0, i.e. esistono
{Gρν} e G tali che

Gρν ⇀ G (debolm.) in Xt,s, ∀ t < σ, s < s0.

Per ogni fissata ϕ ∈ C∞
0 (S), a(·, ϕ) è un funzionale lineare continuo su Xt,s.

Infatti se ϕ ∈ C∞
0 (S), posto Λ(h) = a(h, ϕ), risulta

|Λ(h)| ≤
∫
| < Xh, Xϕ > | ≤

∫
|Xh| |Xϕ|

≤ C

∫

S
|Xh| ‖Xϕ‖L∞ ≤ C ‖Xϕ‖L∞(

∫

S
|Xh|s)1/s ≤ C ‖Xϕ‖L∞‖h‖Xt,s

Quindi, a(Gρν
y , ϕ) → a(Gy, ϕ). Ma poichè

a(Gρν
y , ϕ) = −

∫

Qρν

ϕ → ϕ(y) per ρ → 0

si ha che
a(Gy, ϕ) = ϕ(y)

ovvero la ii) del teorema.
Ora, si consideri il problema (1.2.35). Ricordando che u è soluzione del

problema in
o

D1
X(S) se u ∈

o

D1
X(S) e verifica la seguente

a(u, ϕ) =
∫

fϕ ∀ϕ ∈
o

D1
X(S)
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possiamo affermare che u esiste ed è unica, grazie al teorema di rappre-
sentazione di Riesz. Infatti, grazie alle proprietà di sommabilità di f , il
funzionale

`(ϕ) =
∫

fϕ

è un funzionale lineare continuo su
o

D1
X(S), essendo:

|`(ϕ)| ≤
(∫

S
|f |(2∗)′

)1/(2∗)′ (∫

S
|ϕ|2∗

)1/2∗

≤ C

(∫

S
|f |(2∗)′

)1/(2∗)′ (∫

S
|Xϕ|2

)1/2

≤ C ‖ϕ‖ o

D1
X(S)

Allora, dalla definizione di u e di Gρ, segue che

−
∫

Qρ

u = a(Gρ, u) = a(u, Gρ) =
∫

fGρ (1.2.36)

e facendo il limite per ρ → 0 risulta:

−
∫

Qρ

u → u(y) q.o. y (1.2.37)

mentre
∫

S
fGρ →

∫

S
f(x)Gy(x)dx per q.o. y ∈ (1/2)S (1.2.38)

poichè Gρ ⇀ G debolmente in Xt,s ed `(g) =
∫

fg è un funzionale continuo
su Xt,s, essendo

|`(g)| ≤
∫

S
|fg| ≤

(∫

S
|f |t′

)1/t′ (∫

S
|g|t

)1/t

≤
(∫

S
|f |t′

)1/t′

‖g‖Xt,s

Dunque, dalla (1.2.36) per ρ → 0, tenuto conto delle (1.2.37) e (1.2.38) si
ottiene la seguente formula di rappresentazione per la soluzione di (1.2.35):

u(y) =
∫

S
G(y, x)f(x)dx per q.o. y ∈ (1/2)S

ovvero la iii).
Stimiamo, ora, ‖Gy‖

L

Q
Q−2
w (S)

.
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Posto Ωt = {x ∈ S | Gy > t} per t > 0, p = Q
Q−2 e 0 < ε ≤ p− 1, per la debole

semicontinuità inferiore delle norme Lp, si ha

‖G‖Lp−ε(Ωt) ≤ lim inf
ν→0

‖Gρν‖Lp−ε(Ωt)

≤ lim inf
ν→0

(p

ε

)1/(p−ε)
|Ωt|ε/p(p−ε)‖Gρν‖Lp

w(Ωt)

≤ C
(p

ε

)1/(p−ε)
|Ωt|ε/p(p−ε)

da cui

t|Ωt|1/(p−ε) ≤ ‖G‖p−ε,w ≤ ‖G‖p−ε ≤ C
(p

ε

)1/(p−ε)
|Ωt|ε/p(p−ε)

ovvero

t|Ωt|1/p ≤ C
(p

ε

)1/(p−ε)

da cui, per ε = p− 1:

t|Ωt|1/p ≤ C

(
p

p− 1

)

che implica la tesi iv). ¤

Osservazione 1.2.23. Osserviamo che si sono ottenute stime della funzione
di Green G per sfere di centro e raggio qualsiasi. Queste stime risultano
essere ottimali per domini intersecanti l’insieme di degenerazione, per i quali
la dimensione locale omogenea coincide con la dimensione globale omogenea Q.
Possono essere, invece, migliorate per domini discosti dall’insieme x = 0 se nel
procedimento finora illustrato si usano le disuguaglianze di Sobolev “locali”.
In tal caso, se Ω è un aperto di dimensione locale omogenea Q′ = Q(Ω), le
stime precedentemente ottenute valgono, con Q′ al posto di Q, uniformemente
per tutte le sfere S ⊂ Ω di raggio “sufficientemente” piccolo.
Dunque nel nostro caso, per aperti discosti dall’asse di degenerazione, ove
l’operatore è ellittico e la dimensione locale omogenea Q′ tende a coincidere
per diametri piccoli con la dimensione topologica N , si riottengono al limite
delle stime L N

N−2
,w per la funzione di Green G.
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Stime L∞ per le soluzioni del problema di Dirichlet. A conclusione
di questa trattazione, facciamo vedere come l’esistenza delle sole funzioni di
Green approssimate e la validità della stima Lp

w uniforme in ρ dimostrata nella
Proposizione 1.2.17, possano essere utilizzate per ottenere alcune stime L∞ per
le soluzioni del problema di Dirichlet associato ad L. Dimostriamo, infatti, il
seguente risultato:

Proposizione 1.2.24. Sia Ω ⊂ RN , N ≥ 2 un aperto limitato ed f ∈ Lp(Ω)
per qualche p > Q/2. Allora, esiste ed è unica la soluzione u di −Lu = f in

o

D1
X(Ω), e vale la seguente stima:

‖u‖L∞(Ω) ≤ Cp|Ω|2/Q−1/p‖f‖Lp(Ω).

Dimostrazione. L’esistenza e l’unicità della soluzione in
o

D1
X(Ω), ovvero di

una funzione u ∈
o

D1
X(Ω) tale che a(u, ϕ) =

∫
Ω fϕ per ogni ϕ ∈

o

D1
X(Ω), segue

dal teorema di rappresentazione di Riesz, essendo a fortiori f ∈ L(2∗)′ . Ora,
sia Gρ la funzione di Green approssimata di L per Ω con polo y ∈ Ω e sia
Bρ = B(y, ρ). Allora,

−
∫

Bρ

u = a(Gρ, u) = a(u,Gρ) =
∫

Ω
fGρ

e quindi, dalla disuguaglianza di Hölder segue

| −
∫

Bρ

u| = |
∫

Ω
fGρ| ≤ ‖f‖Lp(Ω)(

∫

Ω
(Gρ)p′)1/p′

≤ |Ω|2/Q−1/p‖Gρ‖
L

Q
Q−2
w (Ω)

‖f‖Lp(Ω)

≤ C|Ω|2/Q−1/p‖f‖Lp(Ω)

dove C è una costante indipendente da ρ ed y. Nelle ultime disuguaglianze
si è usato il fatto che, poichè 1 < p′ < Q

Q−2 , vale la seguente, come verrà
richiamato nella (2.1.4) della Proposizione 2.1.2,

∫

Ω
(Gρ)p′ ≤ Cp′ |Ω|p′(2/Q−1)+1‖Gρ‖p′

L

Q
Q−2
w (Ω)

e poi si è usata la Proposizione 1.2.17.
Ora, facendo tendere ρ → 0, possiamo concludere che

|u(y)| ≤ Cp|Ω|2/Q−1/p‖f‖Lp(Ω) q.o. y ∈ Ω.

ottenendo cos̀ı la tesi. ¤





Capitolo 2

Disuguaglianze di Sobolev con
termini di resto per
i Sublaplaciani

Introduzione

Oggetto del presente capitolo è lo studio di alcune disuguaglianze di Sobolev
con termini di resto per sublaplaciani su gruppi di Carnot. Sia G = (RN , ◦)
un gruppo di Carnot di dimensione omogenea Q secondo la definizione 1.1.3,
e denotiamo con

L =
m∑

j=1

X2
j (2.0.1)

un fissato sublaplaciano su G, con gradiente subellittico corrispondente X =
(X1, . . . , Xm). Consideriamo la seguente disuguaglianza di Sobolev per la
norma L2 del gradiente subellittico dimostrata da Folland in [16]:

‖Xf‖2
2 ≥ S‖f‖2

2∗ , 2∗ = 2Q/(Q− 2) (2.0.2)

valida per tutte le funzioni f con gradiente distribuzionale Xu ∈ L2 e verifi-
canti la debole condizione di annullamento all’infinito

|{x ∈ G | |f(x)| > a}| < ∞ ∀ a > 0.

La validità della (2.0.2) implica in particolare che se Ω è un qualunque aperto
di G, la funzione

u 7−→ ‖Xu‖2 (2.0.3)

51
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è una norma su C∞
0 (Ω); pertanto, definiamo lo spazio di Folland-Stein S1

0(Ω)
come il completamento di C∞

0 (Ω) rispetto alla predetta norma.
S1

0(Ω) risulta, quindi, uno spazio di Hilbert dotato del prodotto scalare
< u, v >S1

0(Ω) =
∫
Ω < Xu,Xv >.

Denoteremo semplicemente con S1(RN ) lo spazio S1
0(RN ).

Ricordiamo che la costante ottimale S e i minimizzanti nella (2.0.2) sono noti
solo nel caso particolare del gruppo di Heisenberg, ove sono stati determinati
da Jerison e Lee in [34] (si veda la Sezione 2.4.1).

Il risultato da noi dimostrato è il seguente: se Ω è un dominio limitato
di G, la disuguaglianza (2.0.2) su S1

0(Ω) può essere migliorata con l’aggiunta
di un termine di resto, in stretta analogia col caso euclideo, ovvero vale la
seguente:

‖Xf‖2
2 ≥ S‖f‖2

2∗ + C(Ω)‖f‖2
p,w ∀f ∈ S1

0(Ω) (2.0.4)

con p = Q/(Q− 2) = 2∗/2.
La dimostrazione euclidea, dovuta a Brezis e Lieb [6], può essere imitata ec-
cetto che per l’uso della tecnica di riarrangiamento, che non è utilizzabile in
questo contesto. Per questo motivo, è necessario usare un approccio diretto
e la costante C(Ω) da noi ottenuta non risulta dipendere solo dalla misura di
Ω, ma anche dalla capacità subellittica di Ω. Questa nozione viene illustrata
nel paragrafo 2.1.2, mentre la dimostrazione della disuguaglianza (2.0.4) è pre-
sentata nella Sezione 2.2. Resta aperto il problema di capire se sia possibile
provare una disuguaglianza con C(Ω) dipendente solo dalla misura di Ω.

Usando la stessa tecnica dimostrativa e in analogia con i risultati in [6], è
possibile anche in questo contesto stabilire una disuguaglianza più forte della
precedente, con un termine di resto che coinvolge una opportuna norma del
gradiente, ovvero:

‖Xf‖2
2 ≥ S‖f‖2

2∗ + D(Ω)‖Xf‖2
q,w ∀f ∈ S1

0(Ω) (2.0.5)

con q = Q/(Q− 1).
La ragione per cui la (2.0.5) è più forte della (2.0.4) risiede nel fatto che la
disuguaglianza di Sobolev ammette un’estensione alle norme deboli, grazie
alla disuguaglianza di Young negli spazi Lp-deboli. Questa ed altre proprietà
degli spazi di Lebesgue deboli vengono richiamate per comodità di lettura nel
paragrafo 2.1.1.

Facciamo, ora, alcune considerazioni di ottimalità.
Nel caso euclideo, la disuguaglianza analoga alla (2.0.4) risulta essere ottimale
nell’ambito degli spazi Lp, nel senso che la norma Lp-forte con p = n/(n− 2)
non è ammissibile come termine di resto. Nel contesto in esame, siamo in grado
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di provare lo stesso risultato nel caso particolare del gruppo di Heisenberg, ove
la conoscenza esplicita dei minimizzanti di Sobolev ci consente di realizzare
espansioni asintotiche alla Brezis-Nirenberg (si veda il paragrafo 2.4.1).

Sempre nel contesto del gruppo di Heisenberg, siamo in grado di dimostrare
che la disuguaglianza di Sobolev può essere migliorata non solo sui limitati,
ma sull’intero spazio Hn. Proviamo, infatti, che la quantità

‖∇Hnf‖2
2 − S‖f‖2

2∗

può essere limitata dal basso in S1(Hn) in termini della “distanza” della fun-
zione f dall’insieme dei minimizzanti.
Questo nostro risultato estende al caso Heisenberg il risultato dimostrato in
ambito euclideo da Bianchi ed Egnell in [3] ed è oggetto del lavoro [41].

Concludiamo questa premessa, ricordando alcuni problemi aperti riguardan-
ti il tema in esame, alcuni dei quali non hanno ancora trovato risposta nel caso
del Laplaciano classico:

(a) Quali sono le migliori costanti in (2.0.4) e (2.0.5) e sono esse raggiunte?
(Nel caso euclideo, si ha una risposta completa solo nel caso n = 3, Ω
sfera di raggio R e termine di resto ‖ · ‖p con p = 2, nel qual caso si ha
che C(Ω) = π2/4R2 e questa costante non è raggiunta, come dimostrato
nel lavoro di Brezis e Nirenberg [7].)

(b) Cosa potrebbe sostituire il secondo membro delle disuguaglianze (2.0.4)
e (2.0.5) quando Ω è illimitato, ad esempio un semispazio?

2.1 Alcune premesse

2.1.1 Proprietá dello spazio Lp,w

In questo paragrafo, richiamiamo per comodità di lettura alcune proprietà
inerenti gli spazi di Lebesgue deboli, che ricorreranno nel seguito della trat-
tazione.

Definizione 2.1.1. Sia Ω un aperto di RN e 1 ≤ p ≤ +∞. Denotiamo con
Lp

w(Ω) il seguente spazio di funzioni:

Lp
w(Ω) =

{
f misurabili su Ω | [f ]Lp

w(Ω) < +∞
}

(2.1.1)
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dove
[f ]Lp

w(Ω) = sup
t>0

t |{x ∈ Ω| |f(x)| > t }|1/p (2.1.2)

L’espressione (2.1.2) non definisce una norma, poichè la disuguaglianza trian-
golare non è soddisfatta (ad es., per Ω =]0, 1[, p = 1, u(t) = t, v(t) = 1 − t,
risulta [u]1,w = [v]1,w = 1/4, e [u + v]1,w = 1). Valgono, però, le seguenti
proprietà:

∀f, g ∈ Lp
w(Ω) e λ ∈ R risulta

(i) [f ]p,w = 0 se e solo se f = 0 q.o. su Ω

(ii) [12(f + g)]p,w ≤ [f ]p,w + [g]p,w

(iii) [λf ]p,w = |λ|[f ]p,w.

Osserviamo immediatamente che , ∀ q ≥ 1, ogni funzione in Lq(Ω) appar-
tiene a Lq

w(Ω) e [f ]q,w ≤ ‖f‖q. Infatti, ∀t > 0 risulta:

tq |{x : |f(x)| > t }| ≤
∫

|f |>t
|f(x)|q dx ≤ ‖f‖q

q.

Viceversa, vale la seguente:

Proposizione 2.1.2. Se Ω è un aperto limitato e p > 1, allora

Lp
w(Ω) ⊂

⋂
q<p

Lq(Ω) (2.1.3)

e ‖f‖Lq(Ω) ≤
{
|Ω|1−q/p p

p− q

}1/q

[f ]Lp
w(Ω) (2.1.4)

Dimostrazione. Se 1 < q < p, posto, ∀t > 0, Ωt = {x ∈ Ω| |f(x)| > t },
risulta:

∫

Ω
|u|q dx = q

∫ ∞

0
tq−1|Ωt| dt

= q

∫ A

0
tq−1|Ωt|dt + q

∫ ∞

A
tq−1|Ωt|dt

≤ |Ω|Aq +
q

p− q
[f ]pp,wAq−p
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e quindi, scegliendo A = [f ]p,w|Ω|−1/p, la tesi. ¤

Dunque, ∀ 0 < ε ≤ p− 1, vale la seguente formula:

‖f‖Lp−ε(Ω) ≤
(p

ε

)1/(p−ε)
|Ω|ε/p(p−ε)[f ]Lp

w(Ω). (2.1.5)

La seguente proposizione ci fornisce una definizione equivalente dello spazio
Lp

w nel caso p > 1.

Proposizione 2.1.3.

f ∈ Lp
w(Ω), p > 1 ⇐⇒ ∃K > 0 tale che ∀A ⊂ Ω misurabile, |A| < ∞, risulta∫

A
|f | dx ≤ K |A|1/p′ , con p′ esponente coniugato di p.

Dimostrazione. Infatti, se f ∈ Lp
w(Ω), p > 1, vale la maggiorazione

sup
t>0

t |Ωt|1/p ≤ sup
A⊂Ω

|A|1/p−1

∫

A
|f | dx ≤ p

p− 1
sup
t>0

t |Ωt|1/p

ove nell’ultima disuguaglianza si è usata la stima (2.1.4) della proposizione
precedente. ¤

Dunque, posto per p > 1:

‖f‖p,w = sup
A

∫
A |f(x)|dx

|A|1/p′ (2.1.6)

ove il sup è fatto su tutti gli insiemi misurabili A ⊂ Ω, |A| < +∞, la (2.1.6)
definisce questa volta una norma, che risulta equivalente alla [f ]p,w.

Osservazione 2.1.4. Le precedenti considerazioni consentono di riconoscere
la relazione intercorrente tra gli spazi Lp

w e gli spazi di Marcinkiewicz. Infatti,
se Ω ⊂ RN e 0 < β < 1, si definisce spazio di Marcinkiewicz Mβ(Ω) lo spazio
delle funzioni misurabili su Ω per cui:

‖u‖Mβ(Ω) = sup
1
|A|β

∫

A
|u(x)|dx < +∞

ove il sup è fatto su tutti gli insiemi misurabili A ⊂ Ω di misura finita. Dunque,
per p > 1, Lp

w(Ω) ≡ Mβ(Ω) per β = 1− 1/p.
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Esempio 2.1.5. Se G = (RN , ◦) è un gruppo omogeneo e | · | è una norma
omogenea su G, la funzione f(x) = |x|−λ non sta in nessuno spazio Lp, ma
appartiene allo spazio Lq

w(RN ) con q = Q/λ, ove Q è la dimensione omogenea
di G. In particolare:

‖f‖Q
λ

,w
=

Q

Q− λ
|B(0, 1)|λ/Q

ove B(0, 1) denota la sfera unitaria per la norma omogenea |·|, ovvero B(0, 1) =
{x ∈ G| |x| < 1}.

Concludiamo questa premessa, richiamando alcune proprietà fondamentali
riguardanti la convoluzione tra funzioni Lp e Lp-deboli su gruppi omogenei.
Innanzitutto, se G = (RN , ◦) è un gruppo omogeneo, ed f, g sono funzioni
misurabili su G, la convoluzione f ∗ g si definisce come:

f ∗ g =
∫

f(y−1 ◦ x)g(y) dy =
∫

f(y)g(x ◦ y−1) dy

supposto che gli integrali convergano. La ben nota disuguaglianza di Young
caratterizzante la convoluzione tra funzioni Lp ammette la seguente estensione
al caso degli spazi Lp-deboli.

Teorema 2.1.6. (Disuguaglianze di Young deboli )

Siano 1 ≤ p < ∞, 1 < q, r < ∞ e
1
r

=
1
p

+
1
q
− 1. Allora valgono le seguenti:

(1) Se f ∈ Lp, con 1 ≤ p < ∞ e g ∈ Lq
w, allora f ∗ g ∈ Lr

w ed esiste C1 =

C1(p, q) > 0 tale che ‖f ∗ g‖r,w ≤ C1 ‖f‖p ‖g‖q,w;

(2) Se f ∈ Lp, p > 1 e g ∈ Lq
w, allora f ∗ g ∈ Lr ed esiste C2 = C2(p, q) > 0

tale che ‖f ∗ g‖r ≤ C2 ‖f‖p ‖g‖q,w;

(3) Se f ∈ Lp
w, e g ∈ Lq

w, allora f ∗ g ∈ Lr
w ed esiste C3 = C3(p, q) > 0 tale

che ‖f ∗ g‖r,w ≤ C3 ‖f‖p,w ‖g‖q,w.

Dimostrazione. Per la dimostrazione delle (1) e (2), si veda Folland -Stein
[18, Prop.1.19]; per la (3) si confronti O’Neil [45, Teor. 2.6]. ¤
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2.1.2 La nozione di capacità subellittica

Dedichiamo questo paragrafo ad illustrare come la classica nozione di capaci-
tà (si veda as es. [39]) si estenda al contesto subellittico in esame, in vista
dell’utilizzo di questa nozione nelle dimostrazioni dei paragrafi 2.2 e 2.3.

Vogliamo, dunque, introdurre la definizione di capacità di un insieme limi-
tato Ω ⊂ RN rispetto al gradiente subellittico X = (X1, . . . , Xm).
Cominciamo con l’osservare che lo spazio S1(RN ), definito come il completa-
mento di C∞

0 (RN ) rispetto alla norma ‖Xu‖2, può essere riguardato anche
come il completamento dello spazio Lip0(RN ) delle funzioni Lipschitziane a
supporto compatto rispetto alla stessa norma, essendo ogni f ∈ Lip0(RN )
approssimabile mediante funzioni C∞

0 (RN ) in norma S1. Introduciamo, ora,
alcune definizioni e lemmi preliminari.

Definizione 2.1.7. Sia Ω ⊂ RN limitato, u ∈ S1(RN ) e k ∈ R. Si dirà che
“u ≥ c su Ω nel senso di S1(RN )” se esiste una successione {un} ⊂ Lip0(RN )
tale che:

i) un ≥ k su Ω

ii) un → u in S1(RN )

Analogamente si definisce u ≤ k su Ω e u ≡ k su Ω.

Se k ≥ 0, definiamo “troncata a livello k” di u la seguente funzione:

uk =

{
u se u ≤ k

k se u > k.

Allora si provano facilmente le seguenti proprietà:

Lemma 2.1.8. Se u ∈ S1(RN ) e k > 0, la sua troncata uk ∈ S1(RN ).

Dimostrazione. Sia {un} ⊂ Lip0, un → u in S1. Allora la successione delle
troncate {uk

n} appartiene ancora a Lip0. Inoltre, poichè

lim
n→∞ ‖u

k
n − uk‖L2∗ ≤ lim

n→∞ ‖un − u‖L2∗ = 0

e lim sup
n→∞

‖uk
n‖S1(RN ) ≤ ‖u‖S1(RN )

esiste una sottosuccessione che chiameremo ancora {uk
n} tale che {uk

n} ⇀ uk

in S1(RN ); ciò implica che una successione di medie u′n di {uk
n} converge

fortemente in S1(RN ) ad uk e chiaramente {u′n} ⊂ Lip0. ¤
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Lemma 2.1.9. Se u ∈ S1(RN ) e u ≥ k su un insieme Ω nel senso di S1,
allora la troncata uk ≡ k su Ω nello stesso senso.

Dimostrazione. Per ipotesi, esiste una successione {un} ⊂ Lip0 tale che
un → u in S1 e un ≥ k su Ω; allora, come prima, esiste una sottosuccessione
estratta dalla {uk

n} che converge debolmente ad uk, da cui una successione di
medie di uk

n converge fortemente ad uk e coincide con k su Ω. ¤

Diamo ora la definizione di capacità.

Definizione 2.1.10. Sia Ω ⊂ RN limitato. Definiamo capacità di Ω rispetto
al sistema di campi vettoriali X = (X1, . . . , Xm) la quantità

cap(Ω) := inf
u∈Γ

{∫

RN

|Xu|2dx

}
(2.1.7)

ove Γ = {u ∈ S1(RN )| u ≥ 1 su Ω nel senso di S1(RN )}

Si dimostra che l’inf in (2.1.7) è raggiunto da un’ unica funzione v ∈ S1(RN )
che chiameremo potenziale capacitario di Ω (rispetto al sistema X). Vale,
infatti, il seguente:

Teorema 2.1.11. Esiste ed è unica una funzione v ∈ Γ tale che

cap(Ω) =
∫

RN

|Xv|2dx

Inoltre, v verifica le seguenti proprietà:

i) v ≡ 1 in Ω nel senso di S1(RN );

ii) v verifica la seguente proprietà di superarmonicità:
∫

< Xv, Xϕ >≥ 0 ∀ϕ ∈ S1(RN ), ϕ ≥ 0 su Ω nel senso di S1.

In particolare, v è debolmente L-armonica in RN \ Ω.

Dimostrazione. Poichè l’insieme Γ è un insieme chiuso e convesso ed
S1(RN ) è uno spazio di Hilbert, esiste ed è unico l’elemento v ∈ Γ di minima
norma. Dunque risulta

cap(Ω) =
∫

RN

|Xv|2dx
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Denotiamo per comodità J(u, v) =
∫

< Xu,Xv > e J(u) = J(u, u). Dai
Lemmi 2.1.8 e 2.1.9 segue che se u ∈ Γ, allora la troncata u1 ∈ Γ, e poichè

J(u1) ≤ J(u)

segue che v ≡ 1 su Ω nel senso di S1, ovvero la i).

Per quanto riguarda la ii), osserviamo che se ϕ ∈ S1(RN ), ϕ ≥ 0 su Ω,
allora v + εϕ ∈ Γ e quindi

J(v + εϕ) ≥ J(v) ∀ε > 0

ovvero
2ε J(v, ϕ) + ε2 J(ϕ,ϕ) ≥ 0 ∀ε > 0

che implica
J(v, ϕ) ≥ 0. (2.1.8)

Inoltre, poichè ogni funzione ϕ ∈ C∞
0 a supporto compatto in RN \ Ω è

ammissibile nella (2.1.8), si deduce che
∫

< Xv, Xϕ > dx = 0 ∀ϕ ∈ C∞
0 (RN \ Ω).

il che completa la dimostrazione della ii). ¤

2.2 La disuguaglianza con termine di resto ||f || Q
Q−2 ,w

Questo paragrafo contiene il risultato più importante da noi ottenuto, ovvero
la dimostrazione nel contesto astratto dei Sublaplaciani della disuguaglianza
di Sobolev con termine di resto ‖f‖ Q

Q−2
,w

. Prima, però, di procedere alla

dimostrazione, è utile richiamare qui alcune proprietà della miglior costante
di Sobolev su gruppi di Carnot, analoghe a quelle note per il caso euclideo.
Sia Ω un qualunque aperto di G e denotiamo:

S(Ω) = inf
u∈S1

0(Ω)

‖Xu‖2
2

‖u‖2
2∗

. (2.2.1)

Dall’invarianza del rapporto
‖Xu‖2

2

‖u‖2
2∗

(2.2.2)
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rispetto alle traslazioni del gruppo e alle dilatazioni

δλ(x) = (λx(1), λ2 x(2), · · · , λr x(r))

si deduce la seguente importante proprietà di S(Ω):

Proposizione 2.2.1. S(Ω) è indipendente da Ω e dipende solo da Q. In
particolare S(Ω) = S(G).

Dimostrazione. Prolungando a zero gli elementi di C∞
0 (Ω) fuori da Ω, si può

riguardare C∞
0 (Ω) quale sottoinsieme di C∞

0 (RN ). Analogamente, possiamo
vedere S1

0(Ω) come sottoinsieme di S1(RN ). Quindi si ha che

S(Ω) ≥ S(G)

Viceversa, sia {um} ⊂ S1(RN ) una successione minimizzante per S(G). Per
densità di C∞

0 (RN ) in S1(RN ) possiamo assumere {um} ⊂ C∞
0 (RN ). Possia-

mo, inoltre, assumere che 0 ∈ Ω, data l’invarianza delle norme coinvolte.
Riscalando le um mediante le dilatazioni δλ, ovvero considerando le funzioni:

vm = um ◦ δλm

per λm sufficientemente grandi si ha che

vm ∈ C∞
0 (Ω).

Ma grazie all’invarianza rispetto alle dilatazioni δλ del rapporto (2.2.2), risulta:

S(Ω) ≤ lim inf
m→∞

‖Xvm‖2
2

‖vm‖2
2∗

= S(G)

da cui
S(Ω) = S(G) = S.

ovvero la tesi. ¤

Proposizione 2.2.2. S non è mai assunta quando Ω è un dominio limitato.

Dimostrazione. Sia Ω limitato e supponiamo per assurdo che S sia assunto
da una funzione u ∈ S1

0(Ω).
Sia B una sfera per la norma omogenea | · | contenente Ω e definiamo

ũ =

{
u su Ω
0 su B \ Ω.
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Allora S è assunto su B dalla funzione ũ e ũ soddisfa l’equazione

−Lu = µu2∗−1

per una opportuna costante positiva µ.
Dunque, a meno di costanti moltiplicative, ũ soddisfa l’equazione

−Lu = u2∗−1

nella sfera B, e ciò contraddice il risultato di non esistenza alla Pohozaev per
insiemi δλ-stellati provato da Garofalo e Vassilev in [27]. ¤

Passiamo, ora, ad enunciare il risultato principale di questo capitolo, per
il quale si veda anche il lavoro da me redatto [40].

Teorema 2.2.3. Sia Ω ⊂ G un aperto limitato. Allora, esiste una costante
C = C(Ω) > 0 tale che

‖Xf‖2
2 ≥ S‖f‖2

2∗ + C(Ω)‖f‖2
Q

Q−2
,w

∀f ∈ S1
0(Ω) (2.2.3)

dove C(Ω) è una costante dipendente solo da Ω (e Q), 2∗ = 2Q
Q−2 , S è la miglior

costante di immersione in Ω, i.e.

S = inf
u∈S1

0(Ω)

‖Xu‖2
2

‖u‖2
2∗

= inf
u∈S1(G)

‖Xu‖2
2

‖u‖2
2∗

e w denota la norma Lp debole definita come

‖f‖p,w = sup
A

∫
A |f(x)|dx

|A|1/p′

dove l’estremo superiore è fatto su tutti gli insiemi A ⊂ G di misura finita |A|
e p′ è l’esponente coniugato di p ∈ (1,∞).

Dimostrazione. Sia f ∈ S1
0(Ω). Possiamo assumere che f ≥ 0, perché

possiamo sostituire f con |f | senza cambiare alcuna delle norme in (2.2.3).
Sia g ∈ L∞(Ω) e sia u ∈ S1

0(Ω) la soluzione di
{ Lu = g in Ω

u = 0 su ∂Ω
(2.2.4)

e definiamo
φ(x) = f(x) + u(x) + ‖u‖∞v(x) in RN
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dove f ed u si intendono estese a 0 al di fuori di Ω e v denota il potenziale
capacitario subellittico di Ω, definito nel Teorema 2.1.11.
Dunque, la disuguaglianza di Sobolev in tutto G applicata alla funzione φ dá:

∫

RN

|X φ|2 ≥ S ‖φ‖2
2∗

i.e.
∫
|X(f + u)|2 + ‖u‖2

∞

∫
|Xv|2 ≥ S‖φ‖2

2∗ ≥ S‖f‖2
2∗ (2.2.5)

dove si è usato il fatto che il termine
∫

< X(f + u), Xv > è nullo, essendo

f + u ∈ S1
0(Ω) e v costante in Ω . Si osservi che la seconda disuguaglianza

nella (2.2.5) vale poiché f ≥ 0 e u + ‖u‖∞v ≥ 0 in Ω. Si ha, dunque
∫
|X f |2 +

∫
|Xu|2 + 2

∫
< Xf, Xu > +k‖u‖2

∞ ≥ S‖f‖2
2∗

∫
|X f |2 +

∫
|Xu|2 − 2

∫
f Lu + k‖u‖2

∞ ≥ S‖f‖2
2∗

dove k = cap(Ω). Sostituendo g con λg e u con λu e ottimizzando rispetto a
λ, otteniamo

∫
|Xf |2 ≥ S‖f‖2

2∗ +
(∫

fg

)2 / [∫
|Xu|2 + k‖u‖2

∞

]
(2.2.6)

Nella precedente disuguaglianza, è possibile massimizzare il termine di destra
rispetto a g. In vista della definizione di norma debole, ci restringiamo a
considerare g = 1A, dove A è un sottoinsieme arbitrario di Ω. Per le quantità
nella (2.2.6) valgono le seguenti stime

∫
|Xu|2 ≤ CQ|A|1+2/Q (2.2.7)

‖u‖∞ ≤ C ′
Q|A|2/Q (2.2.8)

Infatti, moltiplicando la (2.2.4) per u e usando le disuguaglianze di Hölder e
Sobolev, si ha

∫
|Xu|2 = −

∫
gu = −

∫

A
u ≤ ‖u‖2∗ |A|1/2+1/Q ≤ S−1/2‖Xu‖2|A|1/2+1/Q
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che implica la (2.2.7). Inoltre, dal confronto con la soluzione in tutto lo spazio,
ricordando che u è la soluzione in S1

0(Ω) del problema
{ Lu = 1A in Ω

u = 0 su ∂Ω

ed usando la soluzione fondamentale di L descritta nel Teorema 1.1.7, per q.o.
ξ ∈ Ω si ha

|u(ξ)| ≤ CQ
1

| · |Q−2
∗ 1A(ξ) = CQ

∫
1

|ξ−1 ◦ ξ′|Q−2
· 1A(ξ′)dξ′

= CQ

∫

A

1
|ξ−1 ◦ ξ′|Q−2

dξ′ ≤ C ′
Q|A|2/Q

poiché la funzione |ξ|−Q+2 appartiene allo spazio L
Q

Q−2
w .

∫
|Xu|2 + k‖u‖2

∞ ≤ CQ|A|1+2/Q + k C ′
Q |A|4/q

≤ |A|4/Q(CQ|A|
Q−2

Q + k C ′
Q)

≤ |A|4/Q(CQ|Ω|
Q−2

Q + cap(Ω)C ′
Q)

Ora osserviamo che
|Ω|Q−2

Q ≤ S−1cap(Ω)

Infatti, dalla disuguaglianza di Sobolev applicata alla funzione v, si ha

cap(Ω) =
∫

RN

|Xv|2 ≥ S|v|22∗ ≥ S |Ω|2/2∗ = S |Ω|Q−2
Q

Dunque, si ottiene che
[ ∫

|Xu|2 + cap(Ω)‖u‖2
∞

]
≤ |A|4/Q(CQ cap(Ω))

Quindi, dalla (2.2.6) con g = 1A, tenendo conto dell’ultima disuguaglianza,
abbiamo

∫
|Xf |2 ≥ S‖f‖2

2∗ + CQ/cap(Ω)

(∫

A
f
)2

|A|4/Q

ed infine, facendo l’estremo superiore su tutti gli insiemi A, si prova la tesi,
con C(Ω) = CQ/cap(Ω). ¤
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2.3 La disuguaglianza con termine di resto ||Xf || Q
Q−1 ,w

In analogia con quanto dimostrato da Brezis e Lieb in [6], anche nel caso
dei Sublaplaciani è possibile dimostrare una disuguaglianza più forte della
precedente, avente come termine di resto una opportuna norma Lq-debole del
gradiente subellittico. Proviamo, infatti, il seguente risultato:

Teorema 2.3.1. Sia Ω ⊂ G un aperto limitato. Allora, esiste una costante
D = D(Ω) > 0 tale che

‖Xf‖2
2 ≥ S‖f‖2

2∗ + D(Ω)‖Xf‖2
Q

Q−1
,w

∀f ∈ S1
0(Ω) (2.3.1)

dove D(Ω) è una costante dipendente solo da Ω (e Q), 2∗ = 2Q
Q−2 , S è la

miglior costante di immersione in Ω.

Osserviamo subito che la (2.3.1) risulta più forte della (2.2.3), poichè la
disuguaglianza di Sobolev ha un’estensione alle norme deboli, grazie alla di-
suguaglianza di Young negli spazi Lp-deboli.
Verifichiamo, infatti, che

‖Xf‖ Q
Q−1

,w
≥ C ‖f‖ Q

Q−2
,w

∀f ∈ C∞
0 (RN )

Usando la soluzione fondamentale Γ, possiamo scrivere f ∈ C∞
0 (RN ) come:

f = −LΓ ∗ f = −XΓ ∗Xf

e risulta |XΓ| ∈ L Q
Q−1

,w
, poichè

|XΓ| = CQ(Q− 2)|Xd|d1−Q ≤ C d1−Q

essendo Xd omogeneo di grado 0 e perciò limitato in G.

(
Infatti, supξ 6=0 |(Xd)(ξ)| = supξ 6=0 |(Xd)(δ 1

d(ξ)
ξ)| = maxd(η)=1 |(Xd)(η)|.)

Quindi, per la disuguaglianza di Young debole, f ∈ Lr,w con

1
r

=
1
p

+
1
q
− 1 =

Q− 1
Q

+
Q− 1

Q
− 1 =

Q− 2
Q

e ‖f‖ Q
Q−2

,w
≤ ‖XΓ‖ Q

Q−1
,w
‖Xf‖ Q

Q−1
,w
≤ C‖Xf‖ Q

Q−1
,w

.
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Procediamo, ora, con la dimostrazione del teorema.

Dimostrazione del Teorema 2.3.1 Sia f ∈ S1
0(Ω). Anche in questo caso,

possiamo supporre f ≥ 0, perchè si può sostituire f con |f | senza cambiare
alcuna delle norme in (2.3.1).
Sia g ∈ L∞(Ω) e u ∈ S1

0(Ω) sia la soluzione di
{ Lu = g in Ω

u = 0 su ∂Ω
(2.3.2)

e definiamo su tutto lo spazio la funzione

φ(x) = f(x) + u(x) + ‖u‖∞v(x) in RN

dove f ed u si intendono estese a 0 al di fuori di Ω e v denota il potenziale
capacitario di Ω anzi definito.
Come nella dimostrazione del Teorema 2.2.3, la disuguaglianza di Sobolev
applicata a φ fornisce la disuguaglianza (2.2.6), che può essere riscritta come
segue:

∫
|Xf |2 ≥ S‖f‖2

2∗ +
(∫

Xf ·Xu

)2 / [∫
|Xu|2 + k‖u‖2

∞

]
(2.3.3)

che vale ∀u ∈ S1
0 ∩ L∞, dove k = cap(Ω) =

∫ |Xv|2.
Ricordando che X denota il sistema di vettori (X1, . . . , Xm), con m pari alla
dimensione del primo strato di G, scegliamo u soluzione del problema (2.3.2)
con

g = Xi

[
( sgnXif )1A

]

dove si sottintende la sommatoria sugli indici per i = 1, . . . , m.
Verifichiamo che u ∈ L∞. Possiamo scrivere u come:

u = w + h

dove w soddisfa l’equazione Lw = g in tutto lo spazio, ovvero

w = −CQ (Γ ∗ g)

e h è L-armonica, con h = −w su ∂Ω.
Per quanto riguarda w, si ha

w = −CQ| · |2−Q ∗ g = −CQ

(
Xi | · |2−Q

) ∗ [
( sgnXif )1A

]
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per cui
|w(ξ)| ≤ CQ (Q− 2)

(| · |1−Q ∗ 1A

)
(ξ) q.o. ξ ∈ G

e poichè |ξ|1−Q appartiene allo spazio L
Q

Q−1
w , otteniamo

‖w‖∞ ≤ C ′
Q|A|1/Q

essendo Q l’esponente coniugato di Q
Q−1 .

D’altra parte, h è L-armonica in Ω, per cui, per il principio del massimo,
risulta

‖h‖∞ ≤ ‖w‖∞,∂Ω ≤ ‖w‖∞.

Dunque, in definitiva:

‖u‖∞ ≤ 2 ‖w‖∞ ≤ C ′
Q|A|1/Q. (2.3.4)

Stimiamo, ora, il termine
∫
|Xu|2.

Moltiplicando l’equazione Lu = g per u ed integrando, si ha, grazie alla disu-
guaglianza di Hölder:

∫
|Xu|2 = −

∫
g u = −

∫
Xi

[
( sgnXif )1A

]
u

=
∫

( sgnXif )1A(Xiu) ≤ (
∫
|Xu|2)1/2 |A|1/2

e quindi ∫
|Xu|2 ≤ |A|. (2.3.5)

In conclusione, poichè f = 0 su ∂Ω, risulta
∫

Xf ·Xu = −
∫

fLu = −
∫

f Xi

[
( sgnXif )1A

]

=
∫

Xif
[
( sgnXif )1A

]
=

∫
|Xif |1A

Usando, ora, le stime (2.3.4) e (2.3.5) nella (2.3.3), si ha:

∫
|Xf |2 ≥ S‖f‖2

2∗ + CQ

(∫

A
|Xif |

)2 /(
cap(Ω)|A|2/Q

)
(2.3.6)
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Infatti:
∫
|Xu|2 + k‖u‖2

∞ ≤ C |A|+ k C ′ |A|2/Q

≤ |A|2/Q(C |A|Q−2
Q + k C ′)

≤ |A|2/Q(C|Ω|Q−2
Q + cap(Ω)C ′)

≤ |A|2/Q(CQ cap(Ω))

ove si è usato, come nel Teorema 2.2.3, il fatto che |Ω|Q−2
Q ≤ S−1cap(Ω).

Infine, prendendo il sup su tutti gli insiemi A ⊂ Ω nella (2.3.6), si ottiene la
tesi, con D(Ω) = CQ/cap(Ω). ¤

2.4 Il caso G=Hn

2.4.1 Ottimalità della disuguaglianza

Si consideri ora il caso particolare del gruppo di Heisenberg Hn, il gruppo di
Carnot di passo due (R2n+1, ◦), i cui punti saranno denotati con ξ = (z, t) =
(x, y, t), dotato della legge di composizione:

ξ ◦ ξ′ = (z + z′, t + t′ + 2(< x′, y > − < x, y′ >))

dove <,> denota il prodotto interno in Rn. Ricordiamo che il Laplaciano
subellittico canonico su Hn è l’operatore

∆Hn =
n∑

j=1

(X2
j + Y 2

j )

dove
Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t

per ogni j ∈ {1, . . . , n}. Indicheremo con

∇Hn = (X1, . . . , Xn, Y1, . . . , Yn)

il gradiente subellittico canonico sul gruppo Hn.
Ricordiamo che le dilatazioni su Hn sono date da

δλ(ξ) = (λz, λ2t), λ > 0
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per cui la dimensione omogenea dello spazio risulta essere Q = 2n + 2.
In questo caso, grazie alla conoscenza dei minimizzanti della disuguaglianza

di Sobolev in tutto lo spazio, siamo in grado di provare che la disuguaglianza
(2.2.3) è ottimale, nel senso che non è possibile aggiungere la norma L2∗/2 a
destra della (2.2.3). Assumiamo per semplicità che 0 ∈ Ω e consideriamo la
disuguaglianza di Sobolev “migliorata” su Ω limitato di Hn:

‖∇Hnu‖2
2 ≥ S‖u‖2

2∗ + C‖u‖2
q ∀u ∈ S1

0(Ω) (2.4.1)

con q ≥ 1. Naturalmente, tale disuguaglianza vale se e solo se il quoziente

R(u) =
‖∇Hnu‖2

2 − S‖u‖2
2∗

‖u‖2
q

(2.4.2)

è limitato dal basso da una costante positiva C in S1
0(Ω) (C dipendente solo

da Ω).
Com’è noto, quando Ω = Hn la miglior costante S è raggiunta, a meno di
traslazioni del gruppo e di costanti moltiplicative, dalla famiglia di funzioni:

Uε(z, t) =
Cε

((ε + |z|2)2 + t2)
Q−2

4

dove ε > 0, Cε = (2n(Q− 2)ε)
Q−2

4 (si veda [34]).
Consideriamo, ora, le funzioni

uε = ϕ(z, t)Uε(z, t)

dove ϕ è una funzione di cut-off , ϕ sufficientemente piatta intorno a 0 (ad
esempio, ϕ ≡ 1 in un intorno di 0). Si ottengono le seguenti stime:

‖∇Hnuε‖2
2 =

∫

RN

U2∗
ε (z, t)dzdt +

∫

Ω
|∇Hnϕ|2U2

ε dzdt + O(εQ/2) (2.4.3)

e

‖uε‖2∗
2∗ =

∫

RN

U2∗
ε (z, t)dzdt + O(εQ/2) (2.4.4)
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Infatti:

‖∇Hnuε‖2
2 =

∫

Ω
ϕ2|∇HnUε|2 + 2

∫

Ω
ϕUε∇Hnϕ∇HnUε +

∫

Ω
U2

ε |∇Hnϕ|2

= −
∫

Ω
ϕ2Uε∆HnUε +

∫

Ω
U2

ε |∇Hnϕ|2

= +
∫

Ω
ϕ2U2∗

ε +
∫

Ω
U2

ε |∇Hnϕ|2

=
∫

Ω
Uε

2∗ +
∫

Ω
(ϕ2 − 1)Uε

2∗ +
∫

Ω
U2

ε |∇Hnϕ|2

=
∫

RN

Uε
2∗ +

∫

Ω
Uε

2 |∇Hnϕ|2 + α(ϕ, ε)

(2.4.5)

dove
α(ϕ, ε) = −

∫

ΩC

Uε
2∗ +

∫

Ω
(ϕ2 − 1)Uε

2∗ .

Inoltre, si ha che

‖uε‖2
2∗ = (

∫

Ω
|ϕUε|2∗)2/2∗

= (
∫

Ω
|Uε|2∗ +

∫

Ω
(ϕ2∗ − 1)Uε

2∗)2/2∗

= (
∫

RN

|Uε|2∗ + β(ϕ, ε))2/2∗ (2.4.6)

dove
β(ϕ, ε) = −

∫

ΩC

Uε
2∗ +

∫

Ω
(ϕ2∗ − 1)Uε

2∗

Si osservi che α(ϕ, ε),β(ϕ, ε) = o(C2
ε ) poiché si può verificare direttamente che

α(ϕ, ε), β(ϕ, ε) = O(εQ/2). Infatti, indicata con d la norma omogenea sullo
spazio Hn:

d(ξ) = d(z, t) = (t2 + |z|4)1/4,

essendo ϕ = 1 in un intorno di 0, esiste R > 0 tale che

0 ≤
∫

(1− ϕ2)U2∗
ε ≤

∫

d(ξ)>R
U2∗

ε dξ =
∫

d(ξ)> R√
ε

U2∗
1 dξ

≤ C

∫

d(ξ)> R√
ε

1
d(ξ)2Q

dξ = C

∫ +∞

R√
ε

1
ρQ+1

dρ

= O(εQ/2).
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Analogamente si stimano gli altri integrali in α(ϕ, ε) e β(ϕ, ε).
Dunque, posto Ũε(z, t) = 1

Cε
Uε(z, t), si ottiene:

R(uε) =

∫
Ω |∇Hnϕ|2 Uε

2 + o(C2
ε )

(
∫
Ω ϕq U q

ε )2/q

=
C2

ε

∫
Ω |∇Hnϕ|2 Ũ2

ε + o(C2
ε )

C2
ε (

∫
Ω ϕq Ũ q

ε )2/q

=

∫
Ω |∇Hnϕ|2 Ũ2

ε + o(1)

(
∫
Ω ϕq Ũ q

ε )2/q

Ora, osserviamo che, quando ε → 0, Ũε tende alla soluzione fondamentale Γ
di ∆Hn , a meno di costanti, ovvero

lim
ε→0

Ũε(z, t) =
1

[t2 + |z|4]Q−2
4

= CΓ(z, t)

Se Γ(z, t) non è Lq-sommabile nell’origine, il denominatore in R(uε) diverge e
quindi non ci può essere alcuna costante C > 0 che limiti dal basso il quoziente
(2.4.2). Viceversa, se Γ(z, t) è Lq-sommabile in 0, allora R(uε) tende a

∫
Ω |∇Hnϕ|2Γ2(z, t)dzdt

( ∫
Ω ϕq Γq

)2/q
> 0

e quindi un limite dal basso positivo per R(u) esiste. Osserviamo, ora, che la
soluzione fondamentale di ∆Hn appartiene a Lq

loc(H
n) se e solo se q < Q

Q−2 ;

allora la norma Lq, con q ≥ Q
Q−2 non è ammissibile come termine di resto nella

(2.4.1).

Osservazione 2.4.1. Le considerazioni precedenti mostrano la stretta re-
lazione intercorrente tra le norme che possono essere aggiunte al secondo mem-
bro della disuguaglianza di Sobolev ‖∇Hnu‖2

2 ≥ S ‖u‖2
2∗ e la sommabilità della

soluzione fondamentale del Laplaciano di Kohn. In particolare, questo com-
portamento è in accordo con il principio stabilito nel contesto ellittico euclideo
da [32], secondo il quale: “Una disuguaglianza di Sobolev relativa ad un em-
bedding non compatto può essere migliorata aggiungendo ogni norma che sia
localmente finita per la soluzione fondamentale dell’operatore associato.
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Osservazione 2.4.2. Si noti che la disuguaglianza di Sobolev ‖∇Hnu‖2
2 ≥

S ‖u‖2
2∗ non ammette la norma L2 come termine di resto, poiché la dimensione

omogenea Q = 2n+2 risulta essere sempre strettamente maggiore di 3. Questo
fenomeno può essere messo in relazione con l’assenza di dimensioni critiche per
il Laplaciano di Kohn ∆Hn , dimostrata in [12] (si veda anche [11]). Infatti, esso
conferma il principio formulato nel contesto euclideo da Gazzola e Gruneau
in [28], secondo il quale: “La dimensione spaziale è critica per un operatore
lineare L se e solo se la disuguaglianza di Sobolev può essere migliorata su
aperti limitati con l’aggiunta della norma L2.

A riguardo del problema dell’ottimalità sopra discusso, menzioniamo che
le stesse conclusioni ottenute nel caso Hn possono essere stabilite nel contesto
più generale dei gruppi di tipo Iwasawa (si veda [26] e i riferimenti in esso
citati per definizioni e proprietà) per la disuguaglianza di Sobolev ristretta
allo spazio delle funzioni a simmetria cilindrica. Anche in questo caso, il
risultato scaturisce dalla conoscenza dei minimizzanti di Sobolev (calcolati in
[26, Teorema 1.6]) e dal loro andamento rispetto alla soluzione fondamentale.

2.4.2 La disuguaglianza migliorata in termini della distanza
dall’insieme dei minimizzanti

Nel lavoro [6] del 1985 sulle disuguaglianze di Sobolev con termini di resto in
ambito euclideo, Brezis e Lieb lasciavano aperta la seguente questione: esiste
un modo naturale per stimare dal basso la quantità

‖∇f‖2
2 − S‖f‖2

2∗

in termini della “distanza” di f dall’insieme dei minimizzanti?
Una risposta affermativa a questa domanda è stata data da Bianchi ed
Egnell in [3] nel 1991. Questi ultimi dimostrano che, indicato con M l’insieme
dei minimizzanti della disuguaglianza di Sobolev, e denotato con D1,2

0 (RN ) lo
spazio ottenuto come completamento di C∞

0 (RN ) rispetto alla norma ‖∇u‖2,
esiste una costante positiva α tale che

‖∇f‖2
2 − S‖f‖2

2∗ ≥ αd(f,M)2, ∀ f ∈ D1,2
0 (RN )

dove d(f,M) è la distanza della funzione f dall’insieme M nello spazio di
Sobolev D1,2

0 , ovvero

d(f,M) = inf
u∈M

‖∇(f − u)‖2.
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Recentemente, poi, il risultato di Bianchi-Egnell è stato esteso da Lu e Wei
[43] al caso della disuguaglianza di Sobolev associata al bi-laplaciano.
In quanto segue, dimostreremo che una disuguaglianza analoga può essere sta-
bilita sul gruppo di Heisenberg Hn.

Consideriamo la disuguaglianza di Sobolev su Hn dovuta a Folland-Stein,
ovvero

‖∇Hnf‖2
2 − S‖f‖2

2∗ ≥ 0 ∀ f ∈ S1
0(Hn) (2.4.7)

ove S è denota la miglior costante di immersione, ed indichiamo con M
l’insieme delle funzioni estremali della disuguaglianza, i.e.

M = { f ∈ S1
0(Hn) | ‖∇Hnf‖2

2 = S‖f‖2
2∗ }. (2.4.8)

Come dimostrato da Jerison e Lee [34], M è costituito da funzioni della forma

ϕ(ξ) = cUλ,η(ξ) = c λ(Q−2)/2U(δλ(η−1 ◦ ξ))

dove c ∈ R, λ ∈ R+, U(ξ) = U(z, t) = k0

(
(1 + |z|2)2 + t2

)−(Q−2)/4. D’ora in
poi, la costante k0 si intenderà scelta in modo tale che ‖∇HnU‖2 = 1.
Dunque le funzioni estremali di (2.4.7) costituiscono una varietà 2n+3-dimen-
sionale M immersa in S1

0 mediante la mappa:

R× R+ ×Hn 3 (c, λ, η) → c Uλ,η ∈ S1
0(Hn).

Definiamo la distanza tra questa varietà e una funzione f ∈ S1
0 come segue:

d(f,M) = inf
u∈M

‖∇Hn(f − u)‖2 = inf
c,λ,η

‖∇Hn(f − cUλ,η)‖2.

Si noti che d(c λ(Q−2)/2f ◦ δλ ◦ τη,M) = |c| d(f,M).

Il risultato da noi ottenuto è il seguente:

Teorema 2.4.3. Esiste una costante positiva α, dipendente solo dalla dimen-
sione Q, tale che

‖∇Hnf‖2
2 − S‖f‖2

2∗ ≥ α d(f,M)2, ∀ f ∈ S1
0(Hn).

Inoltre, il risultato è ottimale nel senso che è falso se il termine di resto è
sostituito da d(f,M)β‖∇Hnf‖2−β

2 , con β < 2.

Un argomento chiave nella dimostrazione del teorema è lo studio degli
autovalori della seguente equazione:

−∆Hnv = λU2∗−2v, v ∈ S1
0(Hn).

Cominceremo, dunque, con l’esporre i risultati di questa analisi.
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Un problema agli autovalori. Si consideri l’operatore

Lλ,η = −U2−2∗
λ,η ∆Hn su L2(U2∗−2

λ,η dξ).

Poichè l’imbedding
S1

0 ↪→ L2(U2∗−2
λ,η dξ)

è compatto, lo spettro di Lλ,η è discreto.
Nel lemma seguente si calcolano il primo e il secondo autovalore di Lλ,η e si
descrivono i relativi autospazi.

Lemma 2.4.4. Siano λi, i = 1, 2, 3, . . . , gli autovalori di Lλ,η, disposti in
ordine crescente. Allora

i) λ1 = S2∗/2 è semplice con autofunzione Uλ,η;

ii) λ2 = S2∗/2(2∗ − 1) ha molteplicità 2n + 2 e il corrispondente autospazio
è generato da {∂λUλ,η,∇ηUλ,η}.

Inoltre, gli autovalori non dipendono da λ e da η.

Dimostrazione. Un semplice argomento di riscalamento mostra che gli
autovalori non dipendono dai parametri λ e η. Quindi possiamo assumere che
λ = 1, η = 0, e di conseguenza Uλ,η = U . Vogliamo risolvere il problema agli
autovalori

−∆Hnv = λU2∗−2v, v ∈ S1
0(Hn). (2.4.9)

Per questo studio faremo riferimento al Lemma 5 di pag. 988 del lavoro di
Malchiodi-Uguzzoni [44].

Ricordiamo che la trasformata di Cayley è un biolomorfismo tra la palla
unitaria in Cn+1 e il semispazio superiore di Siegel D = {(z, w) ∈ Cn × C :
Imw > |z|2}, dato da

zk =
ζk

1 + ζn+1
, k = 1, . . . , n; w = i

(
1− ζn+1

1 + ζn+1

)
, (2.4.10)

dove ζ ∈ Cn+1, |ζ| < 1. Questa trasformazione, ristretta al bordo, fornisce una
equivalenza CR tra la sfera S2n+1 meno un punto e ∂D. Il gruppo di Heisenberg
si identifica con ∂D mediante la corrispondenza (z, t) ↔ (z, t + i|z|2) = (z, w).
Denotiamo con F : S2n+1 \ {(0, . . . , 0,−1)} → Hn la mappa risultante dalla
composizione della (2.4.10) con la corrispondenza ∂D = Hn, i.e.

F (ζ1, . . . , ζn+1) =
(

ζ1

1 + ζn+1
, . . . ,

ζn

1 + ζn+1
, Re

(
i
1− ζn+1

1 + ζn+1

))
.
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Si consideri, ora, lo spazio S1(S2n+1), ottenuto come il completamento di
C∞(S2n+1) rispetto alla norma

‖v‖2
S1(S2n+1) =

∫

S2n+1

(bn|dv|2θ + Rnv2)θ ∧ dθn

ove θ è la forma di contatto standard sulla sfera, bn = 2 + 2/n = 2∗ e Rn =
n(n + 1)/2 è la curvatura scalare di Webster associata a θ (si veda [33]), e si
consideri l’isometria lineare ι : S1(S2n+1) → S1

0(Hn) definita da:

ι(v)(ξ) = U(ξ)v(F−1(ξ)), v ∈ S1(S2n+1), ξ ∈ Hn.

Mediante tale isometria, una funzione u ∈ S1
0(Hn) è una soluzione di (2.4.9)

se e solo se la funzione v = ι−1u risolve l’equazione lineare

−∆θv = µ v in S2n+1 (2.4.11)

per un opportuno autovalore µ. Lo studio degli autovalori dell’operatore −∆θ

su S2n+1 è stato realizzato da Folland in [17]. In particolare, il primo autova-
lore µ1 = 0 è semplice e la corrispondente autofunzione è la funzione costante.
Tramite l’isometria ι si ottiene, dunque, la prima autofunzione per il problema
(2.4.9) ovvero la funzione ι(const) = U , corrispondente all’autovalore S2∗/2.
Il secondo autovalore µ2 è 2n + 2-dimensionale ed è generato dalle funzioni
{Re ζj , Im ζj }j=1,...,n+1 ristrette a S2n+1. Un calcolo diretto mostra che, a
meno di costanti, risulta:

ι(Re ζj) =
∂Uλ,η

∂xj

∣∣∣
(λ,η)=(1,0)

, ι(Im ζj) =
∂Uλ,η

∂yj

∣∣∣
(λ,η)=(1,0)

, j = 1, . . . , n;

ι(Re ζn+1) =
∂Uλ,η

∂λ

∣∣∣
(λ,η)=(1,0)

, ι(Im ζn+1) =
∂Uλ,η

∂t

∣∣∣
(λ,η)=(1,0)

.

Dunque, ricordando che η = (x, y, t), si ottiene che il secondo autospazio re-
lativo al problema (2.4.9) è generato dalle funzioni { ∂λUλ,η,∇ηUλ,η } e che
λ2 = S2∗/2(2∗ − 1). ¤

Acquisiti questi risultati preliminari, possiamo procedere alla dimostrazione
del teorema.

Dimostrazione del Teorema 2.4.3. Il principale ingrediente nella dimo-
strazione del teorema è contenuto nel seguente lemma, che studia il compor-
tamento della quantità ‖∇Hnf‖2

2 − S‖f‖2
2∗ in prossimità di M.
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Lemma 2.4.5. Esiste una costante positiva α, dipendente solo dalla dimen-
sione Q, tale che

‖∇Hnf‖2
2 − S‖f‖2

2∗ ≥ α d(f,M)2 + o(d(f,M)2),

per ogni f ∈ S1
0(Hn) con d(f,M) < ‖∇Hnf‖2.

Dimostrazione. Come già osservato, M è una varietà 2n + 3-dimensionale
immersa in S1

0(Hn) mediante la mappa:

R× R+ ×Hn 3 (c, λ, η) → cUλ,η ∈ S1
0(Hn).

Sia f ∈ S1
0 tale che

d(f,M)2 = inf
c,λ,η

‖∇Hn(f − c Uλ,η)‖2
2

= inf
c,λ,η

(
‖∇Hnf‖2

2 + c2 − 2c

∫
∇Hnf · ∇HnUλ,η dξ

)
< ‖∇Hnf‖2

2.

Si verifica facilmente che l’estremo inferiore di cui sopra è raggiunto in un
punto (c0, λ0, η0) ∈ R× R+ ×Hn, con c0 6= 0.
Poichè M \ {0} è una varietà regolare, si deve avere

(f − c0Uλ0,η0) ⊥TMc0Uλ0,η0
(2.4.12)

ove lo spazio tangente risulta essere:

TMc0Uλ0,η0
= span {Uλ0,η0 , ∂λUλ0,η0 ,∇ηUλ0,η0} . (2.4.13)

Richiamiamo a questo punto i risultati del Lemma 2.4.4. Abbiamo provato
che il primo ed il secondo autospazio dell’operatore Lλ0,η0 = −U2−2∗

λ0,η0
∆Hn su

L2(U2∗−2
λ0,η0

dξ) sono generati rispettivamente da Uλ0,η0 e {∂λUλ0,η0 ,∇ηUλ0,η0}.
Dunque, lo spazio tangente TMc0Uλ0,η0

è esattamente la somma del primo e
del secondo autospazio dell’operatore Lλ0,η0 . Inoltre, lo spettro è discreto e
quindi, per la caratterizzazione min-max degli autovalori, risulta

λ3 ≤
∫ |∇Hnw|2 dξ∫

U2∗−2
λ0,η0

w2 dξ
, ∀w⊥TMc0Uλ0,η0

, (2.4.14)

con l’uguaglianza se w è la terza autofunzione. Dunque, in particolare, la
(2.4.14) varrà per w = f − c0Uλ0,η0 .
Ora, poichè (f − c0Uλ0,η0) ⊥TMc0Uλ0,η0

, possiamo scrivere

f = c0Uλ0,η0 + dv,
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dove v ha norma 1 in S1
0 ed è perpendicolare allo spazio tangente TMc0Uλ0,η0

e d = d(f,M). Una espansione asintotica in d conduce alla seguente stima:
∫
|f |2∗ dξ =

∫
|c0 Uλ0,η0 + dv|2∗ dξ

=|c0|2∗S−2∗/2 + d2∗|c0|2∗−2c0

∫
U2∗−1

λ0,η0
v dξ

+ d2 2∗(2∗ − 1)
2

|c0|2∗−2

∫
U2∗−2

λ0,η0
v2 dξ + o(d2)

≤ |c0|2∗S−2∗/2 + d2|c0|2∗−2 2∗(2∗ − 1)
2

1
λ3

+ o(d2).

Si noti che
∫

U2∗−1
λ0,η0

v dξ = 0, poichè v⊥Uλ0,η0 e ∆HnUλ0,η0 + S2∗/2U2∗−1
λ0,η0

= 0,
per cui

0 =
∫
∇HnUλ0,η0 · ∇Hnv dξ = −

∫
v∆HnUλ0,η0 dξ = S2∗/2

∫
U2∗−1

λ0,η0
v dξ .

Ora, tenendo conto che λ2 = (2∗ − 1)S2∗/2 ed elevando a 2/2∗, si ottiene che

(∫
|f |2∗ dξ

)2/2∗

≤
(
|c0|2∗S−2∗/2 + d2|c0|2∗−2 2∗

2
S−2∗/2 λ2

λ3
+ o(d2)

)2/2∗

= c2
0 S−1

(
1 + c−2

0 d2 2∗

2
λ2

λ3
+ o(d2)

)2/2∗

= c2
0 S−1

(
1 + c−2

0 d2 λ2

λ3
+ o(d2)

)

= c2
0 S−1 + d2S−1 λ2

λ3
+ o(d2).

In conclusione, osservando che ‖∇Hnf‖2
2 = c2

0 ‖∇HnUλ0,η0‖2
2 + d2 = c2

0 + d2, si
ha

‖∇Hnf‖2
2 − S‖f‖2

2∗ ≥ ‖∇Hnf‖2
2 − c2

0 − d2 λ2

λ3
+ o(d2)

= d2

(
1− λ2

λ3

)
+ o(d2).

(2.4.15)

Dunque il lemma vale con α = (1−λ2/λ3). Per verificare che questo risultato
è ottimale, si può procedere come segue.
Consideriamo la funzione f = U + dv, dove v è la terza autofunzione di L1,0
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e d è un numero positivo piccolo. Allora, se d è sufficientemente piccolo, si ha
che d(f,M) = d e il punto più vicino ad f su M è U .
Ora, lo stesso argomento usato prima per ottenere la (2.4.15) conduce alla
stima

‖∇Hnf‖2
2 − S‖f‖2

2∗ = d2

(
1− λ2

λ3

)
+ o(d2),

questa volta con l’uguaglianza. ¤

Siamo ora in grado di dimostrare il teorema principale.

Dimostrazione del Teorema 2.4.3. Il fatto che il risultato sia ottimale
segue dall’ultima parte della dimostrazione del lemma precedente.
Assumiamo per assurdo che il teorema non sia vero. Allora, esiste una succes-
sione {fm} ⊂ S1

0(Hn) tale che

‖∇Hnfm‖2
2 − S‖fm‖2

2∗

d(fm,M)2
→ 0, per m →∞

Grazie all’omogeneità del precedente rapporto, possiamo assumere che
‖∇Hnfm‖2

2 = 1. Inoltre, poichè d(fm,M) ≤ ‖∇Hnfm‖2 = 1, a meno di
sottosuccessioni estratte possiamo assumere che

d(fm,M) → L ∈ [0, 1].

Ora, se L = 0, si ha direttamente una contraddizione dal lemma precedente.
L’altra possibilità è che sia L > 0. In questo caso si deve avere

‖∇Hnfm‖2
2 − S‖fm‖2

2∗ → 0, ‖∇Hnfm‖2 = 1.

Dal principio di concentrazione-compattezza di P. L. Lions (si veda il corollario
1.2 della Sezione I.4 in [38], Parte I) opportunamente adattato al contesto del
gruppo di Heisenberg, otteniamo che esistono due successioni λm, ηm, tali che

λ(Q−2)/2
m fm(δλm(η−1

m ◦ ξ)) → +U (o − U) in S1
0(Hn) per m →∞.

Questo implica che

d(fm,M) = d
(
λ(Q−2)/2

m fm

(
δλm(η−1

m ◦ · )) ,M
)
→ 0, per m →∞,

contraddicendo l’ipotesi L > 0. ¤





Capitolo 3

Disuguaglianze di Sobolev con
termini di resto per
l’operatore L = ∆x + |x|2α∆y

Introduzione

In analogia con quanto dimostrato per la classe dei sublaplaciani nel precedente
capitolo, ci si è chiesto se fosse possibile ottenere risultati simili per altri opera-
tori ellittico-degeneri. Si è, dunque, affrontato il problema delle disuguaglianze
di Sobolev con termini di resto per l’operatore definito su RN = Rm

x × Rn
y da

L = ∆x + |x|2α∆y, α > 0

introdotto e descritto nel Capitolo 1. Sia Ω un aperto qualunque di RN .
Denotato con X = (X1, . . . , XN ) il sistema di campi

Xi =
∂

∂xi
per i = 1, . . . , m, Xi+m = |x|α ∂

∂yi
per i = 1, . . . , n (3.0.1)

che realizza L come “somma di quadrati”, ovvero

L =
N∑

i=1

X2
i

indicheremo come in precedenza con
o

D1
X(Ω) lo spazio ottenuto come comple-

tamento di C∞
0 (Ω) rispetto alla norma

u 7−→ ‖Xu‖2

79
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(Si osservi che la precedente costituisce una norma su C∞
0 (Ω) per qualunque

insieme Ω, grazie alla validità della disuguaglianza di Sobolev). Dunque
o

D1
X(Ω)

è uno spazio di Hilbert con prodotto scalare a(u, v) =
∫
Ω < Xu, Xv >. Nel

caso Ω = RN , lo spazio sarà denotato semplicemente con D1
X(RN ).

Sia, ora, Ω limitato. Il nostro intento è stato quello di capire quando
fosse possibile aggiungere un termine di resto alla disuguaglianza di Sobolev
ottimale su Ω, ovvero la disuguaglianza

‖Xu‖2
L2(Ω) ≥ S(Ω)‖u‖2

L2∗ (Ω)
∀u ∈

o

D1
X(Ω) (3.0.2)

con costante ottimale S(Ω) = inf
u∈

o

D1
X(Ω)

‖Xu‖22
‖u‖2

2∗
. Si fa notare che in questo caso,

non essendo l’operatore invariante per alcuna traslazione di gruppo, per un
dominio generico Ω non è possibile affermare che S(Ω) non dipenda da Ω.

D’altro canto, grazie all’invarianza rispetto alle dilatazioni δλ del quoziente
‖Xu‖22
‖u‖2

2∗
, questa proprietà vale per domini Ω contenenti l’origine e, più in ge-

nerale, per domini intersecanti l’insieme di degenerazione {x = 0}, grazie
all’invarianza del sistema X rispetto alle traslazioni euclidee nella variabile y.
In particolare, per questi domini S(Ω) coincide con la miglior costante S(RN )

(mentre, ovviamente, S(Ω) ≥ S(RN ) ∀Ω, essendo
o

D1
X(Ω) un sottoinsieme di

D1
X(RN )).

Infatti, sia {um} ⊂
o

D1
X(RN ) una successione minimizzante per S(RN ); per

densità di C∞
0 (RN ) in S1(RN ) possiamo assumere {um} ⊂ C∞

0 (RN ). Se Ω
è un aperto che interseca l’insieme {x = 0}, possiamo assumere che 0 ∈ Ω,
data l’invarianza delle norme coinvolte rispetto alle traslazioni euclidee nella
variabile y. Riscalando le um mediante le dilatazioni δλ, ovvero considerando
le funzioni:

uλm = um ◦ δλm

per λm sufficientemente grandi si ha che

uλm ∈ C∞
0 (Ω)

e quindi, grazie all’invarianza rispetto alle dilatazioni δλ del quoziente ‖Xu‖22
‖u‖2

2∗
,

essendo ‖Xuλ‖2
2 = λ2−Q‖Xu‖2

2 e ‖uλ‖2
2∗ = λ2−Q‖u‖2

2∗ , risulta:

S(Ω) ≤ lim inf
m→∞

‖Xuλm‖2
2

‖uλm‖2
2∗

= lim inf
m→∞

‖Xum‖2
2

‖um‖2
2∗

= S(RN )
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da cui
S(Ω) = S(RN ) = S.

Confiniamo, dunque, la nostra analisi a questa classe di domini, ai quali
si riesce ad applicare perfettamente l’argomento di Brezis-Lieb, ottenendo un
termine di resto per la disuguaglianza (3.0.2).

Una difficoltà aggiuntiva rispetto al caso dei sublaplaciani si è incontrata
nel determinare la stima L∞ in (2.2.8) richiesta nella dimostrazione. L’argo-
mento di confronto usato nel caso dei sublaplaciani utilizzava, infatti, precise
stime di sommabilità Lp-deboli per la soluzione fondamentale dell’operatore
coinvolto. In questo caso, abbiamo ottenuto la stima richiesta, utilizzando le
proprietà di integrabilità uniformi delle cosiddette funzioni di Green approssi-
mate dell’operatore L descritte nella Proposizione 1.2.17 (si veda il Lemma
3.1.1 nel paragrafo seguente).

La dimostrazione del risultato sinora illustrato è seguita da alcune con-
siderazioni su come esso possa essere esteso ad alcune generalizzazioni del-
l’operatore ∆x + |x|2α∆y, come ad esempio l’operatore definito su RN =
RN1 × RN2 × . . .× RNr da

L = ∆(1) + |x(1)|2b21∆(2) + . . . + |x(1)|2br1 |x(2)|2br2 . . . |x(r−1)|2br r−1∆(r)

dove x(j) ∈ RNj e ∆(j) denota il Laplaciano in RNj per j = 1, . . . , r, e i bji

sono numeri reali non negativi.
Infine, sono riportate alcune considerazioni di ottimalità analoghe a quelle

fatte per la disuguaglianza ”migliorata” sul gruppo di Heisenberg.

3.1 La disuguaglianza di Sobolev con termine di
resto

Come annunciato, dimostriamo in questa sezione la disuguaglianza di Sobolev
con termini di resto per i campi (3.0.1), per aperti limitati intersecanti l’insieme
di degenerazione dei campi. Al teorema si premette il seguente lemma:

Lemma 3.1.1. Sia Ω ⊂ RN , N ≥ 2 un aperto limitato ed A un qualunque

sottoinsieme misurabile di Ω. Allora la soluzione in
o

D1
X(Ω) del problema

{ −Lu = 1A in Ω
u = 0 su ∂Ω

(3.1.1)
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soddisfa la seguente stima:

‖u‖∞ ≤ C|A|2/Q.

Dimostrazione. Per definizione, la soluzione in
o

D1
X(Ω) del problema (3.1.1)

è l’ unica funzione u ∈
o

D1
X(Ω) tale che a(u, ϕ) =

∫
Ω 1A ϕ per ogni ϕ ∈

o

D1
X(Ω).

Ora, sia Gρ
y la funzione di Green approssimata di L per Ω con polo y ∈ Ω e

Qρ(y) = Q(y, ρ) la δ-sfera di centro y e raggio ρ. Allora

−
∫

Qρ(y)
u = a(Gρ

y, u) = a(u,Gρ
y) =

∫

Ω
1A Gρ

y

da cui
| −

∫

Qρ

u| = |
∫

Ω
1A Gρ

y| =
∫

A
Gρ

y ≤ C |A|2/Q

con C indipendente da ρ e da y, dove l’ultima disuguaglianza segue dalla stima
L

Q
Q−2 -debole dimostrata nella Proposizione 1.2.17, essendo Q/2 l’esponente

coniugato di Q/(Q− 2).
Ora, facendo tendere ρ → 0, si può concludere che

|u(y)| ≤ C |A|2/Q q.o. y ∈ Ω,

come richiesto dalla tesi. ¤

Possiamo, ora, procedere alla dimostrazione del teorema.

Teorema 3.1.2. Sia Ω ⊂ RN , N ≥ 2 un aperto limitato, Ω ∩ {x = 0} 6= ∅.
Allora, esiste una costante C = C(Ω) > 0 tale che

‖Xf‖2
2 ≥ S‖f‖2

2∗ + C(Ω)‖f‖2
Q

Q−2
,w

∀f ∈
o

D1
X(Ω) (3.1.2)

dove Q = m+(α+1)n è la dimensione naturalmente associata all’omogeneità

di X, 2∗ = 2Q
Q−2 ed S la miglior costante per l’embedding

o

D1
X(Ω) ↪→ L2∗(Ω), i.e.

S = inf
u∈

o

D1
X(Ω)

‖Xu‖22
‖u‖2

2∗
= inf

u∈D1
X(RN )

‖Xu‖22
‖u‖2

2∗
.
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Dimostrazione. Seguendo la dimostrazione del Teorema 2.2.3, sia f ∈
o

D1
X(Ω) ed assumiamo che f ≥ 0. Sia g ∈ L∞(Ω) ed u la soluzione in

o

D1
X(Ω)

di { Lu = g in Ω
u = 0 su ∂Ω

(3.1.3)

e definiamo
φ = f + u + ‖u‖∞v in RN

dove f ed u si intendono estese a zero fuori da Ω e v è il “potenziale capacitario
di Ω rispetto al sistema di vettori X, definito come segue, analogamente al caso
dei sublaplaciani. Si consideri il funzionale norma

J(u) =
∫

RN

|Xu|2 dx

sullo spazio di Hilbert
o

D1
X(RN ), che denoteremo semplicemente con D1

X(RN ),
e consideriamo l’estremo inferiore di J sull’insieme

Γ = {u ∈ D1
X(RN ) |u ≥ 1 su Ω nel senso di D1

X(RN )}.

Denoteremo questo estremo inferiore con capX(Ω) e lo chiameremo la X-
capacità di Ω.
Poichè Γ è un insieme chiuso convesso, questo estremo inferiore è assunto da
un’unica funzione v ∈ D1

X(RN ), che chiameremo X-potenziale capacitario di
Ω. Come prima, è facile verificare che v ≡ 1 su Ω (nel senso di D1

X).
Dunque, la disuguaglianza di Sobolev in tutto lo spazio applicata a φ conduce
a ∫

|X(f + u)|2 + ‖u‖2
∞

∫
|Xv|2 ≥ S‖φ‖2

2∗ ≥ S‖f‖2
2∗

e seguendo la dimostrazione nel caso dei sublaplaciani, si ottiene
∫
|Xf |2 ≥ S‖f‖2

2∗ +
( ∫

A
f
)2/[∫

|Xu|2 + k‖u‖2
∞

]
(3.1.4)

dove k = capX(Ω), A è un sottoinsieme arbitrario di Ω e u è la soluzione in
o

D1
X(Ω) di { Lu = 1A in Ω

u = 0 su ∂Ω
(3.1.5)
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Nuovamente, dalla disuguaglianza di Hölder si ottiene la stima

∫
|Xu|2 ≤ C|A|1+2/Q (3.1.6)

mentre la stima

‖u‖∞ ≤ C ′|A|2/Q (3.1.7)

è dimostrata nel Lemma 3.1.1 .
Quindi, usando le (3.1.6) e (3.1.7) e prendendo l’estremo superiore su tutti gli
insiemi A in (3.1.4), si ottiene la tesi, con C(Ω) = CQ/capX(Ω). ¤

3.2 Alcune generalizzazioni

Tutti gli argomenti usati nella precedente sezione al fine di ottenere un termine
di resto nella disuguaglianza di Sobolev si applicano, ad esempio, alla seguente
generalizzazione dell’operatore ∆x + |x|2α∆y, ovvero all’operatore definito su
RN = RN1 × RN2 × . . .× RNr come segue

L = ∆(1) + |x(1)|2b21∆(2) + . . . + |x(1)|2br1 |x(2)|2br2 . . . |x(r−1)|2br r−1∆(r)

dove x(j) ∈ RNj e ∆(j) denota il Laplaciano in RNj per j = 1, . . . , r, e i bji

sono numeri reali nonnegativi.
Anche in questo caso, una disuguaglianza di Sobolev associata ad L può

essere dedotta dai risultati in [21] e può essere migliorata su domini limitati
contenenti l’origine mediante l’approccio di Brezis-Lieb.
Vediamo, innanzitutto, quale numero assume il ruolo della dimensione omo-
genea Q in questo caso.
Si noti che l’operatore L si può scrivere come somma di quadrati di N campi
vettoriali localmente Lipschitziani nel seguente modo:

L =
r∑

j=1

Nj∑

i=1

(
X

(j)
i

)2
(3.2.1)
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dove

X
(1)
i =

∂

∂x
(1)
i

per i = 1, . . . , N1

X
(2)
i = |x(1)|b21 ∂

∂x
(2)
i

per i = 1, . . . , N2

...

X
(r)
i = |x(1)|br1 |x(2)|br2 . . . |x(r−1)|br r−1

∂

∂x
(r)
i

per i = 1, . . . , Nr

(3.2.2)

In virtù dell’omogeneità dei coefficienti, ai campi X
(j)
i si associa in modo

naturale la seguente famiglia di dilatazioni anisotrope:

δλ(x) = (λG1x(1), λG2x(2), . . . , λGrx(r)), (3.2.3)

dove G1 = 1 e Gj = 1 +
∑j−1

i=1 bjiGi per j = 1, . . . , r, risultando i campi X
(j)
i

omogenei di grado 1 rispetto alle suddette dilatazioni. Verifichiamo, infatti,
che

X
(j)
i (f ◦ δλ) = λ (X(j)

i f) ◦ δλ. (3.2.4)

Risulta:

X
(1)
i (f ◦ δλ)(x) =

∂

∂x
(1)
i

(f ◦ δλ)(x) = λG1

(
∂ f

∂x
(1)
i

)
(δλ(x))

e

X
(j)
i (f ◦ δλ)(x) = |x(1)|bj1 |x(2)|bj2 . . . |x(j−1)|bj j−1

∂

∂x
(j)
i

(f ◦ δλ)(x)

= |x(1)|bj1 |x(2)|bj2 . . . |x(j−1)|bj j−1λGj
∂ f

∂x
(j)
i

(δλ(x))

= |λG1x(1)|bj1 |λG2x(2)|bj2 . . . |λGj−1x(j−1)|bj j−1λGj−
Pj−1

i=1 bjiGi
∂ f

∂x
(j)
i

(δλ(x))

= λGj−
Pj−1

i=1 bjiGi

(
X

(j)
i f

)
(δλ(x)), 1 < j ≤ r, 1 < i ≤ Nj

da cui, scegliendo G1 = 1 e Gj = 1 +
∑j−1

i=1 bjiGi per j = 1, . . . , r, si ottiene la
(3.2.4).
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Di conseguenza, l’operatore L è omogeneo di grado 2 rispetto alle dilatazioni
δλ e il ruolo di dimensione omogenea Q è assunto dal numero

Q =
r∑

j=1

Nj Gj ,

essendo λQ lo jacobiano delle dilatazioni δλ.
Ora, denotato con X = (X(1), . . . , X(r)) il sistema di vettori definito dalla
(3.2.2), dai teoremi di embedding in [21] si ricava che:

W 1,2
X (RN ) ↪→ H(ε(1), ε(2), ..., ε(r))(RN )

ove ε(j) = (ε(j)
1 , . . . , ε

(j)
Nj

) = ((Gj)−1, . . . , (Gj)−1) per j = 1, . . . , r, e poichè
per lo spazio ordinario anisotropo al secondo membro della precedente vale
l’embedding

H(ε(1), ε(2), ... ,ε(r))(RN ) ↪→ Lq(RN )

per
1
2
− 1

q
=

1∑

16j6r
16i6Nj

1/ε
(j)
i

ove il secondo membro è pari ad 1/Q, si ottiene anche in questo caso la
disuguaglianza di Sobolev

‖Xu‖2
2 ≥ C ‖u‖2

2∗ ∀u ∈ C∞
0 (RN )

con 2∗ = 2Q/(Q− 2).
Ora, se Ω è un aperto limitato di RN contenente l’origine, la miglior costante
di Sobolev su Ω coincide con la miglior costante relativa all’intero spazio,
grazie all’invarianza del rapporto ‖Xu‖22

‖u‖2
2∗

rispetto alle dilatazioni δλ. Per questa
classe di aperti, dunque, si riscrive in modo perfettamente analogo il risultato
illustrato nella sezione precedente.

3.3 Considerazioni di ottimalità

Dedichiamo quest’ultimo paragrafo del capitolo ad alcune considerazioni di ot-
timalità. Ricordiamo che nel caso della disuguaglianza di Sobolev sul gruppo
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di Heisenberg è stato possibile dimostrare che il nostro risultato è ottimale nel-
l’ambito degli spazi Lp, nel senso che la disuguaglianza non ammette la norma
L

Q
Q−2 come termine di resto (si veda la Sezione 2.4.1). Ciò è stato possibile

grazie alla conoscenza esplicita dei minimizzanti di Sobolev, che hanno con-
sentito la realizzazione di stime asintotiche alla Brezis- Nirenberg, conducendo
al risultato.
Nel caso dell’operatore L = ∆x + |x|2α∆y, poco è noto circa gli estremali della
disuguaglianza di Sobolev. Segnaliamo, però, che nel caso α = 1, essi sono
stati determinati da Beckner [1] nel caso di dimensioni basse.
In particolare, usando la simmetria iperbolica e la geometria conforme, Beck-
ner dimostra i seguenti risultati:

Teorema 3.3.1. ∀f ∈ C1(R2) :

[‖f‖L6(R2)

]2 ≤ π−2/3

∫

R2

[(
∂f

∂x

)2

+ 4x2

(
∂f

∂y

)2
]

dxdy (3.3.1)

La disuguaglianza è ottimale, e un estremale è dato dalla funzione
[
(1 + |x|2)2 + |y|2]−1/4

.

Teorema 3.3.2. ∀f ∈ C1(R3) :

[‖f‖L4(R3)

]2 ≤ 1
2π

∫

R×R2

[
|∇xf |2 + 4x2

(
∂f

∂y

)2
]

dxdy (3.3.2)

La disuguaglianza è ottimale, e un estremale è dato dalla funzione
[
(1 + |x|2)2 + |y|2]−1/2

.

Dai risultati di Beckner segue che, almeno per le dimensioni omogenee
Q = 3, 4, i minimizzanti per la disuguaglianza di Sobolev relativa ad L =
∆x + |x|2∆y sono costituiti dalla famiglia di funzioni

Uε(x, y) =
Cε

((ε + |x|2)2 + 4|y|2)Q−2
4

dove ε > 0 e Cε = Cε
Q−2

4 .
Dunque, posto Ũε = Uε

Cε
, risulta che

Ũε → Γ(x, y) =
1

(|x|4 + 4|y|2)Q−2
4

per ε → 0
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ove Γ è, a meno di costanti, la soluzione fondamentale dell’operatore L con
polo nell’origine (si confronti il paragrafo 1.2.1).
I risultati di Beckner sopra richiamati ci consentono, almeno per le dimensioni
da lui trattate, di stabilire l’ottimalità del nostro risultato, in maniera perfetta-
mente analoga al caso Hn. Richiamiamo brevemente il tipo di argomentazione
usato.

Sia Ω un dominio intersecante l’insieme {x = 0}. Assumiamo per sempli-
cità che 0 ∈ Ω (ipotesi non restrittiva, data l’invarianza dell’operatore rispetto
alle traslazioni euclidee nella variabile y). Stimiamo il rapporto

R(u) =
‖Xu‖2

2 − S‖u‖2
2∗

‖u‖2
q

(3.3.3)

nelle funzioni
uε = ϕ(x, y)Uε(x, y)

ove ϕ è una funzione di cut-off su Ω, i.e. ϕ ∈ C∞
0 (Ω), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in un

intorno di 0.
Essendo:

‖Xuε‖2
2 =

∫

RN

U2∗
ε (x, y) dxdy +

∫

Ω
|Xϕ|2U2

ε dxdy + O(εQ/2)

e
‖uε‖2∗

2∗ =
∫

RN

U2∗
ε (x, y) dxdy + O(εQ/2)

si ottiene:

R(uε) =

∫

Ω
|Xϕ|2 Uε

2 dxdy + o(C2
ε )

(
∫

Ω
ϕq U q

ε dxdy)2/q

=

∫

Ω
|∇Hnϕ|2 Ũ2

ε dxdy + o(1)

(
∫

Ω
ϕq Ũ q

ε dxdy)2/q

da cui, tenendo conto che Ũε → Γ per ε → 0, e che Γ non è Lq-sommabile in
0 per q ≥ Q/(Q − 2), risulta che per tali q il denominatore in R(uε) esplode,
mentre il numeratore si mantiene limitato, essendo ϕ = const in un intorno di
zero.
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Dunque, per q ≥ Q/(Q − 2) il quoziente R(u) non può essere limitato dal

basso in
o

D1
X(Ω) da alcuna costante positiva C, e ciò equivale a dire che la

norma Lq, con q ≥ Q/(Q− 2), non è ammissibile come termine di resto nella
disuguaglianza di Sobolev relativa all’operatore ∆x + |x|2∆y.

Si osservi, in particolare, che nel caso Q = 3 la disuguaglianza (3.3.1)
ammette la norma L2 come termine di resto. Questa circostanza, alla luce
del principio formulato nel contesto ellittico da Gazzola e Grunau in [28] e
richiamato nell’osservazione 2.4.2, suggerisce di investigare la “criticità” della
dimensione omogenea Q = 3 per l’operatore ∆x + |x|2∆y. Questo tema sarà
affrontato nel Capitolo 4.





Capitolo 4

Il problema critico per gli
operatori ∆Hn e ∆x + |x|2∆y

Introduzione

Questo capitolo è dedicato allo studio di problemi “critici” nel senso delle
immersioni di Sobolev per alcuni degli operatori subellittici sinora introdotti.
Più precisamente, si studia l’analogo del problema di Brezis-Nirenberg per gli
operatori ∆Hn e ∆x + |x|2∆y.

La prima parte del capitolo tratta il seguente problema critico per il
Laplaciano di Kohn sul gruppo di Heisenberg:




−∆Hnu = u2∗−1 + λu in Ω

u > 0 in Ω
u = 0 su ∂Ω

(4.0.1)

dove 2∗ = 2Q
Q−2 , Q = 2n + 2 è la dimensione omogenea di Hn e Ω è un aperto

limitato regolare di Hn.
Ricordiamo che il problema (4.0.1) è stato studiato da Citti in [12] (si veda
anche [11]).
Si noti che l’esponente 2Q

Q−2 è critico per il problema di Dirichlet semilineare
per il Laplaciano di Kohn, cos̀ı come 2N

N−2 è critico per l’equazione di Poisson
semilineare, dal momento che, se Ω è limitato, l’immersione

S1
0(Ω) ↪→ Lp(Ω) (4.0.2)

91
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è compatta per 1 ≤ p < 2Q
Q−2 , mentre è solo continua per p = 2Q

Q−2 (si veda
[18], [24]). Questa circostanza non consente l’utilizzo di metodi variazionali
standard. Si richiede, quindi, l’uso di tecniche più sofisticate, analoghe a quelle
introdotte nel caso del Laplaciano classico da Brezis e Nirenberg nel famoso
lavoro [7].

Ricordiamo che Brezis e Nirenberg mettono in luce un interessante fenomeno:
le condizioni per l’esistenza di soluzioni del problema (4.0.1) per il Laplaciano
classico risultano sorprendentemente differenti quando N = 3 e quando, in-
vece, N ≥ 4. Infatti, in dimensione N ≥ 4 l’analogo del problema (4.0.1)
per il Laplaciano su RN ammette soluzioni per ogni 0 < λ < λ1, mentre per
N = 3 il problema non ammette soluzione per λ in un intorno destro di 0. La
dimensione N = 3 viene per questo detta “critica”.

Nel caso del Laplaciano subellittico su Hn, invece, questo fenomeno non
si verifica. Infatti, come dimostrato nel Teorema 4.2.1, il problema ammette
soluzioni per ogni 0 < λ < λ1, ove λ1 è il primo autovalore di Dirichlet di
−∆Hn .
Come si può osservare dal confronto tra le stime asintotiche realizzate per
studiare il caso Heisenberg e quelle euclidee, l’assenza di dimensioni critiche
per il Laplaciano di Kohn è dovuta sostanzialmente al fatto che il ruolo della
dimensione spaziale è qui assunto dalla dimensione omogenea Q = 2n + 2 che
è sempre maggiore o uguale a 4.

La seconda parte del capitolo è dedicata ad alcuni nostri risultati sul
seguente problema “critico” per l’operatore L = ∆x + |x|2∆y:




−(∆xu + |x|2∆yu) = u2∗−1 + λu in Ω ⊂ RN = Rm

x × Rn
y

u > 0 in Ω
u = 0 su ∂Ω

(4.0.3)

dove 2∗ = 2Q
Q−2 , Q = m+2n è la dimensione omogenea di RN rispetto all’ope-

ratore L e Ω è un aperto limitato regolare di RN intersecante l’insieme {x = 0}
di degenerazione dell’operatore.
La conoscenza esplicita, almeno in dimensioni basse, dei minimizzanti della
disuguaglianza di Sobolev associata ad L, ci consente di confrontare le dimen-
sioni Q = 3 e Q = 4 in merito alla risolubilità del problema (4.0.3) mediante
l’approccio di Brezis-Nirenberg e di rilevare la “criticità” della dimensione
omogenea Q = 3. Si prova, infatti, mediante un argomento “alla Pohoza-
ev”, che su domini di particolare simmetria il problema (4.0.3) non ammette
soluzioni per λ sufficientemente piccoli.
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4.1 Identità di tipo-Pohozaev su Hn

In questa sezione riportiamo alcune identità integrali dovute a Garofalo e Lan-
conelli [24], che generalizzano al contesto subellittico di Hn la ben nota identità
di Pohozaev per le equazioni di Poisson semilineari su RN . Queste identità
costituiscono uno strumento di fondamentale importanza per il conseguimento
di risultati di non esistenza per i problemi semilineari in esame.
Si consideri il seguente problema di Dirichlet associato a ∆Hn :

{ −∆Hnu = f(u) in Ω
u = 0 su ∂Ω

(4.1.1)

Com’è noto dal contesto ellittico, una identità di tipo-Pohozaev si ottiene
moltiplicando l’equazione (4.1.1) per V u, dove V =

∑N
i=1 ai(x)∂xi è un op-

portuno campo vettoriale e applicando il teorema della divergenza. Ciò che
si ottiene è una identità tra integrali di volume e integrali di superficie, i cui
segni, per opportune scelte di V e su domini di particolare simmetria, possono
risultare incompatibili con l’esistenza di soluzioni non banali del problema.
Nel caso in esame, una “buona” scelta per il campo vettoriale V si rivela essere
quella del generatore infinitesimale delle dilatazioni naturali su Hn, ovvero il
generatore del gruppo ad un parametro delle dilatazioni

δλ(z, t) = (λz, λ2t).

Si tratta del seguente campo vettoriale su R2n+1:

Zu =
[

d
dλ

u ◦ δλ

]

λ=1

=
n∑

j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
+ 2t

∂

∂t
(4.1.2)

Il campo Z è caratterizzato dalla proprietà che una funzione u : Hn → R è
omogenea di grado k ∈ R rispetto alle dilatazioni {δλ}λ>0, ovvero

u(δλ(ξ)) = λku(ξ) ∀ ξ ∈ Hn

se e solo se
Zu = ku.

Nel seguito, se Ω ⊂ Hn è un aperto limitato, denoteremo con Γ2(Ω) lo spazio
delle funzioni continue u : Ω → R con Xju, Yju,X2

j u, Y 2
j u continue in Ω e

prolungabili per continuità su tutto Ω.
La classica identità di Pohozaev nel contesto del gruppo di Heisenberg si
riscrive come segue.
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Teorema 4.1.1. Sia Ω ⊂ Hn un aperto limitato, C1 a tratti e sia u ∈ Γ2(Ω)
soluzione del problema

{ −∆Hnu = f(u) in Ω
u = 0 su ∂Ω

ove f : R → R è una funzione localmente Lipschitziana t.c. f(0) = 0, con
primitiva F (u) =

∫ u
0 f(ν)dν. Allora, u soddisfa l’identità

∫

∂Ω
|∇Hnu|2 < Z,N > dHQ−2 =

∫

Ω

[
2QF (u)− (Q− 2)u f(u)

]
dzdt (4.1.3)

ove Z è il campo vettoriale generatore delle dilatazioni δλ definito nella (4.1.2),
N è la normale unitaria esterna a ∂Ω e dHQ−2 denota la misura di Hausdorff
(Q− 2)-dimensionale in Hn.

Dimostrazione. Segue dall’identità integrale dimostrata da Garofalo e Lan-
conelli in [24, Teor. 2.1].

L’identità di tipo-Pohozaev (4.1.3) sopra richiamata conduce ad interessanti
risultati di non esistenza qualora l’insieme Ω appartenga ad una particolare
classe di domini.
Illustriamo a tal proposito la definizione di insieme δλ-stellato, introdotta da
Garofalo e Lanconelli in [24], che generalizza al contesto in esame la classica
definizione di stellatezza euclidea. In quanto segue τ(z0,t0)(z, t) = (z0, t0)◦(z, t)
denoterà l’operazione di traslazione a sinistra su Hn di elemento (z0, t0).

Definizione 4.1.2. ( Insieme δλ-stellato) Un aperto Ω ⊂ Hn C1 a tratti
si dirà δλ- stellato rispetto ad un punto (z0, t0) ∈ Ω se, denotata con N la
normale unitaria esterna alla frontiera di τ(z0,t0)−1(Ω), si ha

Z ·N ≥ 0 (4.1.4)

in ogni punto regolare di ∂(τ(z0,t0)−1(Ω)).
Diremo che Ω è δλ-strettamente stellato rispetto ad un punto (z0, t0) se risulta

Z ·N > 0 su ∂(τ(z0,t0)−1(Ω)). (4.1.5)

Osserviamo che la precedente definizione coincide con l’usuale definizione
di stellatezza nel caso di dilatazioni isotrope. In tal caso, infatti, il campo Z
altro non è che Z =

∑
i xi

∂
∂xi

e quindi la condizione (4.1.4) si riscrive come
x ·N ≥ 0.
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Esempio 4.1.3. Se d è una norma δλ-omogenea su Hn, è facile verificare
che le sfere per la distanza indotta da d sono insiemi δλ-strettamente stellati
rispetto al proprio centro. Infatti, si consideri la d-sfera di centro 0 e raggio
R, ovvero

Bd(0, R) = {ξ ∈ Hn | d(ξ) < R}
Allora, essendo N = ∇d

|∇d| su ∂BR, risulta:

< Z, N >=< Z,
∇d

|∇d| >=
Zd

|∇d| =
R

|∇d| > 0 su ∂BR

ove si è usato che d è una funzione omogenea di grado 1 rispetto alle di-
latazioni, per cui Zd = d.

Elenchiamo qui di seguito alcune conseguenze immediate dell’identità di
Pohozaev e delle definizioni appena introdotte.

Teorema 4.1.4. Sia Ω ⊂ Hn un aperto limitato regolare strettamente δλ-
stellato rispetto ad un punto (z0, t0) ∈ Ω. Allora il problema

{ −∆Hnu = f(u) in Ω
u = 0 su ∂Ω

(4.1.6)

non ha soluzioni non-negative non banali u ∈ Γ2(Ω), se f è localmente Lip-
schitziana, f(0) = 0 e

2QF (u)− (Q− 2)uf(u) ≤ 0 per u ≥ 0. (4.1.7)

Dimostrazione. Trasliamo (z0, t0) nell’origine e consideriamo la funzione
v(z, t) = u(τ(z0,t0)−1(z, t)) nell’insieme τ(z0,t0)−1(Ω). La funzione v soddisfa la
stessa equazione di u in τ(z0,t0)−1(Ω) e v ∈ Γ2(τ(z0,t0)−1(Ω)). Dunque, possiamo
supporre sin dal principio che 0 ∈ Ω e che X · N > 0 su ∂Ω. Dall’identità
(4.1.3) e dall’ipotesi X ·N > 0 su ∂Ω, segue che

|∇Hnu|2 ≡ 0 su ∂Ω. (4.1.8)

Ora, ricordando che denotata con A la seguente matrice (2n + 1)× (2n + 1):

A =




IRn 0 2y
0 IRn −2x
2y −2x 4|x|2



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risulta
∆Hnu = div(A∇u) e |∇Hnu|2 = A∇u · ∇u

dalla (4.1.8) segue che A∇u ·N = 0 su ∂Ω, per cui

0 =
∫

∂Ω
A∇u ·N =

∫

Ω
div(A∇u) =

∫

Ω
∆Hnu =

∫

Ω
up

da cui u ≡ 0 in Ω. ¤

Osserviamo subito che nel caso

f(u) = up−1 + λu p > 1,

la condizione di non esistenza (4.1.7) si riscrive come segue

2λu2 +
Q− 2

p

(
2Q

Q− 2
− p

)
up ≤ 0 per u ≥ 0.

Quindi, se Ω ⊂ Hn è un aperto limitato regolare strettamente δλ-stellato
rispetto ad un punto (z0, t0) ∈ Ω, il problema




−∆Hnu = up−1 + λu in Ω

u > 0 in Ω
u = 0 su ∂Ω

(4.1.9)

non ha sicuramente soluzione nei seguenti due casi:

1. λ = 0 e p ≥ 2Q
Q−2 ;

2. λ ≤ 0 e p = 2Q
Q−2 .

Osservazione 4.1.5. Sottolineamo esplicitamente che l’ipotesi di stellatezza
è essenziale nella proposizione precedente. Infatti, in [24] si dimostra che il
problema (4.1.9) nel caso critico e senza termini perturbativi nell’equazione
ha soluzioni non negative non banali in aperti cilindrico-annulari del seguente
tipo:

{(z, t) ∈ Hn | r < |z| < R, |t| < T}, r, R, T > 0.

Dunque, una “perturbazione” della geometria di Ω può produrre risultati di
esistenza nel caso critico, analogamente a quanto dimostrato da Kazdan e
Warner nel caso euclideo.
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4.2 Il problema critico per il Laplaciano di Kohn
∆Hn

Il problema di Yamabe per le varietà di Cauchy-Riemann conduce in maniera
naturale allo studio di problemi semilineari per il Laplaciano di Kohn del
seguente tipo: { −∆Hnu = up in Ω

u = 0 su ∂Ω
(4.2.1)

ove Ω denota un sottoinsieme aperto limitato di Hn e 1 ≤ p ≤ 2∗ − 1.
Lo spazio naturale per studiare il problema (4.2.1) è lo spazio di Sobolev-Stein
S1

0(Ω), ovvero la chiusura di C∞
0 (Ω) rispetto alla norma ‖u‖S1

0
= (

∫
Ω |∇Hnu|2)1/2.

Una funzione non-negativa u si dice soluzione debole di (4.2.1) se risulta
∫

Ω
∇Hnu · ∇Hnh =

∫

Ω
uph ∀h ∈ S1

0(Ω).

La disuguaglianza di immersione assicura che la funzione uph è sommabile in
Ω per ogni u, h ∈ S1

0(Ω), qualunque sia p ≤ Q+2
Q−2 .

Le soluzioni deboli di (4.2.1) sono i punti critici del funzionale:

I : S1
0(Ω) → R, I(u) =

1
2

∫

Ω
|∇Hnu|2 − 1

p + 1

∫

Ω
up+1.

Utilizzando collaudate tecniche di teoria variazionale dei punti critici, in [24]
è stato dimostrato che il problema (4.2.1) ha (almeno) una soluzione positiva
se

1 < p <
Q + 2
Q− 2

Questo risultato è ottimale nel senso seguente. Se p = Q+2
Q−2 , il problema non

ha soluzioni se ∂Ω e u sono abbastanza regolari e se Ω è δλ-stellato rispetto
ad un suo punto come osservato nella sezione precedente. Mediante tecniche
più sofisticate, introdotte da Brezis e Nirenberg nel caso del Laplaciano classi-
co, Citti ha dimostrato che nel caso critico (p = Q+2

Q−2), il problema (4.2.1)
“acquista” soluzione se si perturba opportunamente il termine semilineare
nell’equazione. Il problema cui facciamo riferimento è il seguente:




−∆Hnu = u2∗−1 + λu in Ω

u > 0 in Ω
u = 0 su ∂Ω

(4.2.2)
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dove Ω è un dominio regolare limitato di Hn, 2∗ = 2Q
Q−2 con Q = 2n + 2

dimensione omogenea di Hn.
Allo studio di questo problema è dedicato il seguito di questa sezione.
Come dimostrato mediante l’identità di Pohozaev, il problema (4.2.2) non
ammette soluzioni per λ ≤ 0 in domini δλ-stellati.
Osserviamo, inoltre, che la richiesta di positività di u implica che il problema
(4.2.2) non ha soluzione per λ ≥ λ1, ove λ1 denota il più piccolo autovalore di
Dirichlet dell’operatore −∆Hn , ovvero:

λ1 = inf
u∈S1

0(Ω)\{0}

∫

Ω
|∇Hnu|2 dzdt
∫

Ω
u2 dzdt

.

Infatti, grazie alla disuguaglianza di Poincaré per l’integrale di Dirichlet su Hn

risulta che λ1 > 0 ed esiste una funzione positiva ϕ1 ∈ S1
0(Ω) tale che

{ −∆Hnϕ1 = λ1ϕ1 in Ω
ϕ1 = 0 su ∂Ω

Allora, se u è soluzione di (4.2.2), segue che

λ1

∫

Ω
uϕ1 dzdt = −

∫

Ω
ϕ1∆Hnu

=
∫

Ω
upϕ1 + λ

∫

Ω
uϕ1

> λ

∫

Ω
uϕ1 dzdt.

da cui λ < λ1.
In virtù delle precedenti considerazioni, si esamina il problema dell’esistenza di
soluzioni del problema (4.2.2) al variare del parametro λ nell’intervallo (0, λ1).
Si prova il seguente teorema.

Teorema 4.2.1. Il problema (4.2.2) ammette soluzione per ogni λ ∈ (0, λ1),
dove λ1 è il primo autovalore di Dirichlet di −∆Hn.

Alla dimostrazione del teorema premetteremo alcuni lemmi e considera-
zioni. Osserviamo, intanto, che dal teorema si evince l’assenza di dimensioni
critiche per il Laplaciano subellittico su Hn. Non ci sono, infatti, dimensioni
spaziali, come ad esempio la dimensione N = 3 per il Laplaciano euclideo, per
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le quali il problema in esame non ammetta soluzioni per λ sufficientemente
piccoli. Questa differenza di comportamento rispetto all’analogo euclideo è
dovuta sostanzialmente al fatto che in questo contesto il ruolo della dimensione
spaziale è assunto dalla dimensione omogenea Q = 2n+2 di Hn, che è sempre
maggiore o uguale a 4. In effetti, dalle stime asintotiche che realizzeremo nel
corso della dimostrazione del teorema, risulterà evidente che vi è una perfetta
corrispondenza di comportamento ad esempio tra la dimensione omogenea
Q = 4 nel caso Heisenberg e la dimensione topologica N = 4 nel caso euclideo.
L’approccio variazionale scelto per trattare il problema, analogamente al caso
euclideo, è il seguente. Le soluzioni del problema corrispondono ai punti critici
del funzionale

fλ(u) =
1
2

∫

Ω
|∇Hnu|2 − λ

2

∫

Ω
u2 − 1

2∗

∫

Ω
u2∗ , u ∈ S1

0(Ω).

Un approccio alternativo è quello di cercare soluzioni non banali come punti
critici del funzionale

Fλ(u) =
1
2

∫

Ω
|∇Hnu|2 − λ

2

∫

Ω
u2

sulla seguente varietà di S1
0(Ω):

M =
{
u ∈ S1

0(Ω)
∣∣ ‖u‖2∗ = 1

}
.

In particolare, cercheremo punti critici che risultino punti di minimo assoluto
di Fλ su M , il che equivale a tentare di minimizzare il rapporto

Qλ(u) =

∫

Ω
(|∇Hnu|2 − λu2) dzdt

(∫

Ω
|u|2∗dzdt

)2/2∗ , u ∈ S1
0(Ω) \ {0}.

Denoteremo con Sλ l’estremo inferiore di Fλ(u) su M , ovvero

Sλ = inf
u∈M

Fλ(u) = inf
u∈S1

0(Ω)
‖u‖2∗=1

{‖∇Hnu‖2
2 − ‖u‖2

2}

Si noti che, per λ = 0, risulta

S0 = inf
u∈S1

0(Ω)
‖u‖2∗=1

{‖∇Hnu‖2
2} = S
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cioè S0 corrisponde alla miglior costante di Sobolev S per l’immersione di
S1

0(Ω) in L2∗(Ω).
Supponiamo che Sλ sia raggiunto da una funzione u0 ∈ S1

0(Ω). Senza perdita
di generalità, possiamo assumere u0 ≥ 0 in Ω, a meno di sostituire u0 con
|u0|. Poichè u0 è un punto critico di Fλ su M , esisterà un moltiplicatore di
Lagrange µ ∈ R tale che

−∆Hnu− λu = µu2∗−1 in Ω.

In realtà, µ = Sλ, e se λ < λ1, risulta Sλ > 0. Dunque, posto u = S
1/(2∗−2)
λ u0,

u è soluzione del nostro problema (4.2.2). Si noti che u è positiva in Ω, grazie
al principio del massimo forte per ∆Hn dimostrato da Bony in [1].
Il lemma seguente, dovuto a Lieb nel caso euclideo, riveste un ruolo cardine
nella risoluzione del problema. Esso fornisce una condizione sufficiente affinchè
Sλ sia raggiunto.

Lemma 4.2.2. Se Sλ < S, allora Sλ è raggiunto.

Dimostrazione. La dimostrazione è l’esatta trasposizione al contesto in
esame di quella euclidea, per la quale si veda [7]. ¤

Possiamo, ora, procedere con la dimostrazione del teorema.

Dimostrazione del Teorema 4.2.1 Supponiamo per semplicità che 0 ∈ Ω.
In virtù del lemma precedente, è sufficiente provare che Sλ < S. A tal fine,
stimiamo il quoziente

Qλ(u) =

∫

Ω
(|∇Hnu|2 − λu2) dzdt

(∫

Ω
|u|2∗dzdt

)2/2∗ (4.2.3)

nelle funzioni della forma

uε(z, t) = ϕ(z, t)Uε(z, t)

ove le Uε sono le soluzioni del problema limite

−∆Hnu = u2∗−1 su Hn

ovvero

Uε(z, t) =
Cε

Q−2
4

((ε + |z|2)2 + t2)
Q−2

4

, ε > 0
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e ϕ ∈ C∞
0 (Ω) è una fissata funzione di cut-off, 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in un intorno

di 0 che supponiamo del tipo Bd(0, R), ove d è la norma omogenea naturale
su Hn, ovvero d(z, t) = (|z|4 + t2)1/4.
Come si può osservare, esiste una stretta relazione tra le funzioni Uε e la norma
d. Infatti, le Uε lontano dall’origine hanno lo stesso comportamento della
funzione d2−Q, ovvero della soluzione fondamentale del Laplaciano subellittico
su Hn. Questo fatto ci consente di stimare i termini nella (4.2.3) facendo uso
della formula per le coordinate polari su Hn che qui richiamiamo. Per ogni
0 ≤ r1 < r2 e per ogni funzione misurabile f : [r1, r2] → R, si ha

∫

Bd(0,r2)\Bd(0,r1)
f(d(ξ)) dξ = Q |Bd(0, 1)|

∫ r2

r1

f(ρ) ρQ−1 dρ

se almeno uno dei due integrali esiste.
Utilizzando la formula precedente, si ottengono le seguenti stime per ciascun
termine in (4.2.3), per ε → 0+:

‖∇Hnuε‖2
2 = ‖Uε‖2∗

2∗ + O(ε(Q−2)/2) (4.2.4)

‖uε‖2∗
2∗ = ‖Uε‖2∗

2∗ + O(εQ/2) (4.2.5)

‖uε‖2
2 =

{
C ε + O(ε(Q−2)/2) se Q > 4
C ε| ln ε| + O(ε) se Q = 4

(4.2.6)

Infatti, per quanto riguarda il termine ‖∇Hnuε‖2
2, si ha che

‖∇Hnuε‖2
2 =

∫

RN

U2∗
ε (z, t)dzdt +

∫

Ω
|∇Hnϕ|2U2

ε dzdt + O(εQ/2)

come dimostrato nella Sezione 2.4.1. Inoltre, valutando il secondo integrale
nella precedente, tenuto conto che ϕ ≡ 1 sulla sfera BR = Bd(0, R) e che
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Uε(ξ) = ε
2−Q

4 U1(δ 1√
ε
ξ), si ottiene

∫

Ω
|∇Hnϕ|2U2

ε =
∫

Ω\BR

|∇Hnϕ|2U2
ε ≤ C

∫

Ω\BR

U2
ε

= C

∫

d(ξ)>R
ε(2−Q)/2 U2

1 (δ 1√
ε
ξ) dξ

= Cε

∫

d(ξ)> R√
ε

1
(1 + |z|2)2 + t2)(Q−2)/2

dzdt

≤ Cε

∫

d(η)> R√
ε

1
d(η)2Q−4

dη

= Cε

∫ +∞

R√
ε

1
ρQ−3

dρ

= O(ε(Q−2)/2)

Quindi si ha che:

‖∇Hnuε‖2
2 = ‖Uε‖2∗

2∗ + O(ε(Q−2)/2) + O(εQ/2) = ‖Uε‖2∗
2∗ + O(ε(Q−2)/2),

come annunciato dalla (4.2.4). Per quanto riguarda la stima (4.2.5), essa è
stata dimostrata nella Sezione (2.4.1). Resta, dunque, da verificare la stima
per il termine ‖uε‖2

2. Valutiamo quindi:

‖uε‖2
2 =

∫

Ω
ϕ2U2

ε ≥
∫

Bd(0,R)
U2

ε (ξ)dξ = ε

∫

Bd(0, R√
ε
)
U2

1 (ξ)dξ

= ε

(∫

Bd(0,1)
U2

1 +
∫

Bd(0, R√
ε
)\Bd(0,1)

U2
1

)

≥ Cε

(
1 +

∫ R√
ε

1

1
ρQ−3

dρ

)

=

{
C ε + O(ε(Q−2)/2) se Q > 4
C ε| ln ε| + O(ε) se Q = 4

Dunque, sostituendo in Qλ(uε), per Q > 4 si ottiene:

Qλ(uε) ≤

(
‖Uε‖2∗

2∗ − cλε + O(ε(Q−2)/2)
)

(
‖Uε‖2∗

2∗ + O(εQ/2)
)2/2∗

= S − cλε + O(ε(Q−2)/2) < S,



4.3. Il problema critico per l’operatore ∆x + |x|2∆y 103

per ε > 0 sufficientemente piccolo. Analogamente, per Q = 4 abbiamo

Qλ(uε) ≤

(
‖Uε‖2∗

2∗ − cλε| ln ε|+ O(ε)
)

(
‖Uε‖2∗

2∗ + O(ε)
)2/2∗

= S − cλε| ln ε| + O(ε) < S

per ε > 0 sufficientemente piccolo.
Si è, dunque, dimostrato che

Sλ ≤ Qλ(uε) < S

in tutte le dimensioni ammissibili per Hn, da cui la tesi. ¤

Osservazione 4.2.3. Facciamo notare che se la dimensione omogenea Q = 3
fosse ammissibile per il problema, si avrebbe, analogamente al caso euclideo
in dimensione N = 3, una stima del tipo

Qλ(uε) ≤ S + O(
√

ε) − Cλ
√

ε + O(ε).

In questo caso, il “guadagno” dovuto a λ e la “perdita” dovuta al troncamento
potrebbero essere dello stesso ordine in ε, costringendo la stima Sλ < S a valere
soltanto per λ sufficientemente “grandi”.

4.3 Il problema critico per l’operatore ∆x + |x|2∆y

4.3.1 Alcune premesse

In questa sezione ci occupiamo di un problema critico per l’operatore L = ∆x+
|x|2∆y, analogo a quello studiato nella precedente sezione per il Laplaciano di
Kohn.

Sia Ω ⊂ RN = Rm
x ×Rn

y un aperto limitato intersecante l’insieme {x = 0}.
Si ricordi che domini di questo tipo hanno dimensione locale omogenea pari
alla dimensione omogenea dell’intero spazio Q = m + 2n.
Dunque, in virtù del Teorema 1.2.12, l’embedding

o

D1
X(Ω) ↪→ Lp(Ω)
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risulta essere compatto per p < 2∗ = 2Q/(Q− 2).
D’altra parte l’invarianza rispetto alle dilatazioni δλ del rapporto ‖Xu‖22

‖u‖2
2∗

causa

la mancanza di compattezza dell’embedding
o

D1
X(Ω) ↪→ L2∗(Ω).

Quindi per i domini Ω intersecanti l’insieme {x = 0} il problema



−Lu = u2∗−1 + λu in Ω

u > 0 in Ω
u = 0 su ∂Ω

(4.3.1)

risulta essere “critico” nel senso usuale delle immersioni di Sobolev.
Nel seguito affronteremo il problema dell’esistenza di soluzioni del problema
(4.3.1) in dimensioni basse, ove sono noti gli estremali della disuguaglianza di
Sobolev associata ad L (si vedano i risultati di [1], da noi richiamati nei Teo-
remi 3.3.1 e 3.3.2), ed avremo modo di rilevare la “criticità” della dimensione
omogenea Q = 3.
Cominciamo, intanto, col premettere una identità di tipo-Pohozaev per le
soluzioni del problema di Dirichlet semilineare associato ad L, che interverrà
nella trattazione del problema (4.3.1).
Analogamente al caso Heisenberg, l’omogeneità dell’operatore rispetto al grup-
po di dilatazioni

δλ(x, y) = (λx, λ2y), λ > 0

suggerisce di calcolare identità di Pohozaev utilizzando il campo vettoriale
generatore delle suddette dilatazioni, ovvero

Z =
m∑

j=1

xj
∂

∂xj
+

n∑

j=1

2yj
∂

∂yj
.

Nel seguito, denoteremo spesso con z = (x, y) la variabile complessiva in RN .
La classica identità di Pohozaev si riscrive in questo contesto come segue:

Teorema 4.3.1. Sia Ω ⊂ RN un aperto limitato, C1 a tratti e sia u ∈ C2(Ω)∩
C1(Ω) soluzione del problema

{ −Lu = f(u) in Ω
u = 0 su ∂Ω

ove f : R → R è una funzione continua t.c. f(0) = 0, con primitiva F (u) =∫ u
0 f(ν)dν.

Allora, u soddisfa l’identità:
∫

∂Ω
|Xu|2 < Z,N > dHN−1 =

∫

Ω

[
2QF (u)− (Q− 2)u f(u)

]
dz (4.3.2)
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ove Z è il campo vettoriale generatore delle dilatazioni δλ sopra definito, N
è la normale unitaria esterna a ∂Ω e dHN−1 denota la misura di Hausdorff
(N − 1)-dimensionale in RN .

La dimostrazione si deduce facilmente dalla seguente identità integrale, per
la cui dimostrazione vedasi [23, Teor.2.2].

Lemma 4.3.2. Sia Ω ⊂ RN un aperto limitato, C1 a tratti e sia u ∈ C2(Ω)∩
C1(Ω). Allora

2
∫

∂Ω
< A∇u,N > Zu dHN−1 −

∫

∂Ω
|Xu|2 < Z, N > dHN−1

= (2−Q)
∫

Ω
|Xu|2dz + 2

∫

Ω
ZuLudz

ove A è la matrice definita in (1.2.1) per cui risulta L = div(A∇u).

Dimostrazione del Teorema 4.3.1 Tenendo conto del fatto che u ≡ 0 su
∂Ω e quindi ∇u = −N |∇u|, si ha:

∫

∂Ω
< A∇u, N > Zu dHN−1 =

∫

∂Ω
< A∇u,N >< Z,∇u > dHN−1

=
∫

∂Ω
< A∇u,∇u >< Z,N > dHN−1 =

∫

∂Ω
|Xu|2 < Z,N > dHN−1

(4.3.3)

Inoltre, essendo u soluzione di −Lu = f(u), valgono le seguenti:
∫

Ω
|Xu|2 = −

∫

Ω
uLu =

∫

Ω
uf(u) ; (4.3.4)

∫

Ω
ZuLu = −

∫

Ω
Zuf(u) = −

∫

Ω
Z(F (u))

= −
∫

∂Ω
F (u)Z ·NdHN−1 +

∫

Ω
divZ F (u)

= Q

∫

Ω
F (u) ,

(4.3.5)

dove nell’ultima disuguaglianza si è usato il fatto che divZ = Q, mentre il
primo dei due integrali risulta nullo, essendo u = 0 su ∂Ω e F (0) = 0. Infine,
sostituendo le (4.3.3), (4.3.4) e (4.3.5) nell’identità del lemma precedente, si
ottiene la tesi. ¤
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Ora, in maniera perfettamente analoga a quanto visto per il caso Heisenberg,
introduciamo gli insiemi stellati rispetto alle dilatazioni δλ.

Sia Ω ⊂ RN , C1 a tratti, 0 ∈ Ω. L’insieme Ω si dirà δλ-stellato rispetto
all’origine se, denotata con N la normale unitaria esterna alla frontiera di Ω,
si ha che

Z ·N ≥ 0

in ogni punto regolare di ∂Ω.
Dal Teorema 4.3.1 segue, analogamente al caso Heisenberg, che il problema

(4.3.1) non ammette soluzioni non banali su domini δλ-strettamente stellati
per λ ≤ 0. Inoltre, la richiesta di soluzioni positive impone che sia λ < λ1.
Confineremo, dunque, la nostra analisi all’intervallo dei λ compresi tra 0 e λ1.

4.3.2 Criticità della dimensione omogenea Q = 3

Questa sezione è dedicata allo studio del problema critico (4.3.1) per l’oper-
atore L = ∆x + |x|2∆y in dimensioni basse. Si prova, in particolare, che la
dimensione omogenea Q = 3 è critica per il problema in esame e costituisce,
dunque, l’analogo della dimensione N = 3 per il Laplaciano euclideo.

Sia Ω un dominio limitato regolare in RN = Rm
x ×Rn

y , 0 ∈ Ω, e si consideri
il problema 



−Lu = u2∗−1 + λu in Ω

u > 0 in Ω
u = 0 su ∂Ω

(4.3.6)

dove 2∗ = 2Q
Q−2 e Q = m + 2n.

Il nostro risultato è il seguente:

Teorema 4.3.3. Sia Ω un aperto limitato regolare, 0 ∈ Ω. Allora

(i) Se Q = 4 (m = 2, n = 1), il problema (4.3.6) ammette almeno una

soluzione u ∈
o

D1
X(Ω) per 0 < λ < λ1.

(ii) Se Q = 3 (m = n = 1), il problema (4.3.6) ammette almeno una

soluzione u ∈
o

D1
X(Ω) per λ∗ < λ < λ1, dove

λ∗ = inf
ϕ∈

o

D1
X(Ω)

∫

Ω

|Xϕ(x, y)|2
d(x, y)2

dxdy

∫

Ω

ϕ2(x, y)
d(x, y)2

dxdy
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ove d(x, y) = (|x|4 + 4|y|2)1/4 denota la norma omogenea naturale asso-
ciata ad L.

(iii) Se Q = 3 e Ω è un aperto limitato δλ-strettamente stellato rispetto
all’origine, e se il problema (4.3.6) ammette soluzione, allora

λ ≥ λ0(Ω) > 0.

Dimostrazione della(i) Sia Q = 3, 4. Ragionando come in [7], dal lem-
ma di Lieb deduciamo che una condizione sufficiente per l’esistenza di una

soluzione di (4.3.6) per 0 < λ < λ1 è l’esistenza di una funzione u ∈
o

D1
X(Ω)

tale che

Qλ(u) =
‖Xu‖2

2 − λ‖u‖2
2

‖u‖2
2∗

< S.

A questo scopo, stimiamo Qλ(u) nelle funzioni della forma

uε(x, y) = ϕ(x, y)Uε(x, y)

dove Uε è una funzione estremale per la disuguaglianza di Sobolev, ovvero

Uε(x, y) =
Cε

((ε + |x|2)2 + 4|y|2)Q−2
4

, Cε = Cε
Q−2

4 , ε > 0

che risulti, per C opportuna, soluzione del problema limite −LU = U2∗−1 in
RN , e ϕ è una opportuna funzione di cut-off per Ω, i.e.

ϕ ∈ D∗(Ω) = {ϕ ∈ C∞
0 (Ω) | 0 ≤ ϕ ≤ 1, ϕ = 1 in un intorno di 0}.

Ora, posto Ũε = Uε
Cε

, un’attenta stima per ε → 0 conduce alla seguente
espansione asintotica:

Qλ(uε) = S + C2
ε

∫

Ω
(|Xϕ|2 − λϕ2)Ũ2

ε (x, y)dxdy + σ(ε, ϕ) (4.3.7)

dove σ(ε, ϕ) → 0 per ε → 0, per ogni fissata funzione regolare ϕ; inoltre, per
ϕ = const in un intorno di 0, risulta σ = o(C2

ε ).
Infatti, stimando ciascun termine in Qλ(uε), analogamente a quanto visto per
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il caso Heisenberg, risulta:

‖Xuε‖2
2 =

∫

Ω
ϕ2|XUε|2 + 2

∫

Ω
ϕUεXϕXUε +

∫

Ω
U2

ε |Xϕ|2

= −
∫

Ω
ϕ2UεLUε +

∫

Ω
U2

ε |Xϕ|2

= +
∫

Ω
ϕ2U2∗

ε +
∫

Ω
U2

ε |Xϕ|2

=
∫

RN

Uε
2∗ +

∫

Ω
Uε

2 |Xϕ|2 + α(ϕ, ε)

dove

α(ϕ, ε) = −
∫

ΩC

Uε
2∗ +

∫

Ω
(ϕ2 − 1)Uε

2∗ .

e

‖uε‖2
2∗ = (

∫

Ω
|Uε|2∗ +

∫

Ω
(ϕ2∗ − 1) Uε

2∗)2/2∗

= (
∫

RN

|Uε|2∗ + β(ϕ, ε))2/2∗

dove

β(ϕ, ε) = −
∫

ΩC

Uε
2∗ +

∫

Ω
(ϕ2∗ − 1) Uε

2∗

da cui

Qλ(uε) =

∫

RN

Uε
2∗ + C2

ε

∫

Ω
(|Xϕ|2 − λϕ2)Ũ2

ε (x, y)dxdy + α(ε, ϕ)
(∫

RN

U2∗
ε + β(ϕ, ε)

)2/2∗ (4.3.8)

Ora, ricordando che

S =

∫
|XUε|2

(∫
U2∗

ε

)2/2∗ =

∫
U2∗

ε

(∫
U2∗

ε

)2/2∗ ,

dalla (4.3.8) segue che Qλ(uε) < S per ε → 0, se entrambe le seguenti
condizioni si verificano, per ε → 0:
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(a) C2
ε

∫

Ω
(|Xϕ|2 − λϕ2)Ũ2

ε (x, y)dxdy < 0;

(b) α(ε, ϕ), β(ε, ϕ) = o

(
C2

ε

∫

Ω
(|Xϕ|2 − λϕ2)Ũ2

ε (x, y)dxdy

)
.

Ora, se ϕ ∈ D∗(Ω), si verifica direttamente che α(ε, ϕ), β(ε, ϕ) = O(εQ/2), da
cui la (b), ricordando che C2

ε = Cε(Q−2)/2, e quindi la (4.3.7). Infatti, essendo
ϕ = 1 in un intorno di 0 ∈ Ω, risulta

0 ≤
∫

(1− ϕ2)U2∗
ε ≤

∫

d(z)>R
U2∗

ε dz =
∫

d(z)> R√
ε

U2∗
1 dz

≤ C

∫

d(z)> R√
ε

1
d(z)2Q

dz = C

∫ +∞

R√
ε

ρQ−1

ρ2Q
dρ

= O(εQ/2)

e analogamente si stimano gli altri termini in α(ε, ϕ) e β(ε, ϕ).
Per quanto riguarda la (a), osserviamo che essa è soddisfatta per ogni λ > 0
se (e solo se) Ũε tende, per ε → 0, ad una funzione il cui quadrato non è
sommabile intorno a 0. Ma poichè

Ũε(z) → Γ(z) =
C

d(z)Q−2
,

e Γ non è L2-sommabile in 0 per Q ≥ 4, allora la (a) è verificata per Q ≥ 4 e,
quindi, risulta dimostrata la tesi (i).

Dimostrazione della (ii).

Si premette il seguente lemma:

Lemma 4.3.4. Sia Ω ⊂ R2 un dominio limitato, 0 ∈ Ω. Definiamo:

λ∗ = inf
ϕ∈

o

D1
X(Ω)

∫

Ω

|Xϕ(z)|2
d(z)2

dz

∫

Ω

ϕ2(z)
d(z)2

dz

(4.3.9)

Allora λ∗ è raggiunto da una funzione positiva ϕ ∈
o

D1
X(Ω), e risulta 0 < λ∗ <

λ1, dove λ1 è il più piccolo autovalore di −L.
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Dimostrazione. L’esistenza di un minimo ϕ in (4.3.9), cos̀ı come la posi-
tività di ϕ e la stima λ∗ > 0 si possono ottenere mediante argomenti standard
di minimizzazione in spazi di Sobolev con peso. Ne omettiamo qui i dettagli.
Facciamo, invece, vedere che λ∗ < λ1.

Denotata con u1 ∈
o

D1
X(Ω) una autofunzione (positiva) relativa a λ1, i.e.

−Lu1 = λ1u1, e posto ϕ(z) = d(z)u1(z), risulta per calcolo diretto:
∫

Ω

|Xϕ(z)|2
d(z)2

dz

∫

Ω

ϕ2(z)
d(z)2

dz

= λ1

da cui λ∗ ≤ λ1.
D’altra parte, osserviamo che z = 0 è un minimo interno (assoluto) per ϕ, il che
rende ϕ non compatibile con il ruolo di minimizzante nella (4.3.9). Dunque,
λ∗ < λ1. ¤

Proviamo, ora, la (ii).
Per Q = 3, la funzione Γ(z) = C

d(z)Q−2 è L2-sommabile in 0 e quindi, per

ε → 0, risulta
∫

Ω
(|Xϕ(z)|2 − λϕ2(z))Ũ2

ε (z)dz −→
∫

Ω
(|Xϕ(z)|2 − λϕ2(z))d(z)−2/(Q−2)dz

(4.3.10)
ove il secondo integrale è ovviamente positivo se λ è sufficientemente piccolo;
quindi non esiste alcuna possibilità di ottenere la (a) per valori piccoli di λ.
D’altra parte, se λ > λ∗, allora dal lemma precedente e da teoremi di den-
sità standard, si deduce che esiste ϕ ∈ D∗(Ω) che rende il secondo integrale in
(4.3.10) negativo, per cui la (a) è soddisfatta, insieme alla (b), essendo ϕ ≡ cost
in un intorno di 0; dunque la (ii) è soddisfatta.

Dimostrazione della (iii). Si adatterà la dimostrazione del Teorema 1.2”
in [7]. Per ipotesi, Ω è un aperto regolare di R2 (Q=3), δλ-strettamente stella-
to rispetto ad un punto dell’asse x = 0 che supponiamo per semplicità essere
l’origine. Stiamo, dunque, considerando il problema




−Lu = u5 + λu in Ω ⊂ R2, 0 ∈ Ω

u > 0 in Ω
u = 0 su ∂Ω

(4.3.11)
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per 0 < λ < λ1. Dall’identità di Pohozaev (4.3.2) nel caso particolare f(u) =
u2∗−1 + λu si ricava che, se u è una soluzione sufficientemente regolare del
problema (4.3.11), allora:

λ

∫

Ω
u2 =

1
2

∫

∂Ω
< A∇u,∇u >< Z, N > dσ

≥ a

∫

∂Ω
< A∇u,∇u > dσ = a

∫

∂Ω

(< A∇u,N >)2

< AN, N >
dσ

≥ b

∫

∂Ω
(< A∇u,N >)2 dσ ≥ c

(∫

∂Ω
< A∇u,N > dσ

)2

= c

(∫

Ω
div(A∇u)

)2

= c

(∫

Ω
Lu

)2

= c

(∫

Ω
|Lu|

)2

≥ d

∫

Ω
u2

ove a, b, c, d sono costanti positive, da cui la tesi.
Giustifichiamo alcuni dei precedenti passaggi. Nella prima disuguaglianza si è
usata la stretta stellatezza di Ω limitato. Poi, tenuto conto che su ∂Ω risulta

∇u = −N |∇u|, si è usata l’uguaglianza < A∇u,∇u >= (< A∇u,N >)2
< AN, N > su

∂Ω, ove < AN, N >6= 0 poichè 0 /∈ ∂Ω e < AN, N >≤ C essendo Ω limitato.
Infine nell’ultima disuguaglianza, posto Lu = f si è usata una stima della
norma L2 di u in termini della norma L1 di f , valida in dimensione omogenea
Q = 3. Ricaviamo qui di seguito questa stima, utilizzando la rappresentazione
delle soluzioni di Lax-Milgram del problema Lu = f in termini di funzioni
di Green approssimate. Come visto nel Capitolo 1, Prop. 1.2.24, se u è la

soluzione di Lu = f in
o

D1
X(Ω), allora risulta

uρ(ξ) := −
∫

Bρ(ξ)
u =

∫

Ω
Gρ(ξ, z)f(z)dz

ove Gρ
ξ = Gρ(ξ, ·) è la funzione di Green ρ-approssimata di Ω con polo in ξ.

La validità di stime Lq uniformi rispetto al polo ξ per la funzione Gρ
ξ , i.e.

sup
ξ∈Ω

‖Gρ(ξ, ·)‖q ≤ C, q <
Q

Q− 2
(4.3.12)
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consente di studiare le proprietà di integrabilità di uρ, adattando la dimostra-
zione del teorema di Young sulla convoluzione in RN .
Si prova, infatti, che se f ∈ ÃLp, p ≥ 1, posto:

1
r

=
1
p

+
1
q
− 1

risulta che uρ ∈ Lr(Ω) e ‖uρ‖r ≤ C‖f‖p.
Scrivendo, infatti, per f ∈ Lp

Gρ(ξ, z)|f(z)| = [
Gρ(ξ, z)q|f(z)|p]1/r|f(z)|p((1−1/q)Gρ(ξ, z)q(1−1/p)

dalla disuguaglianza di Hölder generalizzata si ottiene

|uρ(ξ)| ≤
(∫

Ω
Gρ(ξ, z)q|f(z)|pdz

)1/r (∫

Ω
Gρ(ξ, z)qdz

)1/p′ (∫

Ω
|f(z)|pdz

)1/q′

ed integrando questa disuguaglianza
(∫

Ω
|uρ(ξ)|rdξ

)1/r

≤ sup
ξ∈Ω

‖Gρ(ξ, ·)‖q

(∫

Ω
|f(z)|pdz

)1/p

da cui, tenendo conto che la stima (4.3.12) da noi dimostrata in (1.2.17) è
uniforme in ρ, e che uρ → u q.o. in Ω, si ha per convergenza dominata la
stima per u, i.e.

‖u‖Lr(Ω) ≤ C‖f‖Lp(Ω).

Dunque, tornando alla nostra dimostrazione, nel caso p = 1 si ha che u ∈ Lr

per r < Q
Q−2 , e quindi in dimensione Q = 3 si ritrova la stima

‖u‖2 ≤ C‖f‖1

sopra utilizzata. ¤

Osservazione 4.3.5. Data l’invarianza dell’operatore L rispetto alle traslazioni
euclidee nella variabile y, il precedente teorema vale per ogni aperto limitato
Ω intersecante la varietà {x = 0}.
Osservazione 4.3.6. Poichè le concentrazioni delle uε si possono realizzare
intorno ad ogni punto dell’asse {x = 0}, l’intervallo dei λ per cui il problema
ammette soluzioni in dimensione Q = 3 individuato nel punto (ii) si può
ulteriormente estendere a sinistra considerando l’estremo

λ∗ = inf
z0∈Ω∩{x=0}

λ∗(z0)
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dove

λ∗(z0) = λ∗(0, y0) = inf
ϕ∈

o

D1
X(Ω)

∫

Ω

|Xϕ(x, y)|2 dxdy

d(x, y − y0)2∫

Ω

ϕ2(x, y) dxdy

d(x, y − y0)2

per ogni punto z0 = (0, y0) ∈ Ω ∩ {x = 0}.
Riepilogando, abbiamo dimostrato che, se Ω è un aperto limitato regolare

di R2, strettamente δλ stellato rispetto all’origine, esistono due numeri positivi
λ0 e λ∗ in (0, λ1) tali che

(i) ∀λ ∈ [ 0, λ0 ] il problema (4.3.1) non ammette soluzioni;

(ii) ∀λ ∈ (λ∗, λ1) il problema (4.3.1) ammette soluzioni.

Resta aperto il problema di determinare una classe di domini, come le sfere
per il Laplaciano, sui quali il problema si possa descrivere completamente,
risultando λ0 = λ∗.
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Studi di Bari, Rapporto n. 26/2003.

[41] A. Loiudice, A note on Sobolev inequality on the Heisenberg group, in
preparazione.

[42] G. Lu, Existence and size estimates for the Green’s functions of differen-
tial operators constructed from degenerate vector fields, Comm. in P.D.E.
17, (1992), 1213-1251.



Bibliografia 119

[43] G. Lu, J. Wei, On a Sobolev inequality with remainder terms,
Proceedings of the A.M.S. 128, No. 1, (1999), 75-84.

[44] A. Malchiodi, F. Uguzzoni, A perturbation result for the Webster
scalar curvature problem on the CR sphere, J. Math. Pures Appl. 81
(2002), 983-997.

[45] R. O’Neil Convolution operators and L(p, q) spaces, Duke Math. J. 30
(1963), 129-142.

[46] P. Pucci, J. Serrin Critical exponents and critical dimensions for
polyharmonic operators, J. Math. Pures et Appl. 7 (1990), 55-83.

[47] O. Salinas, Harnack inequality and Green function for a certain class
of degenerate elliptic differential operators, Revista Mat. Iberoamericana,
vol. 7, No. 3 (1991), 313-349.

[48] E.M. Stein, Harmonic analysis: real variable methods, orthogonality
and oscillatory integrals, Princeton University Press, Princeton, N.J.,
1993.


