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Prefazione

Oggetto di questa tesi & lo studio di alcuni problemi nonlineari “critici” nel

senso delle immersioni di Sobolev per particolari classi di operatori subellittici.
In questo speciale contesto, si sono affrontati principalmente i due seguenti

temi:

1. la presenza di eventuali termini di resto nelle disuguaglianze di immersione

di tipo Sobolev relative ad imbedding non compatti;

2. il fenomeno delle dimensioni critiche alla Brezis-Nirenberg.

Si e indagato in particolare il ruolo assunto nei problemi di cui sopra dalla
soluzione fondamentale dell’operatore subellittico coinvolto.

La principale classe di operatori da noi considerata e costituita dai cosid-
detti Sublaplaciani su Gruppi di Carnot. Lo studio di questi operatori, che
intervengono in svariati campi della geometria e dell’analisi, ha ricevuto grande
impulso nell’ultimo decennio e riveste oggi sempre maggiore interesse.

A conclusione di questo ciclo di studi, desidero innanzitutto ringraziare
il Dipartimento di Matematica dell’Universita di Bologna e la sua Scuola di
Dottorato, per avermi piu volte ospitata in questi anni, consentendomi preziosi
approfondimenti legati alle mie ricerche.

Rivolgo un ringraziamento particolare al Prof. Ermanno Lanconelli, per la
sua squisita disponibilita, i suoi insegnamenti e I’interesse mostrato per questo
lavoro.

Desidero, infine, esprimere la mia piu sentita gratitudine al Prof. Enrico
Jannelli, relatore di questa tesi, per avermi seguita e sostenuta durante tutti
questi anni, infondendomi costantemente entusiasmo ed interesse.

Bari, Novembre 2003

Annunziata Loiudice
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Introduzione

Oggetto di questa tesi & lo studio di alcuni problemi legati a fenomeni di espo-
nente critico per alcune classi di operatori subellittici. Particolare attenzione
viene rivolta in questa analisi al ruolo assunto dalla soluzione fondamentale
degli operatori coinvolti.
Cominciamo, innanzitutto, col tracciare un quadro dei risultati noti nel con-
testo ellittico dai quali trae origine la nostra ricerca.

Nel celebre lavoro [7] del 1983, Brezis e Nirenberg studiavano il problema
semilineare critico:

—Au = ¥ 14+ inQ
u > 0 in Q (1)
u = 0 su 0N

ove Q & un aperto regolare di RV, N > 3 e 2* = % e l'esponente critico

per 'embedding di Sobolev H}(Q)) — LP. Essi mettevano in evidenza un
interessante fenomeno: le condizioni per l’esistenza di soluzioni del problema
(1) risultano sorprendentemente differenti quando N = 3 e quando, invece,
N > 4. Infatti, valgono i seguenti risultati:

Teorema A Se N > 4, allora il problema (1) ha almeno una soluzione
u € HE(Q) per 0 < A < Aq.

Teorema B Se N = 3, il problema (1) ha almeno una soluzione u € H} ()
per A < A < A1, dove Ay € un opportuno numero positivo; inoltre, se {1 ¢
strettamente stellato, esiste Ayws > 0 tale che il problema non ammette soluzione
per 0 < A < Ays.

Teorema C Se N =3 e ) ¢ una sfera, allora A, = %)\1 e il problema non ha
soluzione per A < \,.

Teorema D Se N = 3, esiste una costante C = C(2) tale che la disugua-
glianza di Sobolev puo essere migliorata come segue:

IVull3 > Sllull + Cllull; Vu e Hy(2) (2)
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dove S ¢ la miglior costante per l'immersione di Sobolev H}(2) C L%(€).

Questi risultati mostrano che la dimensione N = 3 gioca un ruolo partico-
lare per il problema (1). Infatti, se N > 4 il problema ha soluzione per ogni
A € (0,\1), mentre per N = 3 esistono domini di R? per i quali il problema
non ha soluzione per A\ in un opportuno intorno destro di 0. Secondo una
terminologia ormai consolidata, questo fatto si esprime dicendo che N = 3 &
una dimensione critica per il problema (1).

Infine, il Teorema D rivela un altro interessante fenomeno. Esso stabilisce
che la classica disuguaglianza di Sobolev con costante ottimale S puo essere
“migliorata” su aperti limitati in dimensione 3; inoltre, come conseguenza del
Teorema A, non ¢ difficile provare che la (2) non vale per N > 4, quindi la
dimensione 3 gioca nuovamente un ruolo speciale.

A partire dal lavoro [7], i Teoremi A, B, C da una parte, e il Teorema D dal-
I’altra, sono stati oggetto di numerose generalizzazioni.

Per quanto riguarda il problema delle dimensioni critiche, esso e stato affronta-
to in svariati contesti ellittici: si veda ad esempio [46], [13], [31]. Per quanto
riguarda il Teorema D, esso ¢ stato, innanzitutto, perfezionato mediante 1’uso
delle norme deboli ed esteso a tutte le dimensioni da Brezis e Lieb [6] nel
seguente modo:

Teorema D1 Se Q C RY ¢ un aperto limitato, esiste una costante C =
C(2) > 0 tale che

IVull3 = Slulls. + Cllul®y_,, Vu€ Hy()

ove || - ||lgw denota la norma Li-debole.

Il teorema precedente ¢ stato, poi, doppiamente generalizzato. Da una parte,
I’esponente di sommabilita 2 e stato sostituito da 1 < p < N; dall’altra,
sono stati considerati spazi di Sobolev di ordine k. Le disuguaglianze, dovute
rispettivamente a Egnell-Pacella-Tricarico [14] e a Gazzola-Gruneau [28], sono
le seguenti:

M=)y, e wiee),

[Vaul[} > Sp”“”ﬁ* + Cllullf, Vg:0<g< N_p

lul = Sllul. + Cllul s, Yu e HE@).
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Le disuguaglianze precedenti hanno in comune alcune caratteristiche. Esse
possono essere riscritte come segue

J(u) = Slulf + C(Q)[ul

ove p & l'esponente di sommabilita dello spazio di Sobolev W'(Q), J(u) & il
funzionale p-omogeneo della norma delle derivate, |ul. € la norma nello spazio
L7 dove 'embedding di Sobolev & continuo ma non compatto, C(Q) ¢ una
costante positiva, C(t2) — 0 per t — oo, ed infine, ||u|| € una norma L" (forte
o debole), con r < ¢*.

Un’analisi attenta dei risultati presenti in letteratura riguardo alle proble-
matiche sopra richiamate ha portato in [31] e [32] alla formulazione di due
principi unificanti, che interpretano il fenomeno delle dimensioni critiche e la
presenza di termini di resto nella disuguaglianza di immersione di Sobolev alla
luce delle proprieta di sommabilita della soluzione fondamentale dell’operatore
ellittico coinvolto. I due principi sono i seguenti:

Principio 1 Un operatore ellittico L si comporta “criticamente” in dimen-
sione N se e solo se L ha almeno una funzione di Green G(xg,x) nello spazio
L? (RM).

loc
Principio 2 La disuguaglianza di Sobolev
J(u) = Slulf

puo essere migliorata aggiungendo ogni norma che sia localmente finita per la
soluzione fondamentale dell’operatore associato.

Dunque, combinando i principi 1 e 2, si deduce che un operatore lineare el-
littico L si comporta criticamente se e solo se la disuguaglianza di Sobolev
associata ammette la norma L? come termine di resto.

In questo quadro di risultati si innesta la nostra ricerca.
Il nostro obiettivo e stato quello di indagare la validita dei principi sopra enun-
ciati in un contesto completamente differente, non ellittico bensi subellittico.
Ricordiamo che un operatore differenziale L del secondo ordine formalmente
autoaggiunto si dice subellittico di ordine € (0 < & < 1) nel punto € RY se
esiste un intorno V' di = e una costante C' > 0 tale che, per ogni u € C§°(V),
vale la stima:
lullFe < CU(Lu,w)| + [[ul3)
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ove || - ||z= € la norma nello spazio di Sobolev classico di ordine €.

La principale classe di operatori da noi esaminata ¢ costituita dai cosiddetti
Sublaplaciani su gruppi di Lie stratificati, o Gruppi di Carnot. Si tratta di
un’ampia classe di operatori differenziali del secondo ordine, invarianti rispetto
alle traslazioni a sinistra su particolari gruppi di Lie e omogenei di grado due
rispetto alle dilatazioni naturali sul gruppo. Esempio ben noto e il Laplaciano
di Kohn sul Gruppo di Heisenberg H".

Questi operatori costituiscono una sottoclasse particolarmente interessante
degli operatori ipoellittici introdotti da Hormander nel 1967.

Lo studio dei sublaplaciani e delle equazioni alle derivate parziali sub-ellittiche
ad essi associate riveste, oggi, un ruolo fondamentale in svariati campi della
geometria e dell’analisi.

La nostra attenzione, oltre che ai sublaplaciani, e rivolta ad un’altra classe
di operatori del secondo ordine, il cui esempio modello & costituito dall’ope-
ratore £ = A, + |[2[**A,, con @ > 0. Quest’ultimo & anch’esso omogeneo
di grado due rispetto ad una famiglia di dilatazioni anisotrope su RY, ma
non risulta invariante rispetto ad alcuna operazione di gruppo su RY. Esso
rientra nella classe di operatori subellittici introdotta e studiata da Franchi e
Lanconelli in [19],]20].

Come si potra osservare nel seguito, una caratteristica particolarmente in-
teressante dell’analisi degli operatori sinora citati sta nel fatto che il ruolo
della dimensione spaziale ¢ assunto dalla dimensione omogenea dello spazio
ambiente rispetto alle dilatazioni.

Il lavoro di tesi si compone come segue.

Il capitolo 1 & dedicato alla descrizione delle principali proprieta degli
operatori da noi esaminati. Nella prima parte si presentano i sublaplaciani e
la ricca struttura algebrico-geometrica ad essi associata.

Nella seconda, invece, si introduce 'operatore £ = A, + ]a:|20‘Ay e si descrive
la particolare geometria generata dai campi vettoriali che realizzano £ come
“somma di quadrati”. Per tali campi si ricava una disuguaglianza di Sobolev
globale, come conseguenza dei teoremi di embedding per campi non regolari
dimostrati da Franchi e Lanconelli in [21].

Un’ampia sezione viene poi dedicata allo studio dell’esistenza e delle proprie-
ta di integrabilita delle funzioni di Green di £, ottenute col metodo delle
cosiddette funzioni di Green approssimate. Queste stime costituiscono un in-
grediente fondamentale per le dimostrazioni del capitolo 3.
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Il capitolo 2 contiene il risultato principale da noi ottenuto in quanto a
generalita, ovvero ’estensione della disuguaglianza di Brezis-Lieb richiamata
nel Teorema D1 al contesto astratto dei Sublaplaciani. Si e, infatti, provato
che se G & un gruppo di Carnot di dimensione omogenea @, vale il seguente:

Teorema D2 Se Q C G ¢ un aperto limitato, esiste una costante positiva
C = C(R) tale che

IVull3 > Slull3- + CIIUHQQ%M Yu € S5(Q). 3)

ove 2F = Qz—% ed S ¢ la miglior costante per ’embedding di Sobolev-Folland-
Stein.

Si &, inoltre, dimostrata una disuguaglianza piu forte della (3), recante come
termine di resto la norma ||VGu||%yw.
Tenuto conto della particolare forr%a assunta dalla soluzione fondamentale dei
Sublaplaciani (si veda la sezione 1.1), la disuguaglianza (3) si rivela in perfet-
to accordo col Principio 2. Inoltre, la (3) suggerisce che 'unica dimensione
critica per un sublaplaciano possa essere la dimensione omogenea ) = 3. Ma
poiche 'unico gruppo di Carnot di dimensione 3 ¢ banalmente (R3,+) con
il Laplaciano classico come sublaplaciano canonico, si puo intuire che I'unico
sublaplaciano a presentare il fenomeno delle dimensioni critiche sia il Lapla-
ciano euclideo.

Questa deduzione ¢ supportata dal fatto che il pit semplice gruppo di Carnot
non abeliano di passo 2, ovvero il gruppo di Heisenberg H"”, che ha dimensione
omogenea () = 2n + 2 > 4, non presenta dimensioni critiche, come dimostrato
da Citti in [12] (si veda la Sezione 4.2).

Una sezione a se stante del capitolo viene dedicata al caso particolare del grup-
po di Heisenberg H", ove la conoscenza esplicita dei minimizzanti di Sobolev
consente di approfondire la nostra analisi. In particolare, dimostriamo che la
disuguaglianza di Sobolev per il gradiente di Heisenberg puo essere miglio-
rata non solo sui limitati, ma sull’intero spazio, in termini della “distanza”
dall’insieme dei minimizzanti. Questo nostro risultato estende al gruppo di
Heisenberg il risultato ottenuto in ambito euclideo da Bianchi ed Egnell in [3].

Nel capitolo 3, in analogia con quanto dimostrato per i sublaplaciani, ci
si € chiesto se fosse possibile ottenere risultati simili per altri operatori subel-
littici. Si e, dunque, preso in esame 'operatore £ = A, + |x!20‘Ay, con a > 0.
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Il tentativo di estendere i risultati raggiunti a questo tipo di operatore ha
presentato difficolta nuove, dovute alla mancanza di invarianza rispetto a
traslazioni di gruppo. Ciononostante, si € dimostrato ’analogo della disu-
guaglianza (3) per tutti gli aperti limitati @ C RY intersecanti I'insieme di
degenerazione dell’operatore, ovvero l'insieme {z = 0}. La dimostrazione ha
richiesto un’attenta analisi delle proprieta di sommabilita LP-deboli uniformi
rispetto al polo delle funzioni di Green di L.

11 capitolo 4, infine, ¢ dedicato allo studio del problemo critico (1) per gli
operatori Ayn e £ = A, + |z|?A,. Nella prima parte, si riportano i risultati
noti nel caso del laplaciano di Kohn Apyn, attestanti ’assenza di dimensioni
critiche per questo operatore. Nella seconda, invece, formuliamo il problema
critico per l'operatore £ = A, + |z|2?A, e presentiamo alcuni nostri risultati,
che rivelano la criticita della dimensione omogenea () = 3. Mediante un argo-
mento di tipo Pohozaev si individua, infatti, una classe di domini limitati in
dimensione omogenea ) = 3 per i quali ’analogo del problema (1) per £ non
ammette soluzione per A sufficientemente piccoli.

In relazione ai principi 1 e 2 sopra enunciati, i risultati da noi ottenuti si
possono sintetizzare nelle due tabelle seguenti:

OPERATORE G(0,¢) L? -SOMMABILITA | DIMENSIONI CRITICHE
di G(0,¢)
_A _C di
Hn ‘§| 0—2 nessuna dim. nessuna
—(Ag+[2PA,) | oy Q<4 Q=3
d(€)




Introduzione 7
OPERATORE G(0,¢) SOMMABILITA TERMINE di RESTO
OTTIMALE di G(0,§) OTTIMALE
~Ac s La., 112,
—(Ag + |2A,) W La., 1112,

Come si puo notare, vi € una perfetta corrispondenza tra le ultime due colonne
di ciascuna tabella, proprio come osservato in [31] e [32] nel caso degli opera-

tori ellittici.

Questa nostra analisi, dunque, conferma la validitd dei principi 1 e 2 nei
casi subellittici esaminati ed evidenzia anche in questo contesto il ruolo
chiave assunto dalle proprieta di sommabilita della soluzione fondamentale nei
problemi caratterizzati da mancanza di compattezza.







Capitolo 1

Alcuni operatori subellittici e
loro soluzioni fondamentali

Introduzione

In questo capitolo presentiamo gli operatori che saranno oggetto di indagine
nella tesi e ne studiamo alcune proprieta.

La prima parte del capitolo e dedicata ai cosiddetti Sublaplaciani su gruppi
di Lie stratificati, o “Gruppi di Carnot”.

Questi operatori, invarianti per traslazione su particolari Gruppi di Lie non
Abeliani e omogenei di grado due rispetto alle dilatazioni naturali sul tali grup-
pi, costituiscono una sottoclasse particolarmente interessante degli operatori
introdotti da Hormander nel 1967.

Piu precisamente, i Sublaplaciani svolgono nell’ambito degli operatori ellittico-
degeneri di tipo Hormander un ruolo analogo a quello ricoperto nel contesto
ellittico dagli operatori a coefficienti costanti, invarianti per traslazione sul
gruppo di Lie Abeliano RY. Esempio ben noto di sublaplaciano & il cosiddetto
Laplaciano di Kohn Apyr sul Gruppo di Heisenberg H".

Illustreremo brevemente le principali caratteristiche di questi operatori e la
ricca struttura algebrico-geometrica ad essi associata.

Nella seconda parte del capitolo ci occupiamo, invece, di un’altra classe di
operatori subellittici, introdotti e studiati da Franchi e Lanconelli in [19], [20]
e [21], il cui esempio modello ¢ costituito dall’operatore £ = A, + |z[**A,,
con o > 0.

A differenza dei sublaplaciani, questi operatori non sono invarianti rispetto
a traslazioni di gruppo e non sono in generale di tipo Hormander, perche i
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campi X; che li realizzano come “somme di quadrati” non sono sufficiente-
mente regolari affincheé la condizione sul rango sia formulabile. Nonostante
cio, le “buone” proprieta della metrica di controllo associata ai campi ci con-
sentono anche in questo caso un’analisi soddisfacente delle problematiche in
esame.

Si riesce, ad esempio, ad ottenere un quadro completo delle disuguaglianze di
tipo-Sobolev associate a questi campi.

A tal proposito, si fa vedere in particolare come una disuguaglianza di Sobolev
globale si possa ricavare dai risultati dimostrati in [21], facendo uso di teoremi
di embedding per spazi di Sobolev ordinari anisotropi.

Un’ampia sezione viene poi dedicata al delicato studio dell’esistenza e delle
proprieta di sommabilita delle funzioni di Green di tali operatori. Questi
risultati vengono ottenuti stimando preliminarmente le cosiddette funzioni di
Green approssimate. Le stime LP-deboli uniformi rispetto al polo per le fun-
zioni di Green di £ provate in questo capitolo costituiranno un ingrediente
fondamentale per le dimostrazioni del Capitolo 3.

1.1 Sublaplaciani su gruppi di Lie stratificati

Prima di introdurre la definizione di gruppo di Lie stratificato, o “Gruppo
di Carnot”, richiamiamo per comodita di lettura alcune nozioni riguardanti i
gruppi e le algebre di Lie, che ricorreranno nel seguito.

Sia h un’algebra di Lie e denotiamo con [-, -] Poperazione di bracket su b.
Se V e W sono due sottoinsiemi di §, indicheremo con [V, W] il seguente
sottospazio di h:

[V, W] := span{ [v,w] | v € V;w € W}.

Ricordiamo che un’algebra di Lie si dice nilpotente di passo m se, definiti
induttivamente i seguenti ideali di h:

bay="h, by =1,by-1)]
risulta b, 1) = {0} e ) # {0}
Sia, ora, M una varieta differenziabile N-dimensionale e si consideri ’alge-

bra di Lie dei campi vettoriali su M, dotata dell’usuale operazione di commu-
tazione, definita per ogni coppia di campi X e Y come:

(X, Y]f =Y(X[) = X(Y[)
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per ogni funzione regolare f su M.
Richiamiamo la definizione di algebra di Lie generata da una famiglia di campi
vettoriali e relativo rango.

Definizione 1.1.1. Data una famiglia di campi vettoriali X1, ..., X, su una
varieta N-dimensionale M, denoteremo con Lie{X1,...,Xm} e chiameremo
algebra di Lie generata da X1, ..., X,, lo spazio vettoriale generato dai campi
X1,..., Xy e dat loro commutatori di qualsiast ordine.

Dunque, un campo Z appartiene a Lie{X1,..., X} se e soltanto se Z &
combinazione lineare finita di termini della forma

[Xi [Xizv ) [Xikquikm

conkeNel<i,<mperl<h<k.

Per ogni fissato x € M, 'insieme
V(z) :={Z(x)| Z € Lie{X1,..., Xm}}
& un sottospazio vettoriale di RY. Si pone:
rango Lie{ X1, ..., X, Hz) = dimV (z).

Nel caso in cui la varieta sia un gruppo di Lie (G, o), allora 'insieme dei campi
vettoriali invarianti a sinistra rispetto all’operazione di gruppo su G costituisce
una sottoalgebra dell’algebra dei campi vettoriali su G, detta 1'algebra di Lie
di G.

Dopo questi brevi richiami, passiamo a dare la definizione classica astratta
di gruppo di Carnot presente in letteratura.

Definizione 1.1.2. Un Gruppo di Carnot (o gruppo stratificato) H é un
gruppo di Lie conmesso e semplicemente connesso la cui algebra di Lie b
ammette una stratificazione, ovvero una decomposizione diretta del tipo:

h=EPV;
j=1

ove gli spazi vettoriali V; verificano le sequenti condizioni:

[Vlvv_vjfl] = VVJ per 2 <5 <r; [‘/Yla‘/;“] = {0}
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Dunque, in particolare, h e nilpotente di passo r.
Assegnata una qualunque base X = (X1,...,X,,) del primo strato V; dell’al-
gebra b, 'operatore differenziale

m

L:ZX}

J=1

¢ detto il Sublaplaciano su H associato ad X.

Introdurremo, ora, una definizione di gruppo di Carnot piu operativa, che
viene piu spesso usata in un contesto analitico e che noi adotteremo per il
seguito.

Innanzitutto diamo la definizione di gruppo di Lie omogeneo (si veda ad es.
[48], cap. XIIL5).

Sia G = (R™, o) un gruppo di Lie su R". Supponiamo, inoltre, che su RY
sia data una famiglia di dilatazioni della seguente forma:

Ox(x) = on(zM, 2@ oo sy = (X M Ne2 @) Lo xer gy (1.1.1)

ove 2 € RNiperi = 1,....,r e N+ Ny + ...+ N, = N e gli esponenti
ai, ..., a, sono numeri reali strettamente positivi, e che le dilatazioni §) siano
automorfismi del gruppo G = (RY, o), ovvero che

Mz oy) = (6xx) o (dry) Vr,y€G.

Allora, la terna G = (R, 0,6,) si dird un gruppo di Lie omogenceo.
Il numero

.
Q= Z%Nj
j=1

naturalmente legato alle dilatazioni {0}xsg, essendo A? lo jacobiano della
mappa
r+——0\(zx) VzeG

e detta dimensione omogenea del gruppo G e gioca il ruolo della dimensione
topologica in questo contesto. In particolare osserviamo che, denotata con |E)|
la misura di Lebesgue di un qualunque insieme misurabile E, risulta:

[\ ()] = A°|E.
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Riguardo all’operazione di gruppo o su un gruppo di Lie omogeneo, si osserva
facilmente che I’elemento neutro per o ¢ sempre costituito dallo zero di R¥.
Infatti, poiche ogni §y € un automorfismo di gruppo, se e & lo zero di G deve
risultare dy(e) = e VA > 0. Cio prova che e = (0,...,0).

Diamo, ora, la definizione di Gruppo di Carnot che noi adotteremo e che
risulta equivalente alla definizione classica astratta a meno di isomorfismi (per
una dimostrazione dettagliata di questa equivalenza si veda ad es. [4]).

Definizione 1.1.3. (GRUPPO DI CARNOT). Sia G = (RY,0) un gruppo di
Lie omogeneo dotato di dilatazioni della forma:

5}\(;5(1)’56(2)7... 7:,;(7’)) — (Agg(l)’)\? 2@ AT x(r)) (1.1.2)

dove () ¢ RNi peri=1,....,re Ny+ No+...+ N, = N.

Denotata con g l'algebra di Lie di G, per i =1,..., N1 sia X; 'unico campo
vettoriale di g che coincide con la derivata parziale B%i nell’origine. Suppo-
niamo, ora, che valga la sequente ipotesi:

(H) rango Lie{X;,...,Xn,}(x) =N VzeG.
Allora, G = (R, 0) si dira un Gruppo di Carnot di passo r con Ny generatori.

Dunque, in breve, un gruppo di Carnot & un particolare gruppo di Lie
omogeneo su RY con I'ipotesi aggiuntiva (H).
La dimensione omogenea di un gruppo di Carnot e il numero

T

Q=) iN;.

j=1
L’operatore differenziale del secondo ordine

Ny

A=) X}
i=1

¢ chiamato il Sublaplaciano canonico su G, mentre un sublaplaciano su G ¢

ogni operatore della forma
Ny
L= v
i=1

con Yi,...,Yn, base di span{X1,...,Xn,}
Osserviamo che I'operatore £ € invariante rispetto alle traslazioni del gruppo,
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ovvero denotata con 7, : y +— x oy la traslazione a sinistra di elemento x,
risulta

L(uoTy) =LuoTy
per ogni z € RY e u € C°(RY).
L risulta, inoltre, omogeneo di grado 2 rispetto alle dilatazioni del gruppo,
ovvero

L(uody)=NLuosy VA>D0.

Si noti che 'ipotesi (H) equivale a richiedere che 'algebra di Lie generata
da Xi,..., Xp, coincida con l'algebra di Lie g dei campi invarianti a sinistra
su G.

Osservazione 1.1.4. I campi “canonici” Xi,...,Xy,, ovvero i campi coin-
. . Y e . . . . TR ) .
cidenti nell’origine rispettivamente con le derivate parziali Do Dayy S
ottengono direttamente dalle prime N7 colonne della matrice jacobiana delle
traslazioni calcolata in 0. Basta, infatti, tener conto che, denotata con 7,
la traslazione a sinistra di elemento x, vale la seguente caratterizzazione dei

campi invarianti a sinistra su G:
Xege X(x)=J,,0)-X(0) VeeG

dove X (x) denota il vettore dei coefficienti del campo X = Zf\il Xi(:c)aax_.

Osservazione 1.1.5. L’ipotesi (H) implica che ogni sublaplaciano £ ¢ ipoel-
littico, in virtu del famoso teorema sulla ipoellitticita di Hormander [30].
Quest’ultimo, infatti, afferma che se X1, ..., X}, sono campi C*° su un aperto
QdiRN e

rango Lie{X1,...,Xpn}(x) =N VzeQ

allora operatore £ = > " Xz-2 ¢ ipoellittico nell’aperto €2, ovvero se u ¢ una
distribuzione su (2 tale che Lu € C*°(Q), allora u € C*(Q).

Esempi. Il piu semplice esempio di gruppo di Carnot e ovviamente G =
(RN, 4) con le usuali dilatazioni isotrope 6y(z) = Az. In questo caso il clas-
sico operatore di Laplace A ¢ il sublaplaciano canonico su G e la dimensione
omogenea () coincide con N.

L’esempio piu semplice di gruppo di Carnot non abeliano ¢ il gruppo di
Heisenberg H" = (R?"*+! o), ove la legge di gruppo o ¢ definita come segue.
Denotati con

E=(z,t) = (z,y,t) = (T1, ..., Ty Y1y - - Yn, 1) (1.1.3)
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i punti di R?"*+1 la legge o opera nel modo seguente:
ol =+ t+t +2(<2,y>—<z,y >)) (1.1.4)

dove <, > denota il prodotto interno in R™.
H"™ & un gruppo omogeneo con le dilatazioni

(&) = (A2, M%), A >0 (1.1.5)

per cui la dimensione omogenea dello spazio risulta essere ) = 2n + 2.
Calcoliamo, ora, i campi invarianti a sinistra su H" e coincidenti nell’origine
con le prime 2n derivate parziali 8%1-' Essendo la matrice jacobiana delle
traslazioni calcolata in 0 la seguente:

I, 0 0
Jr(0) = 0 I, O
2y -2z 1

dalle prime 2n colonne si ottengono i campi:

Xj:(?wj—i—Qyjé?t, i=1....n

: (1.1.6)
Yj=0y, —2x;0, j=1,...,n

e poiche
(X, Y3] = —46; 1 O, (1.1.7)

risulta
rango Lie{X1,..., X, Y1,..., Y, } (&) =2n+1
in ogni punto ¢ € R+, Dunque, H" ¢ un gruppo di Carnot di passo due con

2n generatori, e l'operatore

n

Apn =) (X7 +Y7) (1.1.8)
j=1

e il suo Sublaplaciano canonico, noto anche come Laplaciano di Kohn.

Si noti che le relazioni (1.1.7) corrispondono alle relazioni di commutazione
canoniche tra momento e posizione nella meccanica quantistica. Infatti, il
gruppo di Heisenberg fu introdotto da Weyl proprio nella sua formulazione
matematica della meccanica quantistica (si veda ad es. [48]).
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Elenchiamo, ora, alcune proprieta dell’operazione di gruppo o su un gene-
rico gruppo di Carnot G, direttamente derivanti dalla definizione.
Dalla sola ipotesi di omogeneita del gruppo G = (R¥, o) si deduce che 1'ope-
razione di gruppo & polinomiale ed ha una ben determinata forma esplicita.
Infatti, se (RY,0,dy) ¢ un gruppo di Lie omogeneo, posto, in accordo con le
notazioni (1.1.1):

xX o y — ((m e} y)(l), (:L‘ o y)(g)’ ey (l‘ [¢] y)(r)> (119)
risulta:
(1) — 1) 4 @)
(@oy) N . (1.1.10)
(x o y)(l) =20 4 y(l) + Q(l) (z,9) 2<i<r
dove

1. QY dipende al pitt dalle variabili z(, ..., z0=D ¢ y() . (=D,
2. le componenti di Q¥ sono polinomi misti nelle variabili z ed y;
3. QU (6, 6xy) = NQW(z,y).
Per una dimostrazione del risultato appena enunciato si veda ad esempio [48],

cap. XIIL5.

Dalla particolare forma dell’operazione di gruppo su G, si deduce ad esem-
pio l'invarianza della misura di Lebesgue rispetto alle traslazioni a sinistra
e a destra sul gruppo. Infatti, se consideriamo, ad esempio, le traslazioni a
sinistra, ovvero mappe della forma

Te Y —=>TOY

con z € G fissato, e ne calcoliamo la matrice Jacobiana, otteniamo una matrice
triangolare inferiore della seguente forma:

In, O 0

. * I]'\f2 0
0

* ... % In,

Il suo determinante ¢ 1, il che dimostra che la misura di Lebesgue dz € in-
variante rispetto alle traslazioni a sinistra. Analogamente si vede che dx e
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invariante rispetto alle traslazioni a destra. Dunque, la misura di Lebesgue &
una misura di Haar su G.

Richiamiamo, ora, la definizione di norma omogenea | - | su un gruppo
omogeneo G.

Definizione 1.1.6. Si definisce norma omogenea su G = (R, o) ogni fun-

zione continua | - | : RY — [0, +oo[, regolare fuori dall’origine e verificante le
condizioni:

i) 16x(x)] = Alz]

ii) |27t = ||

iii) |xz| =0 se e solo se x =0

Dalla definizione segue, inoltre, che ogni norma omogenea soddisfa la
seguente disuguaglianza pseudo-triangolare

lzoyl < B(lz| +y]) Vr,yeG

ove 3 € una opportuna costante, 3 > 1.
Quindi, posto d(z,y) = |y~! o 2|, risulta che

d(z,y) < B(d(z,2) +d(z,y)) Va,y,2€G
Inoltre, poiche |z| = |2 71|, risulta anche

d(z,y) = d(y, )

Chiameremo d-sfere su G le sfere definite mediante la “pseudometrica” d,
ovvero gli insiemi

Bd(xur) = {y €G | d(iU,y) < T}
Poiche la misura di Lebesgue & una misura di Haar su G, si ha che
|Ba(,7)| = [B4(0,)| = 7?|B4(0,1)].

Ricordiamo, inoltre, che V0 < r; < ry e per ogni funzione misurabile
f:R — R, vale la seguente formula per le coordinate polari:

/ f(d(@) dz = Q|By(0,1)] / " F(0) 0%V dp,
Bd(O,’I‘Q)\Bd(O,Tl) 71

se almeno uno dei due integrali esiste.
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La soluzione fondamentale. Una notevole proprieta dei sublaplaciani su
gruppi di Carnot e l'esistenza di una soluzione fondamentale. Vale, infatti, il
seguente teorema, per la cui dimostrazione si veda [16], [22].

Teorema 1.1.7. Sia G ¢ un gruppo di Carnot di dimensione omogenea @Q > 3

ed L un sublaplaciano su G. Allora esiste una norma omogenea | -| su G tale

che la funzione

Co

r = —
x(y) ’LL‘_I o y‘Q_Q

e una soluzione fondamentale di L con polo in x, dove Cg € una opportuna

costante positiva.

Espressione radiale dei Sublaplaciani. Sia £ un sublaplaciano su un
gruppo di Carnot G e denotiamo con d la norma omogenea su G prevista dal
teorema precedente. Vediamo qual € I'espressione assunta da £ su funzioni
“radiali”, ovvero dipendenti dalla sola d. Sia f : R — R una funzione regolare
e sia u(z) = f(d(z)). Allora, per calcolo diretto si ha

Lu= f"(d)|Xd* + f(d)Ld (1.1.11)

e poiche T ~ d2~? ¢ la soluzione fondamentale di £, calcolando la precedente
in f(d) = d*>~¥ si ha:

0=Ld>?=02-Q)(1-Q)d ?Xd? + (2—Q)d""%Ld, d#0.

da cul si ottiene

Ld = (Q —1)d | Xd|?

per cui, sostituendo nella (1.1.11), si ha la seguente espressione

i@ = @)+ Y @)

ove si e posto
¥ = |Xd|.

Si osservi che la funzione ¥ & omogenea di grado 0 rispetto alle dilatazioni del
gruppo e quindi limitata in G. Nel caso euclideo la densita ¢ & identicamente
uguale a 1, e quindi il laplaciano ordinario trasforma funzioni radiali in funzioni
radiali. Questo, invece, non si verifica nel caso dei sublaplaciani. Ad esempio,
nel caso del gruppo di Heisenberg H", descritto nel paragrafo dedicato agli
esempi e con le notazioni ivi introdotte, la densita 1 ha simmetria “cilindrica”,
risultando ¢ = |2|?/d>.
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1.2 L’operatore £ = A, + |z[**A,, a > 0

Consideriamo, ora, un’altra classe di operatori differenziali del secondo ordine
differente da quella dei sublaplaciani, il cui esempio modello ¢ costituito dal
seguente operatore, largamente studiato in letteratura, definito su RV = R x
Ry da

L=A,+ |x]2aAy, a > 0.

L & un operatore ellittico sull’insieme = # 0 e degenera sulla varieta {0} x R".
Questo operatore rientra nell’ampia classe di operatori subellittici introdotta
e studiata da Franchi e Lanconelli in [19], [20], [21].

L’operatore £, analogamente ai sublaplaciani, possiede una naturale famiglia
di dilatazioni anisotrope, ovvero:

oa(z,y) = Az, \*Tly), A >0. (1.2.1)

Si verifica facilmente che £ risulta omogeneo di grado due rispetto a {dx} x>0,
ie.

Loy =MoL

Lo jacobiano delle dilatazioni &y & pari a A?, dove
Q=m+ (a+1)n.
e quindi, denotata con dxdy la misura di Lebesgue su R™*", si ha che
dody(z,y) = A9 ddy.

Come vedremo, il numero Q, ovvero la dimensione omogenea di RY rispetto
alle dilatazioni d)y, gioca il ruolo di una dimensione spaziale globale nell’analisi
dell’operatore L.

Osserviamo esplicitamente che questo operatore, omogeneo al pari dei sub-
laplaciani rispetto ad una famiglia di dilatazioni anisotrope, non risulta in-
variante rispetto ad alcuna legge di gruppo su RY.

Si noti che £ puo essere scritto in forma di “somma di quadrati”

N
L=Y X; (1.2.2)
i=1
scegliendo
Xi = & peri=1,....m (1.23)

I
8
S°
gl
o
@
=
~.
I
—_
S

Xier
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Se « ¢ un intero positivo, i campi X; soddisfano la condizione sul rango di
Hormander, ma nel caso generale questa condizione ¢ priva di senso poiche i
campi vettoriali non sono sufficientemente regolari.
Sottolineamo che esiste una stretta connessione tra I’operatore £ quando o = 1
e il sublaplaciano canonico sul gruppo di Heisenberg. Infatti, supponiamo che
la dimensione del primo gruppo di variabili sia un intero pari m = 2k, con
k €N, esia z = (r,y) € R* et € R. Allora, nelle coordinate (z,t) il
sublaplaciano sul gruppo di Heisenberg H* pud essere scritto nella forma

5 02 0

dove T' ¢ il campo vettoriale trasversale

LRG| )

T j;(yj oz, x; ayj)'
Se si osserva che Tu = 0 se e solo se u ¢ radiale nella variabile z = (x,y), si
deduce che il sublaplaciano agisce sulle funzioni a simmetria cilindrica proprio
come l'operatore £ con o = 1. Ricordiamo che una distanza di controllo
naturalmente associata all’operatore L ¢ stata introdotta e studiata da Franchi
e Lanconelli in [19], [20]. Qui di seguito richiamiamo le principali proprieta di
questa metrica.

La geometria indotta dai campi. Come gia osservato, i campi introdotti
in (1.2.3) costituiscono un caso particolare dei campi introdotti e studiati in
[19], [20], [21]. Si tratta di campi della forma X; = X\;0; per j = 1,..., N,
ove A1, A2, ..., An sono funzioni continue non-negative in RY soddisfacenti le
seguenti proprieta:

(P1) M =1, \j(z) = Nj(21, .., 2jm1) Vo = (z1,...,2,) €RYN, j=2,... N;

(P2) posto IT = {z € RN : [}, x = 0}, allora \j(z) >0 Yz e RN \ T e
A€ CRYYNCY RN \TI), j=1,...N;

(P3) Nj(z1,..., =24, an) = Nz, .., 24, .., an) Vi=1,...,5— 1

ej=2,...,N;
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(P4) esistono numeri non-negativi bj; tali che:
0 < 2i(8iAj) () < bjij()
Ve e RN\, Vi<j, j=2,...,N.

Osservazione 1.2.1. Osserviamo che la proprieta (P4) equivale a richiedere
la seguente:

Vo< f<1leVzeRY:
Gbﬁ)\j(a:) SAj(l‘l,...,eﬂji,...ﬂfJ’_l) 2§]§N, 1§Z§j—1
come verificato in [21], Prop. 4.2.

Dedichiamo questa breve premessa ad illustrare la particolare geometria
introdotta da Franchi e Lanconelli per questo tipo di campi. Essi dimostrano
che un sistema di campi soddisfacente le proprieta sopraelencate genera una
distanza d su RY, tale che (RY, d, m) risulta uno spazio di tipo omogeneo (nel
senso di Coifman e Weiss) rispetto alla misura di Lebesgue m.

Ricordiamo che una tripla (M, d, u) € chiamata uno spazio metrico omogeneo
se d e p sono, rispettivamente, una distanza e una misura di Borel regolare su
M, t.c.
A= sup ,U,(Bd(l‘,27‘))
zeM,r>0 M(Bd(l"r))

ove Bgy(x,r) denota la d-sfere con centro x e raggio r. Ovviamente A > 1. Il
numero reale

Q =logy A
¢ chiamato la dimensione omogenea di (M,d, u).
Qui di seguito diamo la definizione di d e ne elenchiamo le proprieta.
Cominciamo con l'introdurre le nozioni di vettore subunitario e curva sub-
unitaria rispetto al sistema di campi X.

Un vettore v = (71,...,vn) € RY si dice X -subunitario in un punto z se

N 2 N
o] <D <Xj@),¢>* VeeRrY
j=1 j=1

Una curva v : [0,7] — RY si dice X-subunitaria se ¢ assolutamente
continua e §(t) € un vettore X-subunitario nel punto (t) per q.o. ¢t € [0,T].
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Definizione 1.2.2. Per ogni z,y € RN definiamo d : RN x RNV — Rg come
seque:

d(x,y) =inf{T € R | esiste v : [0,7] — RY curva subunitaria
t.c. v(0) ==z, v(T) =y}

Osservazione 1.2.3. d ¢ una distanza ben definita. Infatti, le ipotesi sui coef-
ficienti \; garantiscono l'esistenza di una curva X-subunitaria congiungente
x ed y, per ogni coppia di punti x,y. Inoltre, si prova che 3C > 0 t.c.
|z —y| < Cd(x,y) ¥ (z,y) € RV,

(1.2.4)

Per i nostri scopi, ¢ utile introdurre una quasi-distanza (non-simmetrica)
0 equivalente a d, piu esplicitamente definita e che consente di ricavare delle
significative stime per la metrica d. Ricordiamo che § ¢ stata definita e studiata
in [19].

Se z € RV e t € R si pone:

Hy(x,t) =x
Hk-l—l(x,t) = Hk(x,t) + t)\k—i-l(Hk(:U;t))ek-i-l per k=0,...,N —1.

ove {ex}_, indica la base canonica di RY.

La funzione s — Fj(z,s) = s\j(H;_1(z, s)) ¢ strettamente crescente su (0, c0)
per ogni x = (z1,...,zy) tc. 2x >0, k=1,...,75—1leperj=1,...,N.
Dunque, & possibile definire la funzione inversa di Fj(z,-), ovvero si pone
oj(z,-) = (Fj(z,-)) " perj=1,...,N.

Definizione 1.2.4. Per ogni x,y € RY definiamo § : RYN x RN — RY come
seque:
6(z,y) = max_¢;(z", |z; — y;])
J N

e

ove x* = (|z1], ..., |zN]).
Nel seguito useremo le seguenti notazioni per le d-sfere, le §-sfere e le loro
dilatazioni:

S(z,r) ={y e RY | d(z,y) <}

Qz,r) ={y eRY | 6(z,y) <r}
aS(z,r) = S(z,ar), aQ(z,r) = Q(z,ar), o >0.

La seguente proposizione contiene le proprieta fondamentali delle funzioni
Fj, ¢jv d e d.
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Proposizione 1.2.5. Posto G1 =1eGj =1+ Zf;ll Gibj; per j =2,...,N,
risulta:

(i) Ve € RN, s >0, 0 € (0,1) si ha:
0% < Fj(z,0s)/Fj(z,s) <0
0 < ¢j(x*708)/¢j(x*75) < el/Gj

(ii) Ja > 1 tale che

QU
~—

(x,y

= (z,y)

1
- <a Vaz,y.
a

(e %)

(ii) Indicata con |S(z,r)| la misura di Lebesque di S, risulta

a < |S(x,r)]/HFj(ac*,r) <a
j=1
i) Posto e; = (G;)7 L, risulta
(iv) i = (Gj

N
d(z,y) < C Y |ay —y;|% (1.2.5)
j=1

da cui la locale hélderianita di d.
Infatti d(z,y) < bl —y|® se |z —y| <1, dove e = min, ¢;.

Osservazione 1.2.6. La (iii) della precedente descrive la misura delle sfere
per la metrica d e assicura la proprieta di duplicazione seguente:

|S(x,2r)| < C|S(z,7)| Vr > 0,Vz € RY,
P
ove C =a?2 i Gj, da cui (RV,d, m) ¢ uno spazio metrico omogeneo.

Osservazione 1.2.7. Se si calcola la misura delle sfere metriche nel ca-

so particolare dei campi su RY = R™*" definiti nella (1.2.3), ovvero per
X; = 8%1 peri=1,....me Xjym = |x]°‘aiyi peri = 1,...,n, si ottiene la

seguente espressione esplicita:

3C1,Cy > 0tc. Vz = (z,y) ER™MeVr > 0:

5 (z.7)|
C) <
" (jal e

< Oy (1.2.6)
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dalla quale risulta evidente la dipendenza della misura delle sfere dalla distanza
del centro dall’insieme di degenerazione {x = 0}. In particolare, le sfere con
centro su {z = 0} hanno misura

Cyr@ < |S(z,7)| < Cor@

ove @ = m + (a+ 1)n ¢ la dimensione omogenea di RY rispetto al sistema di
campi X, mentre per sfere di centro qualsiasi vale solo la stima dal basso

Cr? <|S(z,7)| Yr>D0.

Disuguaglianze di tipo Sobolev. Facciamo vedere, ora, come si possano
ricavare disuguaglianze di Sobolev per i campi vettoriali definiti nella (1.2.3)
a partire dai teoremi di embedding dimostrati da Franchi e Lanconelli in [21].
Il problema che ci poniamo & il seguente: esistono esponenti g tali che per
qualche costante C' > 0 si abbia

[ Xullp2myy = CllullLarey (1.2.7)

per ogni u € C§°(RM)?
Usando le dilatazioni {d)}a>0, si ottiene immediatamente che una condizione
necessaria perche valga la (1.2.7) e data da

11 1
"o (1.2.8)

Infatti, se la (1.2.7) vale per u, allora essa vale anche per i riscalamenti

un(,y) = u(Az, X y)

Juxllf = / lu( Az, X2y [9dady = )\_QHqu (1.2.9)

| Xun| = / Xun (2, y)dedy = / AXu(hz, AT y)2
= / | Xuldzdy = X2~ 9|| X u||? (1.2.10)

Dunque, dalla disuguaglianza (1.2.7) applicata a uy, si ha

A-QUZD) Xoyly > Cllull, YA >0
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da cui, considerando i casi limite per A — 0 e A — +00, segue necessariamente
la (1.2.8).

Non ¢ banale dimostrare che la (1.2.8) ¢ anche sufficiente perche valga la
(1.2.7). Facciamo vedere che tale conclusione puo essere dedotta dai risultati
di embedding di Franchi e Lanconelli in [21]. Questi ultimi provano, tra gli
altri risultati, che se X = (X1,..., Xx) € un sistema di campi vettoriali della
forma

X;j=X0; j=1,...,N

dove i A; sono le funzioni non-negative possibilmente degeneri sugli assi coor-
dinati con andamento polinomiale introdotte nel paragrafo precedente, allora,
denotato con
1,2 N 1,2 N 2N 2mN
W (RY) = W()\l, A )(R ) ={ue L*(RY) | Xju=X\0;ue L*(RY)}

lo spazio di Sobolev naturalmente associato ai campi X, e denotato con
H(€1,~--,€N)(RN) — W(Elv“'7€N)72(RN)

lo spazio di Sobolev ordinario anisotropo di ordine & = (e1,...,eyn), dotato
della norma

u(x + hej) — u(z)]? 1/2
= ( J— dadh + [luz

vale il seguente embedding continuo

1,2
W(,\l,...7>\N)(RN) s HELEN)(RN) (1.2.11)
dove gli €; sono numeri reali positivi dipendenti dai coefficienti (Ay,..., An).

Essi sono esattamente:

-1

j—1
g1 = 1, €5 = <1+Z(€i)_1bﬁ) per j :2,...,N (1.2.12)
i=1

ovvero gli inversi dei G; definiti nella Proposizione 1.2.5. Si osservi che essi
dipendono esclusivamente dai numeri bj; caratterizzanti I’'andamento polino-
miale delle funzioni A;.
Quindi, cosl come Fefferman e Phong provano che, nel caso \; € C*, la
disuguaglianza

d(z,y) < Clo —y|°
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conduce alla stima sub-ellittica

lullze < © | D0 1X5ullz + llullz2 )
J
Franchi e Lanconelli [21] dimostrano un risultato analogo nel caso non rego-

lare in esame, tenuto conto della stima holderiana (1.2.5). Piu precisamente
sussiste il seguente:

Teorema 1.2.8. 3C > 0 tale che Vu € C§°(RY) risulta

u(x + he;) —u(x 2\ 1/2 N
</ /RN hli%] (z)] ) dadh < C S 1 X5ull 2 )

j=1

ove gli €5 sono definiti dalla (1.2.12).

Ora, se calcoliamo gli €; nel nostro caso, ovvero per i campi vettoriali
X, = A;0; con
M=...=\p=1
{ Amtl = oo = A = |2|* a>0
otteniamo esattamente gli inversi degli esponenti di omogeneita nelle dilatazioni
(1.2.1), ovvero:

Quindi
Wi et ol R™) o gt (RY) (1.2.13)

Ricordiamo a questo punto il seguente teorema di embedding per spazi di
Sobolev ordinari anisotropi (si veda ad es. [2], [35]):

HEeN)(RYY < LYRN) (1.2.14)

per
1 1 1

2 q Zjvzl 1/¢;

Allora, combinando gli embedding (1.2.13) e (1.2.14), si ottiene che lo spazio
di Sobolev I/V)l(’2 associato ai campi vettoriali in esame si immerge in maniera
continua in L? per

(1.2.15)

N | —
Q| =
Q=
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e dalla disuguaglianza di immersione risultante:

2
Vue CE®RY)  llully < C(IXulz + llulla) per = —2=  (1.2.16)

Q-2
segue che la (1.2.7) vale per ogni funzione u € C$°(RY) se e soltanto se ¢ =
2Q/(Q — 2), tenuto conto della disuguaglianza di Poincare e della “criticita”
dell’esponente ¢. Infatti, dalla (1.2.16) e dalla disuguaglianza di Poincare,
dimostrata per i campi X; in [20], segue che se 2 & un aperto limitato, allora

vale la seguente
Vue C5(Q)  lully < CQ) [[Xull2.

Ora, se u € C§°(RY), sia B(0,R) una sfera contenente il supporto di wu.
Riscaliamo opportunamente u, in modo tale che uy(z,y) = u(Az, \!T%y) abbia
supporto nella sfera unitaria B; = B(0,1). Allora per u) varra la seguente

[urlly < C(B1) [[Xuall2
da cui, tenendo conto delle (1.2.9) e (1.2.10), si ottiene la disuguaglianza
lully < C(B1) AN=C02HD| X |,

ovvero

lully < C(B1) [ Xull

con costante C indipendente da u, come annunciato.

Il risultato dimostrato € in perfetta analogia con quello euclideo e conferma
il ruolo di ) quale effettiva dimensione in questo tipo di problemi. Inoltre,
esso conferma 1'ottimalita dei risultati di embedding per gli spazi associati ai
campi negli spazi di Sobolev ordinari anisotropi contenuti in [21].

Come vedremo nel paragrafo seguente, la dimensione @), oltre ad avere il
ruolo di una dimensione globale, gioca un ruolo importante nell’analisi locale
dell’operatore £ nei punti dell’insieme di degenerazione {0} x R™. Lontano
da questi punti, invece, I’operatore diventa uniformemente ellittico e, quindi,
torna a prevalere la dimensione topologica N = m + n. Questa differen-
za di omogeneita da punto a punto costituisce una caratteristica tipica delle
equazioni degeneri ed ¢ evidenziata dalla nozione di dimensione locale omoge-
nea.

Qui di seguito illustriamo questa definizione e facciamo vedere come nel no-
stro caso, accanto alla disuguaglianza di Sobolev “globale” ora dimostrata,
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sussistano, come nel caso degli operatori di Hormander, disuguaglianze di
tipo-Sobolev “locali”, coinvolgenti la dimensione locale omogenea.

Sia X = (Xi,...,X;n) un sistema di campi vettoriali localmente Lip-
schitziani su RN che generi una distanza di Carnot-Caratheodory d, ovvero
una distanza definita mediante le curve subunitarie in maniera analoga a quan-
to visto nella (1.2.4), e sia U un aperto limitato di RY. Si supponga, inoltre,
che valga la seguente proprieta di doubling locale:

3C > 0,e 0 < Ry < oo tali che

|B(z,2R)| < C|B(z,R)| VxeUeV0<R<R (1.2.17)

Allora, posto C7 = sup % al variare di x € U e 0 < R < Ry, il numero

Q(U) =logy (1.2.18)

si dira dimensione locale omogenea relativa ad U (e al sistema X).

Si osservi che in molti casi di interesse la proprieta di duplicazione (1.2.17)
& soddisfatta globalmente, ovvero con Ry = oo. Questo e ovviamente il caso
di RN con X = (8%1, e %) e la distanza euclidea, nel qual caso C; = 2.
Piu in generale, se G ¢ un gruppo di Lie stratificato nilpotente e dx denota
una misura di Haar su G, allora la (1.2.17) vale ancora con 1'uguaglianza per
ogni 0 < R < oo e con C; = 29, dove Q ¢ la dimensione omogenea del gruppo.

Anche la metrica generata dai nostri campi X; = \;0; gode di una pro-

prieta di doubling globale, come evidenziato nell’osservazione 1.2.6. In parti-

. . . . . 6 . . _ o 8
colare, se consideriamo i campi X; = 5= peri =1,...,m e Xjim = || By
per ¢ = 1,...,n, possiamo osservare che la dimensione omogenea “globale”

@ = m + (a+ 1)n coincide sempre con la dimensione omogenea “locale” per
gli insiemi limitati intersecanti I’asse di degenerazione {x = 0}. Invece, per gli
insiemi limitati U discosti dall’insieme {z = 0}, tenuto conto dell’espressione
polinomiale della misura delle sfere (1.2.6), si puo sempre scegliere Ry < oo
per il quale risulti Q(U) < @ e si puo osservare che per Ry — 0, risulta
QU) - N=m+n.

In [25] Garofalo e Nhieu provano alcune disuguaglianze di tipo Sobolev-
Poincare facendo uso della dimensione locale omogenea, per campi soddisfa-
centi ipotesi abbastanza generali. Essi assumono, infatti, che i campi siano
localmente Lipschitziani su RY e che generino una distanza d di Carnot-
Carathéodory, soddisfacente le due seguenti proprieta:
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IPOTESI.  Per ogni insieme U € RY con diam(U) < oo, esistono costanti
C1,Cy>0,0 < Ry < 00, ed o > 1 tali che, per ogni z € RN e 0 < R < Ry, si
abbiano le seguenti:

(H.1) |B(z,2R)| < C41|B(z, R)|

(H.2) Per ogni funzione Lipschitziana u in B(z, aR), vale la seguente disugua-
glianza di Poincaré debole 1-1:

{zx € B :|u(z) —up| > A} < C;R/ | Xu(y)|dy VA>0
aB

ove up denota la media ﬁ fB udx di u su B.

Osserviamo subito che fanno parte della precedente classe tutti i sistemi
di campi di tipo Hormander e, quindi, in particolare i sistemi di generatori
di gruppi di Carnot. Rientrano nel caso trattato da Garofalo e Nhieu anche i
nostri campi X; = \;0;. Infatti, come gia osservato, essi soddisfano la (H.1),
e la (H.2) & provata nella forma forte per gli X; in [20]. Il risultato dimostrato
in [25] ¢ il seguente:

Teorema 1.2.9. (Disuguaglianza di Sobolev-Poincare) Supponiamo che val-
gano (H1) e (H2) e sia U C RY un insieme limitato di dimensione locale
omogenea Q := Q(U) > 2. Allora, esiste C = C(C1,Cq,a) > 0 tale che, per
ogni sfera B = B(z,1) con centro x € U e raggio 0 < r < Ry, vale la sequente:

1/q 1/2
(][ ’U—UB\qu> SCT(][ ]Xu\Qdac>
B B

per 2 < q <2Q/(Q —2), per ogni u € C*(B).

DIMOSTRAZIONE. Per la dimostrazione si veda [25, coroll. 1.6]. O

Dalla precedente disuguaglianza di Sobolev-Poincare si deduce il seguente:

Teorema 1.2.10. Sia 8 > 0 fissato. Nelle ipotesi del teorema precedente, se
B = B(z,r) ¢ una d-sfera, B C U, con r < Ry, allora, per ogni u € C'(B)
verificante

|E| :={z € B:u(x) =0} > |B|,

vale la disuguaglianza

1/q 1/2
<][ |u\qdaz) gCT<][ ]Xu\de>
B B
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per 2 < q¢ < 2Q/(Q — 2), con C dipendente da (3 e dalle costanti in (H1) e
(H2).

DIMOSTRAZIONE. Essendo up = |B|™! [;u, risulta

| = B! / jup —ul <7B|" / fug — ul
E B

1/q )
< ﬁ_l\B]_l (/ ”UJB _u‘q) _‘B‘l/q
B
1/q
=p7! <][ lup —u|q>
B

da cui, usando la disuguaglianza triangolare e il risultato del teorema prece-
dente, si ha

(h ug)l/q<<3/uu31i>l/q <rB|/luB|Q>l/q
(f oot q; s )
< <][ Iu—uB|Q> q<cﬁr<][ |Xu|2>

ovvero la tesi. O

Dal teorema appena dimostrato segue facilmente la seguente disuguaglian-
za di Sobolev per le sfere:

Teorema 1.2.11. (Disuguaglianza di Sobolev). Sia B una d-sfera come nel
precedente. Allora, per ogni u € C} (%B), si ha

) 1/q . 1/2
/ |u|? dx <Cr / | Xul? dz
1Bl J1/28 1Bl J1/2B

per2 < ¢ <2Q/(Q —2), ove la costante C' dipende solo dalle costanti in (H1)
e (H2).

DIMOSTRAZIONE. Basta applicare il Teorema 1.2.10 alla sfera B, tenendo

conto del fatto che, dalla proprieta di doubling, segue immediatamente che
|B — (1/2)B| ~ |B]. O
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Compattezza. Concludiamo questa parentesi dedicata alle disuguaglianze
di immersione di tipo-Sobolev per sistemi di campi vettoriali localmente Lip-
schitziani, enunciando alcuni teoremi di compattezza che risultano essere molto
utili nelle applicazioni.

Sia X = (X1,...,X,,) un sistema di campi vettoriali su RY soddisfacenti
le ipotesi (H1) e (H2) sopra introdotte. Sia @ C R™ un aperto limitato e
Q = Q(2) > N la sua dimensione (locale) omogenea, secondo la definizione
1.2.18. Allora vale il seguente teorema, per la cui dimostrazione si veda ad
esempio [25, Teor.1.28]:

Teorema 1.2.12. Sia Q C RN un aperto limitato di dimensione locale omo-
genea Q) con diam§) < %. Allora, posto 2* =2Q/(Q —2), si hanno i sequenti
embedding:

01,2
(i) se Q@ >2el<q<2* l'embedding W x () — LI(Q) é compatto;

012
(ii) se @ =2 el <q< oo, l’embedding W x () — LI(Q) é compatto.

Si osservi che il precedente vale senza alcuna restrizione sul diametro di 2
che non sia diam{2 < oo nei casi in cui la proprieta di duplicazione (1.2.17) vale
globalmente, come ad esempio nel caso dei campi da noi esaminati in questa
sezione.

1.2.1 La soluzione fondamentale di £ con polo nell’origine

In questa sezione descriviamo la soluzione fondamentale dell’operatore £ =
A, + |z[**A, avente polo nell’origine (si veda, ad es. [23]).
Considerata la funzione

1/2(a+1)
da,y) = (PO + (a+1)2yP) (1.2.19)
d risulta essere una norma dy-omogenea su RY = R™ x Ry", ovvero
i) d >0, d(z,y) =0 se e solo se (z,y) = (0,0)
ii) dody=XAd YA>0.
Proveremo che la funzione
Ca
[(z,y) = : (1.2.20)
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¢ una soluzione fondamentale di —£ con polo in (z,y) = (0,0).

Nel seguito sara utile riguardare £ come un operatore in forma di diver-
genza. A questo scopo, si consideri la matrice N x N:

(gm0
A B ( O ‘l‘|2aIRn >

£ = div(AV)

dove div e V sono gli usuali operatori di divergenza e gradiente in RY. Per
una funzione u in R, denotato con X il sistema di campi definito nella (1.2.3)
risulta:

Allora

|Xu|2 = AVu - -Vu = \qulz + ]m\Qa\Vyu\Q

Un facile calcolo mostra che, se f € C?(0, +00) e definiamo u(z,y) = f(d(x,y)),
ove d ¢ data dalla (1.2.19), allora

Lu= f'(d)Ld+ f'(d)|Xd?

da cui, calcolando Ld e posto

|SE\20‘

o= |XdP? =
Vo = Xd" = G

si ottiene la seguente formula

cu=va (1) + 7 @)

per funzioni u = f(d). Questa notevole formula, analoga a quella vista per i
sublaplaciani su funzioni “radiali”, mostra che la funzione u = d*~9 & soluzione
di Lu=0in RV \ {(0,0)}.

Da quest’ultima proprietd si ottiene che I' = C'd*~9 & una soluzione fonda-
mentale di —£L con singolarita nell’origine, tenuto conto del seguente risultato:

Proposizione 1.2.13. Se d ¢ una norma dy-omogenea tale che Ld>~% = 0
in RN\ {0}, allora 3C > 0 tale che T' = C d*~? wverifica LT = —dy.

DIMOSTRAZIONE.  Osserviamo, innanzitutto, che I' € LlloC7 essendo I' =
O(d?>~?). Dimostriamo che esiste C' > 0 tale che, posto I' = C' d>~ %, risulta

| Tesde=—00) voeCFRY)
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Valutiamo

/ ILd¢ = lim TLpdE =
RN d(€)>e

zlim</ oLT +/ F<AV¢,V>da—/ ¢<AVF,y>da>
=0 \Ja>e d=e d=e
(1.2.21)

Ora, il primo dei tre integrali nel secondo membro della precedente ¢ nullo per
I’armonicita di I" fuori dall’origine; restano da valutare, dunque, i due integrali
di superﬁme

Posto 1V = [,_.T<AV¢,v > do e 1% = [,_. ¢ < AVI,v > do, si prova
che

IM -0 pere—0 (1.2.22)
e
I - C'¢(0) per e — 0 (1.2.23)
Infatti,
11{V| g/ T| < AVé,v > |do
d=¢
vd Vvd
< CEZQ/ < AV¢, — > |do essendo v = ———
. va o v
< CEQ_Q/ | X 6| Xd| =
d=e |Vd‘
< Ce>Qsup|Xg|-sup|Xd ——do
Xel-awlXd [ o
e poiche

1 d € d
——do = — L oae)ar=L [ e
JC_E|<7d| R <JC V] ) d foe.

d
Q/ d¢ = moQ=2""!
d€ d<1

si ha che [I] < C'c e quindi la (1.2.22).
Passiamo, ora, a valutare 15(2). Usando il fatto che VI' = C(2 - Q)d'~®Vd
si ha:
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vd
1% = — ¢ < AVI, — > do
d=e¢ "7d|
1
=-C(2-Q)'¥ ¢ < AVd,Vd > ——do
d=¢ “7d’
. o
=—C(2-Q)E'? K——do
SR AR

ove si & posto K =< AVd, Vd >, funzione §y-omogenea di grado 0. Scompo-
nendo come segue

0 B 1 (¢ — ¢(0))
P Tl M 1 R P | R

e valutando il primo dei due integrali a secondo membro della precedente,
grazie alla formula della coarea, si ha che

1 d € (/ K ) d
K——do = — 2 do)dt=L [ Kde=
d= |Vd| de Jo \Ja=t IVd| de Ja<c

_de Kdé =m Q9!
de d<1

da cui
I#) = C(Q - 2) (Qm1¢(0) + o(1))

Quindi, per ¢ — 0
1Y) — CQ(Q - 2) m1g(0)

da cui si deduce la tesi per C~! = Q(Q — 2) fd<1 K d¢. O

Osservazione 1.2.14. Dall’invarianza dell’operatore L rispetto alle traslazioni
euclidee nella variabile y € R", segue che Vyo € R", la funzione

T(z,y — o) = Cagd(z,y — yo)*

¢ una soluzione fondamentale di —£ con polo in (0, yo).

Osservazione 1.2.15. Se a = 1, n =1 e m = 2k, con k € N, allora la
funzione T" sopra definita (con @ = 2k + 2), a meno di un riscalamento in y
di un fattore 4, coincide con la soluzione fondamentale di —Apyx trovata da
Folland.
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1.2.2 Esistenza e stime di integrabilita per le funzioni di Green
di £

Dedichiamo questa sezione allo studio delle funzioni di Green associate all’ope-
ratore L.

Per ottenere esistenza e stime per le funzioni di Green si usera il metodo delle
cosiddette “funzioni di Green approssimate”. Questo metodo, introdotto da
Griiter e Widman in [29] per operatori uniformemente ellittici a coefficienti
non regolari, ovvero per operatori del tipo:

0 o)
=% g (et g)
Z7‘7
con matrice dei coefficienti A = (a;;) verificante:

MNEP << Ag € >< AJ¢]?, VEERY

e stato successivamente utilizzato come utile strumento di indagine in vari casi
ellittico-degeneri (si confrontino, ad esempio, i lavori [9], [8], [42], [47]).
Ad esempio, Chanillo e Wheeden in [9] trattano il caso degli operatori degeneri

del tipo:
0 0
con matrice dei coefficienti A = (a;;) verificante:
w(z)§] << AL ¢ ><v(@)|Ef?, VEERY

per opportuni pesi v e w.
Cancelier e Xu [8], invece, usando lo stesso approccio, dimostrano 'esistenza
delle funzioni di Green per 'operatore

Lu =Y X7(ai;(z)Xu)
12

ove X = (X1,...,X,,) € un sistema di campi C* di tipo Hormander, X
denota ’aggiunto formale di X, e i coefficienti a;; sono misurabili, limitati,
simmetrici e uniformemente ellittici. Il loro risultato, quindi, generalizza il
teorema di Bony sull’esistenza della funzione di Green G associata ad operatori
di Hormander H =} _; X7 X (si veda [5]).

In [42] viene trattato il caso di operatori del tipo

Lu= Z X (aij(z) Xiu)
i,
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dove gli X; sono campi C* di tipo Hormander, X7 denota I’aggiunto formale
di X, e la matrice dei coefficienti A = a;; soddisfa la condizione

@) << AL E><cw(@)[¢ff, VEeRY

con w peso opportuno.
Infine, Salinas in [47] studia il problema per l'operatore

0 0
17-]

dove la matrice A = a;; ¢ simmetrica, misurabile e soddisfa la seguente
condizione:
N N N
2 2 2 2
U(af)z)\z’ (2)& < Z aij(z)&i&; < w(x)z)‘i (2)&
i=1 ij=1 i=1

ove le funzioni \; soddisfano esattamente le ipotesi introdotte da Franchi e
Lanconelli per i coefficienti dei campi trattati in [19], da noi precedentemente
richiamate, e le condizioni sui pesi v e w sono stabilite in termini della geome-
tria indotta dai campi.

I nostri operatori rientrano, quindi, nella classe studiata da Salinas per pesi v
e w identicamente uguali a costanti positive. Il metodo delle funzioni di Green
approssimate ci consente di derivare I'esistenza e alcune significative stime per
la funzione di Green di una d-sfera S, quando il polo appartiene ad %S .

o
Funzioni di Green approssimate per L. Denoteremo con D}((Q) lo
spazio ottenuto come completamento di C§°(2) rispetto alla norma u —
| Xu||2. Per dimostrare 'esistenza e studiare le proprieta di sommabilita delle
funzioni di Green relative all’operatore L, si studia preliminarmente il seguente
problema “approssimante”.
Sia Q un aperto limitato di RY; per y € Q e § > 0 sufficientemente piccolo

o
tale che Q, = Q(y,p) C £, si studiano le soluzioni deboli Gf, € DL () del
problema

a(GY, ) = /Q < XGy(z), Xp(x) > do = ]é)(y ) o(x)dz VYo € DL(Q)
’ (1.2.24)
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GY & chiamata funzione di Green p-approssimata di L con polo in y.

o
L’esistenza e 'unicita di una funzione Gf € D (Q) per cui valga la (1.2.24) ¢
assicurata dal teorema di rappresentazione di Riesz, poiche la mappa

fp) = ]lQ RLCE

o
¢ un funzionale lineare continuo su D} (Q).
Infatti, grazie alla disuguaglianza di Sobolev, risulta:

1 1
r][ ol s/ ol < — ol < ClIXel
Q 1Q,l Jo, Q"2

Vediamo, ora, alcune proprieta soddisfatte dalla funzione Gj,.

Proposizione 1.2.16. GY ¢ non negativa su €.

o
DIMOSTRAZIONE. Poiche |Gj| € D% (), essa pud essere scelta come funzione
test nella definizione di GY, per cui si ha che:

a(GP, 1) = ]{2

Esiste, quindi, £ > 1 tale che

Gps][ G2| = a(GE, |G2)
wo . Jows v

a(Gy, G = k~a(GY, |GY))

quindi
a(Gh, GP) = a(Gl, k~GE)) (1.2.25)
e
a(k~'|Gr|, kil\Gg\) = k*Qa(Gg, GY) < a(GY, lfl\GZ\) (1.2.26)
Sottraendo la (1.2.25) dalla (1.2.26), si ha:
0<a(k "GO - GoETHGH —GE) <0 (1.2.27)
per cui risulta k71|Gl| — G =0, dacui k=1e G} > 0. O

La seguente proposizione contiene una interessante stima di integrabilita uni-
p
forme per Gy.
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Proposizione 1.2.17. 3pg > 0 e C' > 0, C indipendente da y, tale che, per
ogni 0 < p < po, risulta |G| o <C.

T3 @
DIMOSTRAZIONE.  Ricordando che la norma Lf,, 1 < p < oo, definita in
(2.1.6) ¢ equivalente a

17l = suptl{e € @117 > 1.

stimiamo la funzione di distribuzione di G%. Usando ¢(z) = max{0,1/t —
1/GY}, t > 0, come funzione test nella (1.2.24) e posto = {x € Q||f(x)| >
t}, abbiamo

oGl = [ <xCpxGy> (@)= f e
Q By
Ora, tenendo conto che X;(logGY) = (G))™1X;GY su Q4 Vj = 1,...N, e
applicando la disuguaglianza di Sobolev alla funzione

v(r) = max{0, log G} () — logt} € DL ()

si ottiene che
Q-2

Gy 201 @

[/ (logy)QQ] <ct!
o t

ove C' & la miglior costante nella disuguaglianza di Sobolev relativa al sistema

di campi X.

Si ha, allora:

Q-2
P ool @
(o241 < | [ (10g Sy 3%
Qo t
GP 29 %
TS
Q t
<Cctt
Dunque, Vs > 0, si ottiene:
2Q
s|.@ < ¢,

ovvero la tesi. O
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Facciamo notare che la precedente stima, uniforme rispetto a p e al polo
y, oltre a costituire il primo fondamentale passo nella costruzione della fun-
zione di Green, puo essere direttamente utilizzata per ottenere stime L°° per
le soluzioni del problema di Dirichlet associato all’operatore £, come vedremo
alla fine di questo capitolo.

Stime per XGY. Procediamo, ora, col derivare delle stime di integrabilita
per XGY, quando ) & una sfera per la distanza di controllo d. Si prova, in
particolare, una stima per la norma || X G4 ||+ uniforme in p per s < Q/(Q—1),
come enunciato nella seguente proposizione:

Proposizione 1.2.18. Sia S = S(xg, R) una d-sfera in RN, con N > 2. Allo-
ra per ogni 0 < ¢ < Q/(Q—1) e per q.o. y € 1S, esiste C = C(q,y,x0, R) > 0
tale che

/|XGZ|‘1§C V0<p<R/2a.
5

La dimostrazione della proposizione precedente necessita di alcuni risultati
preliminari, che sono contenuti nei seguenti lemmi. Il primo lemma fornisce
una stima di XGY) in termini di GY.

Lemma 1.2.19. (di tipo Caccioppoli) Sia S = S(xo, R) una d-sfera. Allora
esiste C > 0, C indipendente da y, r e p, tale che

/ xan < € / (G
S\Q(y,r) ™ JQ(y,m)\Q(y,r/2)

perogm‘ye%S,0<r<R/2a e 0<p<r/2

DIMOSTRAZIONE. La dimostrazione e analoga a quella del Lemma 4.2 in
[9] e si basa sull’esistenza di opportune funzioni di troncatura, dimostrata
da Franchi e Lanconelli in [20] per le -sfere ). Grazie a questo risultato,
possiamo considerare una funzione di cut-off siffatta:

neC®RY) t.c. n=0 suQ(y,r/2),n =1 fuori da Q(y,r) e |Xn| < C/r.
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o
Usando la funzione ¢ = G§n? € DL(S) come funzione test nella definizione
di GY), risulta, per p < r/2:

o:][ G 2:/<XG§,X(G§772)>
B, s

:/\XG5]2772 + 2/<ngeg,nxn>
Dunque

2.2 _

/]XG'Z| Nt = —2/<XG§,X77> nGy

da cui
1
[1xci <e [pxappe + L [l @p? veso

Ora, scegliendo ad es. € = 1/2 e ricordando che X7 = 0 in Q(y,7/2) e fuori
da Q(y,7) e [ Xn| < c¢/rin Q(y,r) \ Q(y,7/2), si ottiene
C

/ xooy < ©

(Gh)?
r? /Q@,r)\Q(y,r/m

e dunque

[oowep s o pepr <5 [ (@)
S\Q(y,r) S\Q(y,r/2) T JQy,m)\Q(y:r/2)

ove C' ¢ indipendente da y, r e p. OJ

Lemma 1.2.20. Sia S = S(z9, R) una d-sfera. Allora per q.o. y € %S, esiste
C = C(y,xo, R) > 0 tale che

B2 gt R 1 dt
sup Gl(x)<C min{/ _— / } 1.2.28)
S L AT R AR

per ogni 0 < r < R/2 e 0 < p < r/4a, ove si e posto o0 = Q/(Q — 2).

DIMOSTRAZIONE. E sufficiente dimostrare che

sup Gp(x)<C/Rtht (1.2.29)
r/2<d(z,y)<r Y N r |S(yat)| t o
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Infatti, dalla proprieta di doubling di d, essendo |S(z,tr)| > Ct?|S(z,r)| per
ogni 0 < t < 1, risulta:

Q

a’R) ~ |S(y, R)|
da cui
t2 Cr
< per 0 <t <R,
1Sy, ) =[Sy, t)M/°
che implica la restante parte della tesi
dt
sup  Gh(z) <C / :
r/2<d(z,y)<r y t | |S(y, )1/ ¢

Procediamo, dunque, col dimostrare la (1.2.29).

Consideriamo dapprima il caso y = x, cioe proviamo la stima (1.2.29) per la
funzione di Green di S avente polo coincidente col centro di S. Il caso generale
si deriva come segue.

Se y € (1/2)S, allora S(xo, R) C S(y,2R), e quindi, per la proprieta di mono-
tonia delle funzione di Green rispetto al dominio, denotata con G la funzione
di Green di S(y,r) con polo in y, risulta

G’ < Gy su S(zo,R).

Dunque, se la stima vale per funzioni di Green di sfere aventi polo coincidente
col centro della sfera e quindi per G p» Si ottiene:

2R 2 dt
sup  ess GP(x) < Sup ess Ghp(z) < C / _
r/2<d(zy)<r r/2<d(x y7 )‘

2R
—C(/ / )<C/ , V0 < p <r/da
2R R R
poiche per la doubling / R / < /
R R/2 r

Quindi possiamo restringerci a considerare solo funzioni di Green di sfere con
polo coincidente col centro della sfera.

Sia s > 0; per comodita useremo la notazione S5 = S(y, s) e G5 = funzione di
Green di S(y, s) con polo y.
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Siar < R/2 ed m € N tale che (3/2)" 'r < R < (3/2)™r. Allora, su 5.\ S,
risulta:

m

Gy < Gy = GF +Z[ sy — Gl (1.2.30)

Stimiamo ogni termine nel lato destro di (1.2.30).
Per quanto riguarda il primo termine G7, si prova che:

7a2

sup ess GP(x) <C

(1.2.31)
S \S, /2 1Sy, )|

Per gli altri termini in (1.2.30), si puo provare, adattando la dimostrazione del
Lemma 2.7 in [9], che

sup(G?
(G326

In conclusione, dalla (1.2.30) e dalla doubling, segue che

sup ess Gf, <C ~
S:\S, 2 Z S

ovvero la tesi. OJ

Lemma 1.2.21. Sia S = S(xg, R) una d-sfera in R, con N > 2. Allora, per
q.o. y € %S, esiste C' = C(y,xo, R) > 0 tale che

[ egpee [f Lo
S\Q(y,r) s2a |S(y, )| ¢

per ogni 0 < r < R/2a e 0 < p < R/2a, ove 0 = Q/(Q — 2).
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DIMOSTRAZIONE. Sia 0 < p < 7/8a?; allora, usando i lemmi precedenti si ha

/ xerp < & / (Gry?
S\Q(y,r) ™ JQy,r\Q(y,r/2)
2
C’
< —= sup T
T2 ’ r/2<6(y,x) ( ))
2
<3 !Q y, )l sup Z(@)
r/2a<d(y,z)<ar
j<log 2a 2
<3 !Q y,7) sup Gy (x)
j 23+1 <d(y)< ;;
2
< )| | min dt /R __t df
B /2a |S Y, )| t 7 r/2a ‘S(yvt)‘l/g t
2 dt R 1 dt
S ’ 1/0 +
/2a ’S yv ’ t r/2a ‘S(yat)‘ /ot

(1.2.32)

ove la limitazione 0 < p < r/8a? & servita per utilizzare il Lemma 1.2.20 nella
(1.2.32). D’altra parte, per le proprieta della metrica d, risulta

]+
: dt

R
/r/2a S(y.t)] t _Z/W 1Sy, 1) t

— \ 2a 1S(y, 21|
2

+
r .
9J(2—N)
P>

T2

1S(y, )l

IN

(1.2.33)

IN

=C

L. 2‘7?” i\N r ge .
ove si & usato che |S(y, —)| > (27)"|S(y, —)|, e I'ipotesi N > 2.
a a
Dalle (1.2.32) e (1.2.33) si ottiene esattamente la tesi per p nel suindicato
intervallo.
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Sia, ora, 7/8a% < p < R/2a; applicando la disuguaglianza di Sobolev, si ha:

1 1/20
aGp,Gp:/XGPQZ GP§</ GPQU)
(G Gy S| y Q, U T QM p|V* S| y

¢ 2\ ¢ 1/2
< e (L) = o (@

da cui
[ xR ey < o S
$\Qyr) Qy, p)|*/°
<C(w@wMY“/ﬁ1w
~ \IQ(y,r/8a?)| rj2a 1S (y, )|V 1
e dunque la tesi per il restante intervallo di p. O

DIMOSTRAZIONE DELLA PROPOSIZIONE 1.2.18. Siay € %S e0 < p< R/2a.
Valutiamo la funzione di distribuzione di XGY. Dal Lemma 1.2.21 segue che
{z eS| |XG| > st =[{zeS| XG> s}

1 / ,
<= I XGP® + [Qy, )|
$? Js\qwr !

1 (B 1 dt
Y Ey
<§ /o 1S G D7 ¢ ’my)>

per q.o. y € %S, per ogni r € (0,R/2a) ed s > 0, dove C = C(y,S). Ora,
usando le proprieta di d e di §, si ha che

2j+1r

+00
]_ 2a ]_ dt
p . § -
\{x c S | |XGy‘ > S}’ S C ’Q(y,T’)‘ + 82 j:0/22ja7' |S(y’t)|1/a' t

“+o0

1 )
Sl Ry pa— ST
Q!+ g0, e 2

1
<C <|Q(ya7”)| + W)

__Q
da cui, scegliendo r in modo che |Q(y,r)| = s~ @1, si ottiene

zec S| |XGP|l >s SCS_% 1.2.34
y
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. _Q .
per ogni s > |Q(y, R/2a)|” @1 (essendo r < R/2a), per ogni r € (0, R/2a) e
per q.o. y € %S.
Dalla precedente stima segue immediatamente la tesi, poiche, posto sg =

Q
|Q(y, R/2a)|" @1 e g = Q/(Q — 1) e tenendo conto della stima banale
Hr e S| XG> s} <[S], Vs>0

si ha che

“+o0o
/|XGZ(x)lqu:q/ s {z e S | | XGY| > s}|ds
S 0
S0 +o0
Sq/ s771|S|ds + qC/ 17170 ds < 0

0 S0

per ogni g < qo. Il

Osserviamo che & possibile ottenere anche per XGY come per GY delle
stime di integrabilita uniformi rispetto al polo y. Per la dimostrazione di
questo risultato si veda ad esempio [47, Sezione 6].

Esistenza della funzione di Green G,. I risultati finora ottenuti cir-
ca Gf) e XGY ci consentono di provare l'esistenza della funzione di Green
Gy(-) = G(y,-) di S con polo y. Vale, infatti, il seguente:

Teorema 1.2.22. Sia S una d-sfera in RN, N > 2. Allora, per q.0. y € %S,
esiste una funzione non negativa Gy tale che:

i) Gy(-) € Xy sVt < & e Vs < %, dove Xy, denota la chiusura di
Lipo(S) rispetto alla norma || f|| e + [| X fllLs;

ii) Vo € C§°(S) e per q.o. y € 38 risulta
/S < XGy(x), Xp(r) > dz = o(y);

iii) Se f € L', con t' esponente coniugato di t < Q/(Q — 2), allora la

soluzione u in DY (S) del problema

—Lu = f inS
{ u — 0 sudS (1.2.35)
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verifica

u(y) = /SGy(x)f(x)da: per q.o.y € %S;

iv) 3C >0, C indipendente da y, tale che |Gyl o < C.
Lg% (S)

w

DIMOSTRAZIONE. Posto 0 = Q/(Q —2) ed sp = Q/(Q — 1), abbiamo finora
provato che GP € L; uniformemente in p e y per t < o, e che XG? € L
uniformemente in p per s < so. Dunque Gy € X;s e {||Gyllx, (s} € uni-
formemente limitata in p per 1 <t <o el < s < sp per q.o. y € (1/2)S.
Poiche t,s > 1, X; 5 € riflessivo, per cui esiste una successione {p,} \, 0 tale
che {G?*} tende debolmente ad un elemento G € X;,. Inoltre, scegliendo
due successioni {t,} /o e {s,} / sp ed usando un procedimento diagonale,
possiamo scegliere G indipendente da t e da s per t < o e s < sg, i.e. esistono
{G**} e G tali che

G?" — G (debolm.) in X;,, Vt < 0,5 < s0.

Per ogni fissata ¢ € C§°(S5), a(-,¢) € un funzionale lineare continuo su X .
Infatti se ¢ € C§°(S), posto A(h) = a(h, ¢), risulta

A< [1<xhXe>| < [ pxalixe
<C [ XM IXelim < CIXpluoe( [ IXH) < Ol L.
Quindi, a(GY”, ¢) — a(Gy, ). Ma poiche
a(Gyr 90):][ ¢ —o(y) per p—0

QPV

si ha che
a(Gy, ) = p(y)

ovvero la ii) del teorema.
Ora, si consideri il problema (1.2.35). Ricordando che u ¢ soluzione del
o

o
problema in D% (S) se u € DL (S) e verifica la seguente

otuse) = [ o Vo€ Di(5)
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possiamo affermare che u esiste ed € unica, grazie al teorema di rappre-
sentazione di Riesz. Infatti, grazie alle proprieta di sommabilita di f, il

funzionale
= / V%

o
¢ un funzionale lineare continuo su DX (S), essendo:

/(2*) AV
eors (L) (frar)
1/(2%) 1/2
(2%) 2
<o (funer) ™ (Lxer) <y o

Allora, dalla definizione di u e di G”, segue che

u =a(G,u) =a(u,G") = [ fGP (1.2.36)
J /

P

e facendo il limite per p — 0 risulta:

][ u —u(y) q.0.y (1.2.37)

P

mentre
/pr —>/f z)dx per q.o.y € (1/2)S (1.2.38)

poiché GP — G debolmente in X; s ed ¢(g) = [ fg ¢ un funzionale continuo
su X; s, essendo

1/¢ 1/t 1/¢
t t t
o< [ 114l < (/Sm ) (/S|gr) < </S!f\ ) l9llx..

Dunque, dalla (1.2.36) per p — 0, tenuto conto delle (1.2.37) e (1.2.38) si
ottiene la seguente formula di rappresentazione per la soluzione di (1.2.35):

/Gy, x)dr per q.o.y € (1/2)S

ovvero la iii).
Stimiamo, ora, |G|
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Posto Q = {x € S| Gy>t}pert>0,p:%60<5§p—l, per la debole
semicontinuita inferiore delle norme LP, si ha

1G]l Lo-e(@) < liminf |G o)

o p\ 1/ (p—¢) e .
< hm%lf (g) |Qt\€/p(p )HGP HLZ,(Qt)

V—

1 —_
<C (Q) /(p E)|Qt|z-:/17(pfz-:)
3
da cui

1/(p—e)
HY P < Glpc < |Gl < C (g)  £/7P—2)

ovvero

£ Q1P < C (i))l/(ps)

da cui, per e =p — 1:

o < C <pf1>

che implica la tesi iv). O

Osservazione 1.2.23. Osserviamo che si sono ottenute stime della funzione
di Green G per sfere di centro e raggio qualsiasi. Queste stime risultano
essere ottimali per domini intersecanti I'insieme di degenerazione, per i quali
la dimensione locale omogenea coincide con la dimensione globale omogenea ().
Possono essere, invece, migliorate per domini discosti dall’insieme x = 0 se nel
procedimento finora illustrato si usano le disuguaglianze di Sobolev “locali”.
In tal caso, se © & un aperto di dimensione locale omogenea Q' = Q(Q), le
stime precedentemente ottenute valgono, con @’ al posto di ), uniformemente
per tutte le sfere S C €2 di raggio “sufficientemente” piccolo.

Dunque nel nostro caso, per aperti discosti dall’asse di degenerazione, ove
loperatore ¢ ellittico e la dimensione locale omogenea @’ tende a coincidere
per diametri piccoli con la dimensione topologica IV, si riottengono al limite

delle stime L ~_, per la funzione di Green G.
N—-2"



1.2. L'operatore £ = A, + |z]**A,, a > 0 49

Stime L* per le soluzioni del problema di Dirichlet. A conclusione
di questa trattazione, facciamo vedere come l’esistenza delle sole funzioni di
Green approssimate e la validita della stima L%, uniforme in p dimostrata nella
Proposizione 1.2.17, possano essere utilizzate per ottenere alcune stime L°° per
le soluzioni del problema di Dirichlet associato ad £. Dimostriamo, infatti, il
seguente risultato:

Proposizione 1.2.24. Sia Q C RN, N > 2 un aperto limitato ed f € LP(Q)
per qualche p > Q/2. Allora, esiste ed é unica la soluzione u di —Lu = f in
o

DY(Q), e vale la sequente stima:

[ull oo () < Col QU7 £l Loy

o
DIMOSTRAZIONE. L’esistenza e I'unicita della soluzione in D% (), ovvero di

o o
una funzione u € D% () tale che a(u, ) = [, f¢ per ogni p € D% (Q), segue
dal teorema di rappresentazione di Riesz, essendo a fortiori f € L@, Ora,

sia G” la funzione di Green approssimata di £ per € con polo y € e sia
B, = B(y, p). Allora,

][ u=a(G"u) = a(u,G") = / s
B, Q
e quindi, dalla disuguaglianza di Holder segue

| 7{9 =] /Q G| < 1l /Q (Gey 1Y

< |Q‘2/Q—1/p||Gp||LQg2(

Il e (o)
Q)

w

< Ol 7P| £ Loy

dove C' & una costante indipendente da p ed y. Nelle ultime disuguaglianze

si ¢ usato il fatto che, poiche 1 < p/ < 9 vale la seguente, come verra

Q-2
richiamato nella (2.1.4) della Proposizione 2.1.2,

/ GV < Gyl Do,
Q LI (Q)

e poi si e usata la Proposizione 1.2.17.
Ora, facendo tendere p — 0, possiamo concludere che

[u()] < Gl O fll o) a0y € .

ottenendo cosi la tesi. O






Capitolo 2

Disuguaglianze di Sobolev con
termini di resto per
i Sublaplaciani

Introduzione

Oggetto del presente capitolo ¢ lo studio di alcune disuguaglianze di Sobolev
con termini di resto per sublaplaciani su gruppi di Carnot. Sia G = (R, 0)
un gruppo di Carnot di dimensione omogenea () secondo la definizione 1.1.3,
e denotiamo con

m
L=) X7 (2.0.1)
j=1
un fissato sublaplaciano su G, con gradiente subellittico corrispondente X =
(X1,...,X). Consideriamo la seguente disuguaglianza di Sobolev per la
norma L? del gradiente subellittico dimostrata da Folland in [16]:
IXFl3 = SIFl3 2" =2Q/(Q —2) (2.0.2)

valida per tutte le funzioni f con gradiente distribuzionale Xu € L? e verifi-
canti la debole condizione di annullamento all’infinito

Hzx e G||f(z)] >a}| <oo Va>0.

La validita della (2.0.2) implica in particolare che se 2 & un qualunque aperto
di G, la funzione
U — HX'LLH2 (2.0.3)
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¢ una norma su C§°(£2); pertanto, definiamo lo spazio di Folland-Stein SE(€2)
come il completamento di C§°(£2) rispetto alla predetta norma.
S3(€) risulta, quindi, uno spazio di Hilbert dotato del prodotto scalare
< U, >g10) = fQ < Xu, Xv >.
Denoteremo semplicemente con S*(RY) lo spazio S§(RY).
Ricordiamo che la costante ottimale S e i minimizzanti nella (2.0.2) sono noti
solo nel caso particolare del gruppo di Heisenberg, ove sono stati determinati
da Jerison e Lee in [34] (si veda la Sezione 2.4.1).

Il risultato da noi dimostrato e il seguente: se €2 ¢ un dominio limitato
di G, la disuguaglianza (2.0.2) su S$(Q) puo essere migliorata con Paggiunta
di un termine di resto, in stretta analogia col caso euclideo, ovvero vale la
seguente:

IXFII3 = S|IFI3- +Cfl50w  Vf €S5(Q) (2.0.4)

con p = Q/(Q —2) = 2°/2.
La dimostrazione euclidea, dovuta a Brezis e Lieb [6], pu0 essere imitata ec-
cetto che per 1'uso della tecnica di riarrangiamento, che non e utilizzabile in
questo contesto. Per questo motivo, e necessario usare un approccio diretto
e la costante C'(§2) da noi ottenuta non risulta dipendere solo dalla misura di
Q, ma anche dalla capacita subellittica di 2. Questa nozione viene illustrata
nel paragrafo 2.1.2, mentre la dimostrazione della disuguaglianza (2.0.4) & pre-
sentata nella Sezione 2.2. Resta aperto il problema di capire se sia possibile
provare una disuguaglianza con C(2) dipendente solo dalla misura di €.
Usando la stessa tecnica dimostrativa e in analogia con i risultati in [6], &
possibile anche in questo contesto stabilire una disuguaglianza piu forte della
precedente, con un termine di resto che coinvolge una opportuna norma del
gradiente, ovvero:

IXFI3 > SIfI3- + DOIXFlIg  YF € So(€) (2.0.5)

con g = Q/(Q —1).

La ragione per cui la (2.0.5) & piu forte della (2.0.4) risiede nel fatto che la
disuguaglianza di Sobolev ammette un’estensione alle norme deboli, grazie
alla disuguaglianza di Young negli spazi LP-deboli. Questa ed altre proprieta
degli spazi di Lebesgue deboli vengono richiamate per comodita di lettura nel
paragrafo 2.1.1.

Facciamo, ora, alcune considerazioni di ottimalita.

Nel caso euclideo, la disuguaglianza analoga alla (2.0.4) risulta essere ottimale
nell’ambito degli spazi LP, nel senso che la norma LP-forte con p = n/(n — 2)
non ¢ ammissibile come termine di resto. Nel contesto in esame, siamo in grado
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di provare lo stesso risultato nel caso particolare del gruppo di Heisenberg, ove
la conoscenza esplicita dei minimizzanti di Sobolev ci consente di realizzare
espansioni asintotiche alla Brezis-Nirenberg (si veda il paragrafo 2.4.1).

Sempre nel contesto del gruppo di Heisenberg, siamo in grado di dimostrare
che la disuguaglianza di Sobolev puo essere migliorata non solo sui limitati,
ma sull’intero spazio H". Proviamo, infatti, che la quantita

2
9

IV fI3 = SI1f

puo essere limitata dal basso in S'(H") in termini della “distanza” della fun-
zione f dall’insieme dei minimizzanti.

Questo nostro risultato estende al caso Heisenberg il risultato dimostrato in
ambito euclideo da Bianchi ed Egnell in [3] ed ¢ oggetto del lavoro [41].

Concludiamo questa premessa, ricordando alcuni problemi aperti riguardan-
tiil tema in esame, alcuni dei quali non hanno ancora trovato risposta nel caso
del Laplaciano classico:

(a) Quali sono le migliori costanti in (2.0.4) e (2.0.5) e sono esse raggiunte?
(Nel caso euclideo, si ha una risposta completa solo nel caso n = 3, Q
sfera di raggio R e termine di resto | - ||, con p = 2, nel qual caso si ha
che C(Q) = 7%/4R? e questa costante non & raggiunta, come dimostrato
nel lavoro di Brezis e Nirenberg [7].)

(b) Cosa potrebbe sostituire il secondo membro delle disuguaglianze (2.0.4)
e (2.0.5) quando Q ¢ illimitato, ad esempio un semispazio?
2.1 Alcune premesse

2.1.1 Proprieta dello spazio L,,,

In questo paragrafo, richiamiamo per comodita di lettura alcune proprieta
inerenti gli spazi di Lebesgue deboli, che ricorreranno nel seguito della trat-
tazione.

Definizione 2.1.1. Sia Q un aperto di RN e1< p < +00. Denotiamo con
L4,(Q) il sequente spazio di funzioni:

LP () = {f misurabili su Q | [f]pp ) < —i—oo} (2.1.1)
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dove
gy = supt Lz € 0 [f(@)] >t} (2.12)

L’espressione (2.1.2) non definisce una norma, poiche la disuguaglianza trian-
golare non ¢ soddisfatta (ad es., per Q =]0,1[, p =1, u(t) = ¢, v(t) =1 —t,
risulta [u]1,4, = [v]1w = 1/4, e [u + v]1,, = 1). Valgono, pero, le seguenti
proprieta:

Vf,g € LE,(Q) e X € R risulta
(i) [flpw = 0 se e solo se f =0 q.o. su
(i) [3(f + 9lpaw < [flpaw + [glpaw
(i) [Afpw = [A[f]pw-

Osserviamo immediatamente che , V¢ > 1, ogni funzione in L?(2) appar-
tiene a L,(Q) e [flgw < ||fllq- Infatti, V¢ > 0 risulta:

o @ > )< [ @l < £l

lfI>

Viceversa, vale la seguente:

Proposizione 2.1.2. Se Q) é un aperto limitato e p > 1, allora

L,(Q) c () LY (2.1.3)
q<p
1 p Y
e Wl < {10724 111y (21.4)

DIMOSTRAZIONE. Se 1 < ¢ < p, posto, ¥t >0, Q = {z € Q| [f(zx)| > t},

risulta:
o0
/\u|qu:q/ t71Qy | dt
Q 0

A 00
:q/ tq_1|Qt|dt+q/ 91| dt
0 A

< o4t + (s AP
pP—q
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e quindi, scegliendo A = [f], Q|7 la tesi. O
Dunque, V0 < ¢ < p — 1, vale la seguente formula:

P\ L/(p—<) -
||f||LP*e(Q) < (g) |Q‘E/p(p E)[f]LZ(Q) (215)

La seguente proposizione ci fornisce una definizione equivalente dello spazio
L%, nel caso p > 1.

Proposizione 2.1.3.

ferlrb(Q),p>1<«= 3K >0 tale che YA C Q misurabile,|A| < 0o, risulta

/ |flde < K \A|1/p/, con p' esponente coniugato di p.
A

DIMOSTRAZIONE. Infatti, se f € L%,(Q),p > 1, vale la maggiorazione

supt]Qt|1/p< 5up |A|1/p 1/ ]f|dx<

- supt 0,1/
t>0 t>0

ove nell’ultima disuguaglianza si ¢ usata la stima (2.1.4) della proposizione
precedente. [l

Dunque, posto per p > 1:

fA‘f )|dx

£ lpw A (2.1.6)

ove il sup & fatto su tutti gli insiemi misurabili A C Q,|A| < 400, la (2.1.6)
definisce questa volta una norma, che risulta equivalente alla [f] ..

Osservazione 2.1.4. Le precedenti considerazioni consentono di riconoscere
la relazione intercorrente tra gli spazi L%, e gli spazi di Marcinkiewicz. Infatti,
se Q C RN e 0 < 3 < 1, si definisce spazio di Marcinkiewicz M, 3(£2) lo spazio
delle funzioni misurabili su 2 per cui:

1
ull a0 = SUD s /A lu(z)| dz < 400

ove il sup & fatto su tutti gli insiemi misurabili A C ) di misura finita. Dunque,
per p > 1, LE,(Q) = Mz(Q) per 6=1-1/p.
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Esempio 2.1.5. Se G = (R¥ o) ¢ un gruppo omogeneo e |- | & una norma
omogenea su G, la funzione f(z) = |z|~> non sta in nessuno spazio LP, ma
appartiene allo spazio LL,(RN) con ¢ = Q/)\, ove Q ¢ la dimensione omogenea
di G. In particolare:

Q

Q-

ove B(0,1) denota la sfera unitaria per la norma omogenea |-|, ovvero B(0,1) =
{z € G| |z|] < 1}.

1fllg.,, = 5 =IBO. )M

Concludiamo questa premessa, richiamando alcune proprieta fondamentali
riguardanti la convoluzione tra funzioni LP e LP-deboli su gruppi omogenei.
Innanzitutto, se G = (RY,0) & un gruppo omogeneo, ed f,g sono funzioni
misurabili su G, la convoluzione f * g si definisce come:

frg= /f(y‘1 ox)g(y)dy = /f(y)g(xoy‘l)dy

supposto che gli integrali convergano. La ben nota disuguaglianza di Young
caratterizzante la convoluzione tra funzioni LP ammette la seguente estensione
al caso degli spazi LP-deboli.

Teorema 2.1.6. ( Disuguaglianze di Young deboli)
1

1
Siano 1 <p< oo, 1 <q,r<ooe—=—+4——1. Allora valgono le sequenti:
r P q

(1) Se f € LP, con 1 <p< oo e g € LY, allora fxg € L ed esiste C; =
Ci(p,q) > 0 tale che || f * gllrw < C1|[fllp |9llquws

(2) Se feLP,p>1ege L, allora f+g € L" ed esiste Co = Cs(p,q) >0
tale che || f + gllr < Co (| f1lp llgllgaw:

(3) Se fe Lk, ege L, allora f*g e L ed esiste C3 = C3(p,q) > 0 tale
che || f * gllrw < Cs || fllpw 19]lg0-

DIMOSTRAZIONE. Per la dimostrazione delle (1) e (2), si veda Folland -Stein
[18, Prop.1.19]; per la (3) si confronti O’Neil [45, Teor. 2.6]. O
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2.1.2 La nozione di capacita subellittica

Dedichiamo questo paragrafo ad illustrare come la classica nozione di capaci-
ta (si veda as es. [39]) si estenda al contesto subellittico in esame, in vista
dell’utilizzo di questa nozione nelle dimostrazioni dei paragrafi 2.2 e 2.3.

Vogliamo, dunque, introdurre la definizione di capacita di un insieme limi-
tato Q@ C RY rispetto al gradiente subellittico X = (X1,..., X,).
Cominciamo con I'osservare che lo spazio S'(RY), definito come il completa-
mento di C§°(RY) rispetto alla norma || Xwul|2, pud essere riguardato anche
come il completamento dello spazio Lipg(R) delle funzioni Lipschitziane a
supporto compatto rispetto alla stessa norma, essendo ogni f € Lipo(RN )
approssimabile mediante funzioni C§°(RY) in norma S!. Introduciamo, ora,
alcune definizioni e lemmi preliminari.

Definizione 2.1.7. Sia Q C RN limitato, uw € SY(RY) e k € R. Si dira che
“u > c su ) nel senso di SY(RN)” se esiste una successione {u,} C Lipo(RY)
tale che:

i) up >k su )
i) up — u in SHRY)

Analogamente si definisce u < k su 2 e u = k su €.

Se k > 0, definiamo “troncata a livello £” di u la seguente funzione:

NP seu <k
k seu>k.

Allora si provano facilmente le seguenti proprieta:
Lemma 2.1.8. Seu € SYRY) e k >0, la sua troncata u* € S*(RY).

DIMOSTRAZIONE. Sia {u,} C Lipg,u, — u in S'. Allora la successione delle
troncate {uf} appartiene ancora a Lipg. Inoltre, poiche

lim [uf — uf|| ;2 < lim |Ju, — uf s =0
n—oo n—oo

e limsup [[uf]|s1rry < [Jullsirr)

n—oo

esiste una sottosuccessione che chiameremo ancora {u*} tale che {u¥} — u*

in SY(RN); cio implica che una successione di medie v/, di {uf} converge
fortemente in S*(RY) ad u* e chiaramente {u/,} C Lipo. O



58 Capitolo 2. Disuguaglianze per i Sublaplaciani

Lemma 2.1.9. Se u € SYRY) e u > k su un insieme § nel senso di S*,
allora la troncata uF = k su Q nello stesso senso.

DIMOSTRAZIONE. Per ipotesi, esiste una successione {u,} C Lipy tale che
up — win S e u, > k su Q; allora, come prima, esiste una sottosuccessione
estratta dalla {u*} che converge debolmente ad u*, da cui una successione di
medie di u* converge fortemente ad u* e coincide con k su Q. g

Diamo ora la definizione di capacita.

Definizione 2.1.10. Sia Q C RY limitato. Definiamo capacita di Q rispetto
al sistema di campi vettoriali X = (X1,...,X,,) la quantita

cap(2) := inf {/RN yXude} (2.1.7)

uel

ove I'={u € S*(RY)| u>1su Q nel senso di S*(RY)}

Si dimostra che Iinf in (2.1.7) & raggiunto da un’ unica funzione v € S*(RY)
che chiameremo potenziale capacitario di Q (rispetto al sistema X ). Vale,
infatti, il seguente:

Teorema 2.1.11. Esiste ed é unica una funzione v € I' tale che

cap(Q) = /RN | Xv|*dx

Inoltre, v verifica le sequenti proprieta:
i) v=11in Q nel senso di S'(RN);
i1) v verifica la sequente proprieta di superarmonicita:
/ <Xv,Xe>>0 VYpeSHRY), ¢ >0 suQ nel senso di S*.
In particolare, v ¢ debolmente L-armonica in RN \ Q.
DiMOSTRAZIONE.  Poicheé l'insieme I' € un insieme chiuso e convesso ed

SH(RN) ¢ uno spazio di Hilbert, esiste ed ¢ unico ’elemento v € I' di minima
norma. Dunque risulta

cap(Q2) = /RN | Xv|2dx
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Denotiamo per comoditd J(u,v) = [ < Xu,Xv > e J(u) = J(u,u). Dai
Lemmi 2.1.8 e 2.1.9 segue che se u € T, allora la troncata u' € I', e poiche

J(u') < J(u)

segue che v = 1 su  nel senso di S*, ovvero la i).

Per quanto riguarda la ii), osserviamo che se ¢ € ST (RM), ¢ > 0 su Q,
allora v 4+ ep € I' e quindi

Jw+ep)>Jv) VYe>0
OVVero
2e J(v,0) + 2 J(p,0) >0 Ve >0

che implica
J(v, ) > 0. (2.1.8)

Inoltre, poiche ogni funzione ¢ € C§° a supporto compatto in RN \ Qe
ammissibile nella (2.1.8), si deduce che

/<XU,X<,0>d:U:O Vo € C(RY\ Q).

il che completa la dimostrazione della ii). O

,Ww

2.2 La disuguaglianza con termine di resto ||f|| 2

Questo paragrafo contiene il risultato piu importante da noi ottenuto, ovvero

la dimostrazione nel contesto astratto dei Sublaplaciani della disuguaglianza

di Sobolev con termine di resto ||f|| ¢ . Prima, pero, di procedere alla
o-2

dimostrazione, & utile richiamare qui alcune proprieta della miglior costante
di Sobolev su gruppi di Carnot, analoghe a quelle note per il caso euclideo.
Sia €2 un qualunque aperto di G e denotiamo:

| Xul3
uesp) [ull3

S(Q) = (2.2.1)

Dall’invarianza del rapporto
X3
[E=

(2.2.2)
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rispetto alle traslazioni del gruppo e alle dilatazioni
Sx(z) = ()\:E(l)’)\2 2@ T :E(r))

si deduce la seguente importante proprieta di S(2):

Proposizione 2.2.1. S(Q) ¢ indipendente da 2 e dipende solo da Q. In
particolare S(Q2) = S(G).

DIMOSTRAZIONE. Prolungando a zero gli elementi di C§°(€2) fuori da €, si puo
riguardare C$°(92) quale sottoinsieme di C§°(RY). Analogamente, possiamo
vedere S}(£2) come sottoinsieme di S*(RY). Quindi si ha che

5(Q) = 5(G)

Viceversa, sia {u,,} C S'(RY) una successione minimizzante per S(G). Per
densita di C§°(RY) in S1(RY) possiamo assumere {u,,} C C5°(RY). Possia-
mo, inoltre, assumere che 0 € 2, data I'invarianza delle norme coinvolte.

Riscalando le u,, mediante le dilatazioni Jy, ovvero considerando le funzioni:

U, = U © O,
per A, sufficientemente grandi si ha che
vm € C5° ().

Ma grazie all’invarianza rispetto alle dilatazioni 0, del rapporto (2.2.2), risulta:

2
S(@) < liminf X012 _ g
m—00  |[vp, |5«
da cui
S()=5G)=S
ovvero la tesi. O

Proposizione 2.2.2. S non ¢ mai assunta quando ) é un dominio limitato.

DIMOSTRAZIONE. Sia {2 limitato e supponiamo per assurdo che S sia assunto
da una funzione u € S§(€2).
Sia B una sfera per la norma omogenea | - | contenente 2 e definiamo

B u su
u:
0 suB\Q.
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Allora S & assunto su B dalla funzione % e % soddisfa 1’equazione

— Lu = pu? 7t
per una opportuna costante positiva .
Dunque, a meno di costanti moltiplicative, & soddisfa I’equazione

—Lu=u>""!
nella sfera B, e cio contraddice il risultato di non esistenza alla Pohozaev per
insiemi dy-stellati provato da Garofalo e Vassilev in [27]. O

Passiamo, ora, ad enunciare il risultato principale di questo capitolo, per
il quale si veda anche il lavoro da me redatto [40].

Teorema 2.2.3. Sia Q@ C G un aperto limitato. Allora, esiste una costante

C =C(9Q) >0 tale che

IXf13 = SIIFII3- + C‘(Q)Ilflli%2 vf € S5(Q) (2.2.3)

,w

dove C(2) € una costante dipendente solo da Q2 (e Q)), 2* = 5—?2, S € la miglior
costante di immersione in §, i.e.

Xu)? Xu)?
o g IXUB_ Xl
wesho) o3~ weshe) Ju

2
2*
e w denota la norma LP debole definita come

Jalf()|da

HprﬂU = Sljlp |A|1/P’

dove l’estremo superiore ¢ fatto su tutti gli insiemi A C G di misura finita |A|
e p' & l’esponente coniugato di p € (1,00).

DIMOSTRAZIONE.  Sia f € S}(Q). Possiamo assumere che f > 0, perché
possiamo sostituire f con |f| senza cambiare alcuna delle norme in (2.2.3).
Sia g € L>®(2) e sia u € S}(2) la soluzione di

{ﬁu = g in{Q (2.2.4)

u = 0 sudf2

e definiamo
¢(x) = f(z) +u(@) + ||ullov(z) in RY
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dove f ed u si intendono estese a 0 al di fuori di 2 e v denota il potenziale
capacitario subellittico di €, definito nel Teorema 2.1.11.
Dunque, la disuguaglianza di Sobolev in tutto G applicata alla funzione ¢ da:

Lok = s el

/ X(f+u)f? + [lul2 / X > 8|6l > SIfIE (225)

dove si e usato il fatto che il termine / < X(f+u), Xv > ¢ nullo, essendo

f+u € SR e v costante in Q . Si osservi che la seconda disuguaglianza
nella (2.2.5) vale poiché f > 0 e u + [lul[scv > 0 in Q. Si ha, dunque

2
A

Jrcre s [1xuz o [ < xgxus skl 2 515

/ X f12 o+ / Xuf? — 2 / £ Lut Klul > S|If13

dove k = cap(Q2). Sostituendo g con Ag e u con A\u e ottimizzando rispetto a
A, otteniamo

[ixsezsim s ([ro) /][ ema] @20

Nella precedente disuguaglianza, ¢ possibile massimizzare il termine di destra
rispetto a g. In vista della definizione di norma debole, ci restringiamo a
considerare g = 15, dove A ¢ un sottoinsieme arbitrario di €. Per le quantita
nella (2.2.6) valgono le seguenti stime

/\Xu\z < ColAMHY€@ (2.2.7)

ulloo < CoH|AIY@ (2.2.8)

Infatti, moltiplicando la (2.2.4) per u e usando le disuguaglianze di Holder e
Sobolev, si ha

/|Xu|2 - /gu = / u< Hu||2*|A|1/2+1/Q < 5—1/2||Xu||2|A’1/2+1/Q
A
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che implica la (2.2.7). Inoltre, dal confronto con la soluzione in tutto lo spazio,
ricordando che u @ la soluzione in S3(2) del problema

Lu = 1A in Q
u = 0 suodf

ed usando la soluzione fondamentale di £ descritta nel Teorema 1.1.7, per q.o.
£€Qsiha

1 1
lu(§)| < CQW x14(8) = Cq / Eiog@e’ 14(&")d¢’
1 / / 2/Q
=Ca [ ey graaté < ColAr!
poiché la funzione |¢|~9+2 appartiene allo spazio L3 2.

/|Xu|2 + KlJull% < ColA["F2/R 4 kCly | AM

< JAMQ(ColAI"T +kCY)
< |A[Y(Col0 T + cap()C)

Ora osserviamo che 02
Q@ < S leap()

Infatti, dalla disuguaglianza di Sobolev applicata alla funzione v, si ha
cap(Q) = /RN X0 > Sl > S| = 5|0 "T
Dunque, si ottiene che
[ [ 1xul? + cap(@ul%] < 1412 (Co cap(s)

Quindi, dalla (2.2.6) con g = 14, tenendo conto dell’'ultima disuguaglianza,

abbiamo )
(/1)

2 2
| TP 2 81518 + Cafean(®) g

ed infine, facendo 'estremo superiore su tutti gli insiemi A, si prova la tesi,
con C(Q) = Cg/cap(f). O
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2.3 Ladisuguaglianza con termine di resto HXfHQ& w
1>

In analogia con quanto dimostrato da Brezis e Lieb in [6], anche nel caso
dei Sublaplaciani & possibile dimostrare una disuguaglianza piu forte della
precedente, avente come termine di resto una opportuna norma L9-debole del
gradiente subellittico. Proviamo, infatti, il seguente risultato:

Teorema 2.3.1. Sia Q) C G un aperto limitato. Allora, esiste una costante
D = D(Q) > 0 tale che

IXf13 = SIIf

% +D(Q)HXfH?Q%M Vf e S5(Q) (2.3.1)

dove D(2) é una costante dipendente solo da Q (e @), 2* = 5—?2, S éla
miglior costante di immersione in €.

Osserviamo subito che la (2.3.1) risulta piu forte della (2.2.3), poiche la
disuguaglianza di Sobolev ha un’estensione alle norme deboli, grazie alla di-
suguaglianza di Young negli spazi LP-deboli.

Verifichiamo, infatti, che

1Xfll @2 ClIfl o . Vf€CERY)
Usando la soluzione fondamentale T', possiamo scrivere f € C5°(RY) come:
f=—LTxf=—-XTxXf
e risulta | XT| € L%,w’ poiche
| XT| = Co(Q — 2)|Xd|d"" ¥ <Cd"¢

essendo Xd omogeneo di grado 0 e percio limitato in G.

(Infatti, supgzo [(Xd)(€)] = supeo [(Xd)(0 1 )| = maxapy)—1 [(Xd)(n)].)

Quindi, per la disuguaglianza di Young debole, f € L, ,, con

< ||IXT X < .
e £l g, < IXTl o IXfl o, < CIXfl g,
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Procediamo, ora, con la dimostrazione del teorema.

DIMOSTRAZIONE DEL TEOREMA 2.3.1 Sia f € S}(Q). Anche in questo caso,
possiamo supporre f > 0, perche si puo sostituire f con |f| senza cambiare
alcuna delle norme in (2.3.1).

Sia g € L®(Q) e u € S§(Q) sia la soluzione di

(2.3.2)

Ly = g in
u = 0 suodf)

e definiamo su tutto lo spazio la funzione
¢(a) = f(@) +u(z) + |ucv(z) nRY

dove f ed u si intendono estese a 0 al di fuori di 2 e v denota il potenziale
capacitario di ) anzi definito.

Come nella dimostrazione del Teorema 2.2.3, la disuguaglianza di Sobolev
applicata a ¢ fornisce la disuguaglianza (2.2.6), che puo essere riscritta come
segue:

Jixsezsi o ([xrxa) /[ [ixrom]  ss)

che vale Vu € S} N L, dove k = cap(Q2) = [ | Xv|?.

Ricordando che X denota il sistema di vettori (X1,...,X,,), con m pari alla
dimensione del primo strato di G, scegliamo wu soluzione del problema (2.3.2)
con

9= Xi [(sgnX;f)1a]

dove si sottintende la sommatoria sugli indici per ¢ =1,...,m.
Verifichiamo che v € L*°. Possiamo scrivere u come:

u=w+h
dove w soddisfa I’equazione Lw = ¢ in tutto lo spazio, ovvero
w=—Cq(I'xg)

e h & L-armonica, con h = —w su 0f2.
Per quanto riguarda w, si ha

w=—Cql " 9xg=—Co(Xi| >%) * [(senX;f)1a]
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per cui
w(€)] < Co(Q—=2)(-"%*14)(§) qo.£€G

_Q
e poiche |£|'~® appartiene allo spazio Lg ', otteniamo

lwlleo < Col A2

essendo ) 'esponente coniugato di %

D’altra parte, h ¢ L-armonica in €2, per cui, per il principio del massimo,
risulta

1Alloo < fwlloo00 < [[w]oo-

Dunque, in definitiva:

oo < 2lw]le < ColAIMC. (2.3.4)

Stimiamo, ora, il termine / | Xul?.

Moltiplicando 'equazione Lu = g per u ed integrando, si ha, grazie alla disu-
guaglianza di Holder:

/\Xul2 = —/gu: _/Xi[(Sanif)lA]U
— [ (senXef ) 1aXia) < ([ a2 a2
e quindi
/|Xu|2 <Al (2.3.5)
Tn conclusione, poichd f = 0 su 89, risulta
/Xf-Xu: - /f,cu: . /in[(sanif)lA]
= [ Xt l(sgnxar 1a) = [ 1XfI1a

Usando, ora, le stime (2.3.4) e (2.3.5) nella (2.3.3), si ha:

142 = 11 + Co ( /A |Xif|>2 / (cap(@)4P/?)  (23.6)



2.4. 1l caso G = H" 67

Infatti:
/yXqu +Elul% < C|A| + k' A]Y9

< APRCIAIT +kC)
Q=2
< AP/2(C10I @ +cap(@)C)
< |APP/@(Cq cap(2))
ove si e usato, come nel Teorema 2.2.3, il fatto che |Q|% < S7lcap(Q).

Infine, prendendo il sup su tutti gli insiemi A C Q nella (2.3.6), si ottiene la
tesi, con D(Q2) = Cg/cap(€2). O

2.4 1l caso G=H"

2.4.1 Ottimalita della disuguaglianza

Si consideri ora il caso particolare del gruppo di Heisenberg H", il gruppo di
Carnot di passo due (R?**! o) i cui punti saranno denotati con ¢ = (z,t) =
(z,y,t), dotato della legge di composizione:

Col =(z+ 2, t+t +2<a’y>—<mzy >))

dove <, > denota il prodotto interno in R™. Ricordiamo che il Laplaciano
subellittico canonico su H” e 'operatore

n

A =D _(X] +Y7)

j=1
dove
Xj = 833]. + 2yj6t, Y} = 8%. — ijat
per ogni j € {1,...,n}. Indicheremo con

Vin = (X1, .., X, Y, ..., Yy)

il gradiente subellittico canonico sul gruppo H".
Ricordiamo che le dilatazioni su H" sono date da

5A(6) = (A2, %), A>0
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per cui la dimensione omogenea dello spazio risulta essere @) = 2n + 2.

In questo caso, grazie alla conoscenza dei minimizzanti della disuguaglianza
di Sobolev in tutto lo spazio, siamo in grado di provare che la disuguaglianza
(2.2.3) ¢ ottimale, nel senso che non e possibile aggiungere la norma L¥/2 g
destra della (2.2.3). Assumiamo per semplicita che 0 € Q e consideriamo la
disuguaglianza di Sobolev “migliorata” su ) limitato di H™:

[Vinull3 > Sllull3- + Cllullz Vu e S5(R) (2.4.1)
con g > 1. Naturalmente, tale disuguaglianza vale se e solo se il quoziente

Vil — Slul3.

R = ull?

(2.4.2)

¢ limitato dal basso da una costante positiva C in S} () (C dipendente solo
da Q).

Com’e noto, quando 2 = H" la miglior costante S & raggiunta, a meno di
traslazioni del gruppo e di costanti moltiplicative, dalla famiglia di funzioni:

C:

Us(z,t) = o3
(e +[22)% +42)

dove € > 0, C. = (2n(Q — 2)5)% (si veda [34]).
Consideriamo, ora, le funzioni

ue = (2, t)Ue(2,1)

dove ¢ € una funzione di cut-off , ¢ sufficientemente piatta intorno a 0 (ad
esempio, ¢ = 1 in un intorno di 0). Si ottengono le seguenti stime:

||VHnuE||%:/ Uf*(z,t)dzdt—l—/ Ve o 2U2dzdt + O(e9/?)  (2.4.3)
RN Q

e

2 / U2 (2, £)dzdt + O(=9/?) (2.4.4)
RN



2.4. 1l caso G = H" 69

Infatti:
IVirelp = [ PTen0P 42 [ VTVl + [ UVl
Q Q Q
:/WQUEAHnUng/ UZ|Vinl|®
Q Q
:+/¢2U§*+/ UZ|Vinp|? (2.4.5)
Q Q
:/U52*+/((p2—1) U52*+/U€2VH7190’2
Q Q Q
:/ U52*+/ U2 Vi + alp,e)
RN Q

dove
Oé(gp,é‘) = _/ UEQ* + / (‘Pz - 1) UEQ*'
Qc Q
Inoltre, si ha che

2*)2/2*

|Wﬁ~4/mm

Q

:4/MMT+/wf—anWT
(9] (9]

LA (2.46)

dove

Bl =— [ UF+ [ -nUF

Si osservi che a(p, ¢),8(, €) = o(C?) poiché si pud verificare direttamente che
a(p,€), B(p,e) = O(e9/?). Infatti, indicata con d la norma omogenea sullo
spazio H™:

d(€) = d(z,1) = (#* + |2|") /%,

essendo ¢ = 1 in un intorno di 0, esiste R > 0 tale che

o< fa-gwr <[ vra- [ o ura
d(§)>R d(€)>%

C / L _ge—c / ™y
< 5 dé = —7 dp
a(e)>L d(§)* & et

Ve
= 0(9/?).
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Analogamente si stimano gli altri integrali in a(p, ) e B(p,€).
Dunque, posto U.(z,t) = C%Ue(z,t), si ottiene:

R(u.) = Jo IVHn@l? U2 + 0(C2)
(fq i UZ)2/a
_C? o [Vin? U2 + 0(C?)
- Cg (fQ 1 f]g)z/q
 Jo|VhneP U2 + o(1)
(Jo 02 U2)?/a

Ora, osserviamo che, quando ¢ — 0, U, tende alla soluzione fondamentale I"
di Ayn, a meno di costanti, ovvero

= CT'(2,1)

1
Q=2

lim U, (z,t) = —————
= 2+ 1]
Se I'(z,t) non & L%-sommabile nell’origine, il denominatore in R(u.) diverge e
quindi non ci puo essere alcuna costante C' > 0 che limiti dal basso il quoziente
(2.4.2). Viceversa, se I'(z,t) ¢ Li-sommabile in 0, allora R(u.) tende a

Jo |Vin@|?T2(2, t)dzdt
(Jo ot Fq)Z/q
e quindi un limite dal basso positivo per R(u) esiste. Osserviamo, ora, che la

soluzione fondamentale di Ay~ appartiene a L?OC(H”) se e solo se ¢ < %;

_Q_
Q-2

allora la norma L9, con q¢ > non & ammissibile come termine di resto nella

(2.4.1).

Osservazione 2.4.1. Le considerazioni precedenti mostrano la stretta re-
lazione intercorrente tra le norme che possono essere aggiunte al secondo mem-
bro della disuguaglianza di Sobolev ||Vynul3 > S ||ul|3. e la sommabilita della
soluzione fondamentale del Laplaciano di Kohn. In particolare, questo com-
portamento € in accordo con il principio stabilito nel contesto ellittico euclideo
da [32], secondo il quale: “Una disuguaglianza di Sobolev relativa ad un em-
bedding non compatto puo essere migliorata aggiungendo ogni norma che sia
localmente finita per la soluzione fondamentale dell’operatore associato.
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Osservazione 2.4.2. Si noti che la disuguaglianza di Sobolev ||Vpnul|3 >
S ||ul|3- non ammette la norma L? come termine di resto, poiché la dimensione
omogenea ) = 2n+2 risulta essere sempre strettamente maggiore di 3. Questo
fenomeno puo essere messo in relazione con ’assenza di dimensioni critiche per
il Laplaciano di Kohn Ay, dimostrata in [12] (si veda anche [11]). Infatti, esso
conferma il principio formulato nel contesto euclideo da Gazzola e Gruneau
in [28], secondo il quale: “La dimensione spaziale & critica per un operatore
lineare L se e solo se la disuguaglianza di Sobolev puo essere migliorata su
aperti limitati con ’aggiunta della norma L?.

A riguardo del problema dell’ottimalita sopra discusso, menzioniamo che
le stesse conclusioni ottenute nel caso H" possono essere stabilite nel contesto
piu generale dei gruppi di tipo Iwasawa (si veda [26] e i riferimenti in esso
citati per definizioni e proprieta) per la disuguaglianza di Sobolev ristretta
allo spazio delle funzioni a simmetria cilindrica. Anche in questo caso, il
risultato scaturisce dalla conoscenza dei minimizzanti di Sobolev (calcolati in
[26, Teorema 1.6]) e dal loro andamento rispetto alla soluzione fondamentale.

2.4.2 La disuguaglianza migliorata in termini della distanza
dall’insieme dei minimizzanti

Nel lavoro [6] del 1985 sulle disuguaglianze di Sobolev con termini di resto in
ambito euclideo, Brezis e Lieb lasciavano aperta la seguente questione: esiste
un modo naturale per stimare dal basso la quantita

IVF1I3 — SII£1I3-

in termini della “distanza” di f dall’insieme dei minimizzanti?

Una risposta affermativa a questa domanda e stata data da Bianchi ed
Egnell in [3] nel 1991. Questi ultimi dimostrano che, indicato con M l'insieme
dei minimizzanti della disuguaglianza di Sobolev, e denotato con Dé’2 (RM) lo
spazio ottenuto come completamento di C§°(RY) rispetto alla norma ||Vul|2,
esiste una costante positiva « tale che

IVFI3 = S| fI3- > ad(f,M)?, ¥ f € Dy*(RY)

dove d(f,M) e la distanza della funzione f dall’insieme M nello spazio di
Sobolev Dé’2, ovvero

AL = inf [V = w)e
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Recentemente, poi, il risultato di Bianchi-Egnell ¢ stato esteso da Lu e Wei
[43] al caso della disuguaglianza di Sobolev associata al bi-laplaciano.

In quanto segue, dimostreremo che una disuguaglianza analoga puo essere sta-
bilita sul gruppo di Heisenberg H".

Consideriamo la disuguaglianza di Sobolev su H" dovuta a Folland-Stein,
ovvero

IVhn £II3 = SIfI3- 20 ¥ f e SyH) (2.4.7)

ove S ¢ denota la miglior costante di immersione, ed indichiamo con M
Iinsieme delle funzioni estremali della disuguaglianza, i.e.

M= {f e SsH") | [Vunflz = SIfI3 }- (2.4.8)
Come dimostrato da Jerison e Lee [34], M ¢ costituito da funzioni della forma
P(€) = cUry(§) = AV DRU @A (n7" o))

dove c € R, A € Ry, U(§) = U(z,t) = ko ((1 + [2]*)? +t2)_(Q_2)/4. D’ora in
poi, la costante kg si intendera scelta in modo tale che ||[VynU||2 = 1.
Dunque le funzioni estremali di (2.4.7) costituiscono una varieta 2n + 3-dimen-
sionale M immersa in S& mediante la mappa:

Rx Ry x H" 3 (¢, \,n) — cUy, € S§(H").
Definiamo la distanza tra questa varieta e una funzione f € Sé come segue:

d(f,M) = inf [[Vin(f —u)ll2 = inf [[Vue(f —cUxg)ll2-
ueM A
Si noti che d(c A(@=2/2f 0§y o 7,), M) = |¢| d(f, M).

Il risultato da noi ottenuto ¢ il seguente:

Teorema 2.4.3. Esiste una costante positiva «, dipendente solo dalla dimen-
sione @, tale che

IVhe fI3 = SIIFI3- = ad(f, M)?, ¥ fe Sy(H).

Inoltre, il risultato ¢ ottimale nel semso che € falso se il termine di resto é

sostituito da d(f, ]M)ﬁHVanHg_’g, con 3 < 2.

Un argomento chiave nella dimostrazione del teorema e lo studio degli
autovalori della seguente equazione:

—Apnv =AU 720, ve SHHM).

Cominceremo, dunque, con ’esporre i risultati di questa analisi.
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Un problema agli autovalori. Si consideri 'operatore
Lag=—Us" A su LU 72d¢).

Poiche I'imbedding
1 277252
So — L (UM? d¢)
¢ compatto, lo spettro di £y, ¢ discreto.

Nel lemma seguente si calcolano il primo e il secondo autovalore di L), e si
descrivono i relativi autospazi.

Lemma 2.4.4. Siano \;, i = 1,2,3,..., gli autovalori di L ,, disposti in
ordine crescente. Allora

i) A\ = S? /2 ¢ semplice con autofunzione Uxp;

i) Ao = S§%'/2(2* — 1) ha molteplicita 2n + 2 e il corrispondente autospazio
e generato da {O\U»p, VyUxp}-

Inoltre, gli autovalori non dipendono da A e da n.

DiMOSTRAZIONE.  Un semplice argomento di riscalamento mostra che gli
autovalori non dipendono dai parametri A e 7. Quindi possiamo assumere che
A=1,n7=0, ediconseguenza Uy, = U. Vogliamo risolvere il problema agli
autovalori

—Apnv =AU "2, ve S{HM). (2.4.9)

Per questo studio faremo riferimento al Lemma 5 di pag. 988 del lavoro di
Malchiodi-Uguzzoni [44].

Ricordiamo che la trasformata di Cayley ¢ un biolomorfismo tra la palla
unitaria in C"*! e il semispazio superiore di Siegel D = {(z,w) € C" x C :
Imw > |2|?}, dato da

1 —Gn
S S w:¢<C+1>, (2.4.10)
1+ Cog1 1+ a1

dove ¢ € C"*1 |¢| < 1. Questa trasformazione, ristretta al bordo, fornisce una
equivalenza CR tra la sfera S?"*! meno un punto e &D. 1l gruppo di Heisenberg
si identifica con 9D mediante la corrispondenza (z,t) « (z,t+i|z|?) = (2, w).
Denotiamo con F : §?"T1\ {(0,...,0,—1)} — H" la mappa risultante dalla
composizione della (2.4.10) con la corrispondenza 9D = H", i.e.

B G Cn 1 — Gt
F(Cla"'aCTH*l)_ <1+<‘n+1"”71+cn+1,Re <11+Cn+1>) '
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Si consideri, ora, lo spazio S'(S?"*1), ottenuto come il completamento di
C(S?"+1) rispetto alla norma

ol ooy = [, (Buldely + Ruv®)0 A do"
S2n+1

ove @ ¢ la forma di contatto standard sulla sfera, b, =2+ 2/n=2%¢e R, =
n(n + 1)/2 & la curvatura scalare di Webster associata a 6 (si veda [33]), e si
consideri l'isometria lineare ¢ : S1(S?"*1) — SJ(H") definita da:

(v)(€) = UE)u(FH()), wvesHS™), ¢eH™

Mediante tale isometria, una funzione u € S§(H") & una soluzione di (2.4.9)

se e solo se la funzione v = ¢~ u risolve I’equazione lineare

—Agv = pv in S (2.4.11)

per un opportuno autovalore u. Lo studio degli autovalori dell’operatore —Ag
su S+ & stato realizzato da Folland in [17]. In particolare, il primo autova-
lore 1 = 0 & semplice e la corrispondente autofunzione & la funzione costante.
Tramite 'isometria ¢ si ottiene, dunque, la prima autofunzione per il problema
(2.4.9) ovvero la funzione «(const) = U, corrispondente all’autovalore S2°/2,
Il secondo autovalore ps € 2n + 2-dimensionale ed ¢ generato dalle funzioni
{Re(;,Im ¢ }j=1,. ny1 ristrette a S?rtl Un calcolo diretto mostra che, a
meno di costanti, risulta:

oU\ oU,, .
L(Rel;) = i s v(Im :7777 ) :1,...,77/;
(Re ;) Ox; ‘(/\,77):(1,0) (Im &) 0y; ‘(Am):(l,O) J
8U,\,7 8U/\n
n = : ) I n = : :
HRe 1) = =53 ‘(/\,77)=(1,0) (ImGuir) = =5, ‘(A,m:(l,o)

Dunque, ricordando che n = (x,y,t), si ottiene che il secondo autospazio re-
lativo al problema (2.4.9) e generato dalle funzioni { O\Ux,, V,Ury } € che
Ay = S%7/2(2F —1). O

Acquisiti questi risultati preliminari, possiamo procedere alla dimostrazione
del teorema.

Dimostrazione del Teorema 2.4.3. 1l principale ingrediente nella dimo-
strazione del teorema e contenuto nel seguente lemma, che studia il compor-
tamento della quantita ||Vyn f||2 — S| f||3. in prossimita di M.
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Lemma 2.4.5. FEsiste una costante positiva «, dipendente solo dalla dimen-
sione Q, tale che

per ogni f € SYH™) con d(f, M) < ||[Vunf]2-

DIMOSTRAZIONE. Come gia osservato, M ¢ una varieta 2n + 3-dimensionale
immersa in S} (H") mediante la mappa:

R xRy x H" 3 (¢, \,n) — cUy, € Sg(H™).
Sia f € S} tale che

(. M)? = inf [[ Vi (F = U3

vy

= Hif <HanfH2 + —QC/Van anU)\nd5> < HVan||2

Si verifica facilmente che lestremo inferiore di cui sopra ¢ raggiunto in un
punto (co, Ao, M) € R x Ry x H", con ¢y # 0.
Poiché M \ {0} ¢ una varieta regolare, si deve avere

(f —coUxg,no) L TMeUy, o (2.4.12)
ove lo spazio tangente risulta essere:
TMCOU)\o,no = Span {U>\077]07 8,\UA07,70, VWU)\OJIO} . (2.4.13)

Richiamiamo a questo punto i risultati del Lemma 2.4.4. Abbiamo provato

che il primo ed il secondo autospazio dell’operatore Ly, = —-U?- Noutlo 2" Ay su

LQ(UAQ0 :IQdE) sono generati rispettivamente da Uy, .,y € {92Uxgno> VisUrosmo }-
Dunque, lo spazio tangente TMCono,no ¢ esattamente la somma del primo e
del secondo autospazio dell’operatore L), ,,. Inoltre, lo spettro ¢ discreto e

quindi, per la caratterizzazione min-max degli autovalori, risulta

_ JIVenw]?dg

2% —2 2 ’
f U>\07770

A3 Vw L TM (2.4.14)

COU)\omo’

con l'uguaglianza se w & la terza autofunzione. Dunque, in particolare, la
(2.4.14) varra per w = f — coUxg -
Ora, poiche (f — coUxg,p) L TMeu,, ., - POSSiamo scrivere

f = COU)\o,no + d’U,
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dove v ha norma 1 in S& ed ¢ perpendicolare allo spazio tangente TMCOUAO o
e d = d(f,M). Una espansione asintotica in d conduce alla seguente stima:

s

> e — / o Usg o + dof dé

:|c0|2*5’_2*/2+d2*|co|2*_260/U/\2;m;vd£

2%(2% — 1 . .
+ d27( )|c0|2 2/U2 22 dE 4 o(d?)

9 A0,M0
* ok 922" —=1) 1
S ‘00‘2 S 22 +d2‘00’2 2(2)A3 + O(dz).

Si noti che [ Uf;_lv d¢ = 0, poiche v L Uy, 59 € AnnUxg o + S22y -l —

. 70 A0,M0
per cui
— _ _ _ q2%/2 2" —1
0= /VH"UAO,no -Vpnvd€ = /UAHnU)\O’nO d¢ =85 /Uvadg.

Ora, tenendo conto che Ay = (2* — 1)5%"/2 ed elevando a 2/2*, si ottiene che

2% 2 2% 2% /2 2 2% 22* 2% 2)‘2 2 2o
(/|f| dg) §<|Co| STE - dPeg 25T /;3+o<d ))

2* )\ 2
=cgSH1+ 052d2——2 + o(d?)
2 A3

A
=St <1 + ca2al2—2 + 0(d2)>
A3
A
=325+ dQS‘l)\—Q + o(d?).
3

In conclusione, osservando che ||V f|13 = ¢3 [|VunUxgmol13 + d* = & + d?, si
ha
2

A
IV £1I3 = SIFIZ- = Vi I3 = ef — d2/\*3 + o(d?)

= d? (1 - t) + o(d?).

Dunque il lemma vale con a = (1 — \a/A3). Per verificare che questo risultato
¢ ottimale, si puo procedere come segue.
Consideriamo la funzione f = U + dv, dove v ¢ la terza autofunzione di L1

(2.4.15)
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e d & un numero positivo piccolo. Allora, se d ¢ sufficientemente piccolo, si ha
che d(f,M) = d e il punto piu vicino ad f su M e U.

Ora, lo stesso argomento usato prima per ottenere la (2.4.15) conduce alla
stima

A
1901 = SIB- = (1= 32) + ofa®),

questa volta con 'uguaglianza. O
Siamo ora in grado di dimostrare il teorema principale.

DIMOSTRAZIONE DEL TEOREMA 2.4.3. Il fatto che il risultato sia ottimale
segue dall’ultima parte della dimostrazione del lemma precedente.

Assumiamo per assurdo che il teorema non sia vero. Allora, esiste una succes-
sione {f,,} C S{(H") tale che

IVt finll3 = S1l.fn13-
d(fm, M)

— 0, perm — o0

Grazie all’omogeneita del precedente rapporto, possiamo assumere che
|Viun fmll3 = 1. Inoltre, poiche d(fm, M) < ||[Vanfmlz2 = 1, a meno di
sottosuccessioni estratte possiamo assumere che

d(fm, M) — L € [0,1].

Ora, se L = 0, si ha direttamente una contraddizione dal lemma precedente.
L’altra possibilita & che sia L > 0. In questo caso si deve avere

Vi frall3 = Sl Fnll3- — 0, [ Viao finll2 = 1.

Dal principio di concentrazione-compattezza di P. L. Lions (si veda il corollario
1.2 della Sezione 1.4 in [38], Parte I) opportunamente adattato al contesto del
gruppo di Heisenberg, otteniamo che esistono due successioni Ay, 7m, tali che

A2 fon (G, (! ©€)) — +U (0 = U) in S3(H")  per m — oo.
Questo implica che
Af M) = d (N D72 1 (83, (11 0 1) , M) =0, perm — o,

contraddicendo l'ipotesi L > 0. O






Capitolo 3

Disuguaglianze di Sobolev con
termini di resto per
’operatore L = A, + |7]°?A,

Introduzione

In analogia con quanto dimostrato per la classe dei sublaplaciani nel precedente
capitolo, ci si e chiesto se fosse possibile ottenere risultati simili per altri opera-
tori ellittico-degeneri. Si e, dunque, affrontato il problema delle disuguaglianze
di Sobolev con termini di resto per I'operatore definito su RV = Ry x Ry da

L=A;+z**Ay), a>0

introdotto e descritto nel Capitolo 1. Sia © un aperto qualunque di RY.
Denotato con X = (Xq,...,Xy) il sistema di campi

Xi=g—peri=1,....m, Xipm=|z[* peri=1,....n (3.0.1)

ox; 0y;

che realizza £ come “somma di quadrati”, ovvero

N
L=) X;
=1

o
indicheremo come in precedenza con D}((Q) lo spazio ottenuto come comple-

tamento di C§°(€2) rispetto alla norma

ur— [ Xull2
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(Si osservi che la precedente costituisce una norma su C§°(2) per qualunque
o

insieme Q, grazie alla validita della disuguaglianza di Sobolev). Dunque D (£2)
¢ uno spazio di Hilbert con prodotto scalare a(u,v) = fQ < Xu,Xv >. Nel
caso Q = R, lo spazio sard denotato semplicemente con D}((]RN ).

Sia, ora, ) limitato. Il nostro intento ¢ stato quello di capire quando
fosse possibile aggiungere un termine di resto alla disuguaglianza di Sobolev
ottimale su €, ovvero la disuguaglianza

||Xu||%2(9) > S(Q)HUH%Q*(Q) Vu € DY (Q) (3.0.2)
con costante ottimale S(2) =  inf % Si fa notare che in questo caso,
weDL(Q)

non essendo 'operatore invariante per alcuna traslazione di gruppo, per un
dominio generico €2 non ¢ possibile affermare che S(€2) non dipenda da §.

D’altro canto, grazie all’invarianza rispetto alle dilatazioni d del quoziente

[ Xull3
[[ull 34 *
nerale, per domini intersecanti l'insieme di degenerazione {x = 0}, grazie
all’invarianza del sistema X rispetto alle traslazioni euclidee nella variabile .

In particolare, per questi domini S(§2) coincide con la miglior costante S(R™)
o

questa proprieta vale per domini ) contenenti l'origine e, piu in ge-

(mentre, ovviamente, S(Q) > S(RY) VQ, essendo DL () un sottoinsieme di
D (RY)).

o
Infatti, sia {u,} C DL (RY) una successione minimizzante per S(RY); per
densita di C$°(RY) in SY(RY) possiamo assumere {u;,,} C CRY). Se Q
¢ un aperto che interseca l'insieme {x = 0}, possiamo assumere che 0 € €,
data l’invarianza delle norme coinvolte rispetto alle traslazioni euclidee nella
variabile y. Riscalando le u,, mediante le dilatazioni §y, ovvero considerando
le funzioni:

U\ :umoé,\m

m

per A, sufficientemente grandi si ha che
U, € Cgo (Q)

L . . . . . . . Xul2
e quindi, grazie all’invarianza rispetto alle dilatazioni éy del quoziente ‘WJ'?,
2

essendo | Xuyl|2 = \279|| Xul|2 e [|ur|3 = A2Qjul|3., risulta:

2 2
S(Q) < liminf [Xua,, 13 — liminf [[Xumll3

mooo lux,, |3 m=oo [umll3.

= S(RY)
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da cui
S(Q) = S(RN) =S

Confiniamo, dunque, la nostra analisi a questa classe di domini, ai quali
si riesce ad applicare perfettamente I’argomento di Brezis-Lieb, ottenendo un
termine di resto per la disuguaglianza (3.0.2).

Una difficolta aggiuntiva rispetto al caso dei sublaplaciani si € incontrata
nel determinare la stima L in (2.2.8) richiesta nella dimostrazione. L’argo-
mento di confronto usato nel caso dei sublaplaciani utilizzava, infatti, precise
stime di sommabilita LP-deboli per la soluzione fondamentale dell’operatore
coinvolto. In questo caso, abbiamo ottenuto la stima richiesta, utilizzando le
proprieta di integrabilita uniformi delle cosiddette funzioni di Green approssi-
mate dell’operatore £ descritte nella Proposizione 1.2.17 (si veda il Lemma
3.1.1 nel paragrafo seguente).

La dimostrazione del risultato sinora illustrato ¢ seguita da alcune con-
siderazioni su come esso possa essere esteso ad alcune generalizzazioni del-
I'operatore A, + ]33|2°‘Ay, come ad esempio l'operatore definito su RV =
RM x RN x ... x RM da

L=Any+|zPPAG) + .. a2 |z 22 g2 p

dove 29 ¢ RN ¢ A(;) denota il Laplaciano in RNi per j =1,...,7, ei bj;
sono numeri reali non negativi.

Infine, sono riportate alcune considerazioni di ottimalita analoghe a quelle
fatte per la disuguaglianza ”migliorata” sul gruppo di Heisenberg.

3.1 La disuguaglianza di Sobolev con termine di
resto

Come annunciato, dimostriamo in questa sezione la disuguaglianza di Sobolev
con termini di resto per i campi (3.0.1), per aperti limitati intersecanti I'insieme
di degenerazione dei campi. Al teorema si premette il seguente lemma:

Lemma 3.1.1. Sia Q ¢ RN, N > 2 un aperto limitato ed A un qualunque
o

sottoinsieme misurabile di Q. Allora la soluzione in D () del problema

(3.1.1)

—Lu = 14 inQ
u = 0 sudf



82 Capitolo 3. Disuguaglianze per £ = A, + |z]2“A,
soddisfa la sequente stima:

lulloo < C|AP/<.

o
DIMOSTRAZIONE. Per definizione, la soluzione in D% (£2) del problema (3.1.1)

o o
¢ I’ unica funzione u € D% () tale che a(u,¢) = [, 14 ¢ per ogni ¢ € DY ().
Ora, sia GY, la funzione di Green approssimata di £ per 2 con polo y € Q e
Qp(y) = Q(y, p) la d-sfera di centro y e raggio p. Allora

u—a(Gp,u)—a(u,Gp)—/lAGp
]{zp(w ! Tode

\][ u\:\/uag\:/aggcw/@?
Qp Q A

con C' indipendente da p e da y, dove 'ultima disuguaglianza segue dalla stima

da cui

_Q_
La-2-debole dimostrata nella Proposizione 1.2.17, essendo /2 1’esponente

coniugato di Q/(Q — 2).
Ora, facendo tendere p — 0, si puo concludere che

lu(y)| < CAY9 qo.yeq,
come richiesto dalla tesi. O

Possiamo, ora, procedere alla dimostrazione del teorema.

Teorema 3.1.2. Sia Q C RN N > 2 un aperto limitato, QN {x = 0} # 0.
Allora, esiste una costante C' = C(§2) > 0 tale che

IXf13 = SIIFII3- + C(Q)Hf\l{i%2 vf € Dx(Q) (3.1.2)

S w

dove Q@ = m+ (a+1)n ¢é la dimensione naturalmente associata all’omogeneita

o
di X, 2" = QQ—% ed S la miglior costante per I'embedding D () — L?" (), i.e.

S = inf ||XUH§ _ : HXu“%
o

lull3 Uryy lull3c
weDL () u€D L (RV)



3.1. La disuguaglianza di Sobolev con termine di resto 83

DIMOSTRAZIONE.  Seguendo la dimostrazione del Teorema 2.2.3, sia f €
o

D} (Q) ed assumiamo che f > 0. Sia g € L°°(Q) ed u la soluzione in DL ()
di
{ Lu = g infY (3.1.3)

u = 0 sudf

e definiamo
¢ = f+u+||luljov inRY

dove f ed u si intendono estese a zero fuori da 2 e v € il “potenziale capacitario
di 2 rispetto al sistema di vettori X, definito come segue, analogamente al caso
dei sublaplaciani. Si consideri il funzionale norma

J(u) :/ | Xul? dz
RN

o
sullo spazio di Hilbert D (RY), che denoteremo semplicemente con D% (RY),
e consideriamo 'estremo inferiore di J sull’insieme

I ={uc DYRY) |u>1 suQ nel senso di DL (RM)}.

Denoteremo questo estremo inferiore con capy(€2) e lo chiameremo la X-
capacita di €.

Poiche I € un insieme chiuso convesso, questo estremo inferiore ¢ assunto da
un’unica funzione v € DL (RY), che chiameremo X-potenziale capacitario di
Q. Come prima, ¢ facile verificare che v = 1 su Q (nel senso di D).

Dunque, la disuguaglianza di Sobolev in tutto lo spazio applicata a ¢ conduce
a

3. > S|IfII3-

[1XG+ 0P+ ul [ 10 = S0

e seguendo la dimostrazione nel caso dei sublaplaciani, si ottiene

Jixae=sisig+ ([ 1) /] ] 1ur+ wlul (3.1.4)

dove k = capx(£2), A & un sottoinsieme arbitrario di Q e u & la soluzione in
o

DL(Q) di
{,Cu = 1y inQ

u = 0 sudf (3.1.5)
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Nuovamente, dalla disuguaglianza di Holder si ottiene la stima
/\XuP < C|A[M*2/Q (3.1.6)

mentre la stima

|l < C'|A[#9 (3.1.7)

¢ dimostrata nel Lemma 3.1.1 .
Quindi, usando le (3.1.6) e (3.1.7) e prendendo 'estremo superiore su tutti gli
insiemi A in (3.1.4), si ottiene la tesi, con C(Q2) = Cg/capx(£2). O

3.2 Alcune generalizzazioni

Tutti gli argomenti usati nella precedente sezione al fine di ottenere un termine
di resto nella disuguaglianza di Sobolev si applicano, ad esempio, alla seguente
generalizzazione dell’operatore A, + ]az\zo‘Ay, ovvero all’operatore definito su
RY = RM x RM2 x ... x RV come segue

£:A(1)+‘x(1)|2b21A(2)+“.+‘$( |26r1| 3 (2)|2br2 ..|:E(T_1)|2brrflA(r)

dove 29 € RN ¢ A(jy denota il Laplaciano in RN per j =1,...,r, ei bji
sono numeri reali nonnegativi.

Anche in questo caso, una disuguaglianza di Sobolev associata ad £ puo
essere dedotta dai risultati in [21] e puo essere migliorata su domini limitati
contenenti 'origine mediante ’approccio di Brezis-Lieb.

Vediamo, innanzitutto, quale numero assume il ruolo della dimensione omo-
genea () in questo caso.

Si noti che I'operatore L si puo scrivere come somma di quadrati di N campi
vettoriali localmente Lipschitziani nel seguente modo:

Z% ( ) (3.2.1)
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dove
Xi(l) - 86(1) peri=1,..., Ny
Ly
Xi(Z) = |x(1)]b21 6(2) peri=1,..., N
oz, (3.2.2)
X0 = | @ |gr-Dppre 2 peri=1,....N,

In virtu dell’omogeneita dei coefficienti, ai campi X U) si associa in modo

i
naturale la seguente famiglia di dilatazioni anisotrope:
Sx(x) = NGz NC2p2) \Grgp)y, (3.2.3)

dove Gi =1eGj =1+ Zj;ll bjiG; per j =1,...,r, risultando i campi Xi(j)
omogenei di grado 1 rispetto alle suddette dilatazioni. Verifichiamo, infatti,

che

XD (foby)=AX"f) o6, (3.2.4)
Risulta:
0 0
X (f o) (@) = —g(fo ) (@) =A% ( {)> (0r(x))
x,; Ox;
€

; . . o 0
XO(f 0o (@) = o DPra@ e 20— (70 53) @)
L

_ ’x(l)‘bﬂ’x@)‘bjg o |$(j*1)‘bjjfl)\Gj 8f‘ (5)\(1’))
(9:1:&”
_ |)\Glﬂj‘(1) |bj1 ‘)\GQSU(Z) ’b]-Q o |)\Gj_1$(j_1) |bjj_1 )\Gj_PZ;f bjiGiLf(dA(x))
ozt

G= 16 () : ~
_AGi— i b (X f)(é)\(x)), 1<j<r, 1<i<N;

da cui, scegliendo G1 =1e Gj =1+ Zf;ll bj;G; per j =1,...,r, siottiene la
(3.2.4).
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Di conseguenza, 'operatore £ ¢ omogeneo di grado 2 rispetto alle dilatazioni
0y e il ruolo di dimensione omogenea () € assunto dal numero

Q= ZNj Gj,
j=1

essendo A9 lo jacobiano delle dilatazioni 4.
Ora, denotato con X = (X(l)7 e ,X(’")) il sistema di vettori definito dalla
(3.2.2), dai teoremi di embedding in [21] si ricava che:

W}f(RN) o H(E<1>,5<2>,._,,5(r>)(RN)

ove ) = (59), . ,55\2) = ((Gj)7',...,(Gj)™Y) per j = 1,...,r, e poiche
per lo spazio ordinario anisotropo al secondo membro della precedente vale
I’embedding

H(6(1)7€(2)""’6(7l))(RN) (3N LQ(RN)

per
11 1
16567
16i6N;

ove il secondo membro & pari ad 1/Q), si ottiene anche in questo caso la
disuguaglianza di Sobolev

IXull3 > Cllul3.  Yue CFRY)

con 2" =2Q/(Q — 2).
Ora, se ) & un aperto limitato di R" contenente I’origine, la miglior costante

di Sobolev su 2 coincide con la miglior costante relativa all’intero spazio,
[ Xull3
(S
classe di aperti, dunque, si riscrive in modo perfettamente analogo il risultato

illustrato nella sezione precedente.

grazie all'invarianza del rapporto rispetto alle dilatazioni dy. Per questa

3.3 Considerazioni di ottimalita

Dedichiamo quest’ultimo paragrafo del capitolo ad alcune considerazioni di ot-
timalita. Ricordiamo che nel caso della disuguaglianza di Sobolev sul gruppo
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di Heisenberg ¢ stato possibile dimostrare che il nostro risultato ¢ ottimale nel-
I’ambito degli spazi LP, nel senso che la disuguaglianza non ammette la norma
L% come termine di resto (si veda la Sezione 2.4.1). Cio ¢ stato possibile
grazie alla conoscenza esplicita dei minimizzanti di Sobolev, che hanno con-
sentito la realizzazione di stime asintotiche alla Brezis- Nirenberg, conducendo
al risultato.

Nel caso dell’operatore £ = A, + |z|**A,, poco & noto circa gli estremali della
disuguaglianza di Sobolev. Segnaliamo, pero, che nel caso @ = 1, essi sono
stati determinati da Beckner [1] nel caso di dimensioni basse.

In particolare, usando la simmetria iperbolica e la geometria conforme, Beck-
ner dimostra i seguenti risultati:

Teorema 3.3.1. Vf € C1(R?) :

2 2
[ flloge))” < 722 /Rz [(gi) st (Z) ] e (331

La disuguaglianza é ottimale, e un estremale é dato dalla funzione
[+ [2?)? + )"

Teorema 3.3.2. Vf € C1(R3) :

1
Fllra(rs 2§/
Il < 5 [

La disuguaglianza é ottimale, e un estremale & dato dalla funzione

2
Vo f|* + 42° (gi) ] dzdy (3.3.2)

(14 |2%)? + 1?2

Dai risultati di Beckner segue che, almeno per le dimensioni omogenee
@ = 3,4, i minimizzanti per la disuguaglianza di Sobolev relativa ad £ =
A, + |z|2A, sono costituiti dalla famiglia di funzioni

Ce
((e+ [2[*)? + 4]y

Ue(z,y) =

)%

Q-2
dove e >0e CE~: Ce 1.
Dunque, posto U, = g—i, risulta che

~ 1
Us — T(z,y) = per e — 0

Q-2
(lz[* + 4fy[?)




88 Capitolo 3. Disuguaglianze per £ = A, + |z]2“A,

ove I' &, a meno di costanti, la soluzione fondamentale dell’operatore £ con
polo nell’origine (si confronti il paragrafo 1.2.1).
I risultati di Beckner sopra richiamati ci consentono, almeno per le dimensioni
da lui trattate, di stabilire I’ottimalita del nostro risultato, in maniera perfetta-
mente analoga al caso H"”. Richiamiamo brevemente il tipo di argomentazione
usato.

Sia © un dominio intersecante I'insieme {z = 0}. Assumiamo per sempli-
cita che 0 € € (ipotesi non restrittiva, data I'invarianza dell’operatore rispetto
alle traslazioni euclidee nella variabile y). Stimiamo il rapporto

_ [Xuf3 — Slul3,

Blu) [l

(3.3.3)

nelle funzioni
ue = o(z,y)Uc(z,9)

ove ¢ ¢ una funzione di cut-off su Q, i.e. ¢ € C5°(2),0< ¢ <1, p=1inun
intorno di 0.
Essendo:

| Xl = / U (2,y) dady + / XoPU2 dady + 0(c9/2)
RN Q

2 _ / U (2,y) dzdy + O(9/2)
RN

| ue

si ottiene:

/Q [ Xo|* U2 dady + o(C2)
([ v daaye

| Vel 02 ey + o(1)

( / @1 U dzdy)?/4
Q

da cui, tenendo conto che U, — I’ per € — 0, e che I" non ¢ L%sommabile in
0 per ¢ > Q/(Q — 2), risulta che per tali ¢ il denominatore in R(u.) esplode,
mentre il numeratore si mantiene limitato, essendo ¢ = const in un intorno di
Z€ro.
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Dunque, per ¢ > Q/(Q — 2) il quoziente R(u) non puod essere limitato dal
o

basso in D}<(Q) da alcuna costante positiva C, e cid equivale a dire che la
norma L7, con ¢ > Q/(Q — 2), non ¢ ammissibile come termine di resto nella
disuguaglianza di Sobolev relativa all’operatore A, + \x|2Ay.

Si osservi, in particolare, che nel caso @ = 3 la disuguaglianza (3.3.1)
ammette la norma L? come termine di resto. Questa circostanza, alla luce
del principio formulato nel contesto ellittico da Gazzola e Grunau in [28] e
richiamato nell’osservazione 2.4.2, suggerisce di investigare la “criticita” della
dimensione omogenea @) = 3 per l'operatore A, + |z|?A,. Questo tema sarad
affrontato nel Capitolo 4.






Capitolo 4

Il problema critico per gli
operatori Apn e Ay + |z]°A,

Introduzione

Questo capitolo ¢ dedicato allo studio di problemi “critici” nel senso delle
immersioni di Sobolev per alcuni degli operatori subellittici sinora introdotti.
Piu precisamente, si studia I’analogo del problema di Brezis-Nirenberg per gli
operatori Apn e Ay + |z]2A,,.

La prima parte del capitolo tratta il seguente problema critico per il
Laplaciano di Kohn sul gruppo di Heisenberg:

—Apru = w4+ A inQ
u > 0 in (4.0.1)
u = 0 su 02
dove 2% = 29 = 2n + 2 e la dimensione omogenea di H" e {2 & un aperto

limitato regol;re di H".

Ricordiamo che il problema (4.0.1) ¢ stato studiato da Citti in [12] (si veda
anche [11]).

Si noti che I’esponente 5—?2 e critico per il problema di Dirichlet semilineare
per il Laplaciano di Kohn, cosi come % e critico per I’equazione di Poisson
semilineare, dal momento che, se ) & limitato, I'immersione

SL(Q) — LP(Q) (4.0.2)
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¢ compatta per 1 < p < QQ—C_QQ, mentre ¢ solo continua per p = 5—?2 (si veda

[18], [24]). Questa circostanza non consente 'utilizzo di metodi variazionali
standard. Sirichiede, quindi, I’uso di tecniche piu sofisticate, analoghe a quelle
introdotte nel caso del Laplaciano classico da Brezis e Nirenberg nel famoso
lavoro [7].

Ricordiamo che Brezis e Nirenberg mettono in luce un interessante fenomeno:
le condizioni per ’esistenza di soluzioni del problema (4.0.1) per il Laplaciano
classico risultano sorprendentemente differenti quando N = 3 e quando, in-
vece, N > 4. Infatti, in dimensione N > 4 l’analogo del problema (4.0.1)
per il Laplaciano su RY ammette soluzioni per ogni 0 < A\ < A1, mentre per
N = 3 il problema non ammette soluzione per A in un intorno destro di 0. La
dimensione N = 3 viene per questo detta “critica”.

Nel caso del Laplaciano subellittico su H", invece, questo fenomeno non

si verifica. Infatti, come dimostrato nel Teorema 4.2.1, il problema ammette
soluzioni per ogni 0 < A < A1, ove A1 ¢ il primo autovalore di Dirichlet di
—AHn.
Come si puo osservare dal confronto tra le stime asintotiche realizzate per
studiare il caso Heisenberg e quelle euclidee, 'assenza di dimensioni critiche
per il Laplaciano di Kohn & dovuta sostanzialmente al fatto che il ruolo della
dimensione spaziale & qui assunto dalla dimensione omogenea Q = 2n + 2 che
€ sempre maggiore o uguale a 4.

La seconda parte del capitolo ¢ dedicata ad alcuni nostri risultati sul
seguente problema “critico” per Uoperatore £ = A, + |[2[2A,:

—(Apu+ |zPAyu) = ¥+ du in QCRY =RI' x R?
u > 0 in (4.0.3)
u = 0 su 0f)

dove 2* = QZ—%, Q = m+2n ¢ la dimensione omogenea di R rispetto all’ope-
ratore £ e ) & un aperto limitato regolare di R intersecante I'insieme {z = 0}
di degenerazione dell’operatore.

La conoscenza esplicita, almeno in dimensioni basse, dei minimizzanti della
disuguaglianza di Sobolev associata ad L, ci consente di confrontare le dimen-
sioni @ = 3 e Q = 4 in merito alla risolubilita del problema (4.0.3) mediante
I'approccio di Brezis-Nirenberg e di rilevare la “criticita” della dimensione
omogenea () = 3. Si prova, infatti, mediante un argomento “alla Pohoza-
ev”, che su domini di particolare simmetria il problema (4.0.3) non ammette
soluzioni per A sufficientemente piccoli.
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4.1 Identita di tipo-Pohozaev su H"

In questa sezione riportiamo alcune identita integrali dovute a Garofalo e Lan-
conelli [24], che generalizzano al contesto subellittico di H" la ben nota identita
di Pohozaev per le equazioni di Poisson semilineari su RY. Queste identita
costituiscono uno strumento di fondamentale importanza per il conseguimento
di risultati di non esistenza per i problemi semilineari in esame.

Si consideri il seguente problema di Dirichlet associato a Apn:

—Apnu = f(u) inQ
{ u = 0 su 00 (4.1.1)

Com’e noto dal contesto ellittico, una identita di tipo-Pohozaev si ottiene
moltiplicando 'equazione (4.1.1) per Vu, dove V = Zfil a;(x)0y, ¢ un op-
portuno campo vettoriale e applicando il teorema della divergenza. Cio che
si ottiene € una identita tra integrali di volume e integrali di superficie, i cui
segni, per opportune scelte di V' e su domini di particolare simmetria, possono
risultare incompatibili con I’esistenza di soluzioni non banali del problema.
Nel caso in esame, una “buona” scelta per il campo vettoriale V si rivela essere
quella del generatore infinitesimale delle dilatazioni naturali su H", ovvero il
generatore del gruppo ad un parametro delle dilatazioni

ox(z,t) = (Az, \%t).

Si tratta del seguente campo vettoriale su R??+1:

d . 0 0 0
zu=[geen]| =3 (wa; tugy) v @2

J=1

Il campo Z ¢ caratterizzato dalla proprieta che una funzione v : H" — R ¢
omogenea di grado k € R rispetto alle dilatazioni {0 }x~0, ovvero

u(0x(€)) = Mu(§) VEeH”

se e solo se
Zu = ku.

Nel seguito, se  C H" & un aperto limitato, denoteremo con I'?(Q2) lo spazio
delle funzioni continue u : & — R con Xju, Yju, X;u, YjQu continue in e
prolungabili per continuita su tutto €.

La classica identita di Pohozaev nel contesto del gruppo di Heisenberg si
riscrive come segue.
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Teorema 4.1.1. Sia Q C H" un aperto limitato, C* a tratti e sia u € T?(Q)
soluzione del problema

—Apynu = f(u) inQ
u = 0 su 0f)

ove f : R — R & una funzione localmente Lipschitziana t.c. f(0) = 0, con
primitiva F(u) = [’ f(v)dv. Allora, u soddisfa l'identita

/ \Vinu? < Z,N > dHg_ o = / [2QF (u) — (Q — 2)u f(u)]dzdt (4.1.3)
o0 Q

ove Z ¢é il campo vettoriale generatore delle dilatazioni §y definito nella (4.1.2),
N ¢ la normale unitaria esterna a 02 e dHg_o denota la misura di Hausdorff
(Q — 2)-dimensionale in H".

DIMOSTRAZIONE. Segue dall’identita integrale dimostrata da Garofalo e Lan-
conelli in [24, Teor. 2.1].

L’identita di tipo-Pohozaev (4.1.3) sopra richiamata conduce ad interessanti

risultati di non esistenza qualora 'insieme {2 appartenga ad una particolare
classe di domini.
Illustriamo a tal proposito la definizione di insieme dy-stellato, introdotta da
Garofalo e Lanconelli in [24], che generalizza al contesto in esame la classica
definizione di stellatezza euclidea. In quanto segue 7., 4,y(2,t) = (20,%0)0(z,1)
denotera l'operazione di traslazione a sinistra su H" di elemento (2o, o).

Definizione 4.1.2. (INSIEME 6,-STELLATO) Un aperto Q C H* C! a tratti
si dira 0y- stellato rispetto ad un punto (zo,to) € Q se, denotata con N la
normale unitaria esterna alla frontiera di 7(,, 1,)-1(S2), si ha

Z-N>0 (4.1.4)

in ogni punto regolare di O(7(, 10)-1(€2))-
Diremo che § é 0)-strettamente stellato rispetto ad un punto (zo,to) se risulta

Z-N >0 su0(7(z)-1(2)). (4.1.5)

Osserviamo che la precedente definizione coincide con 1'usuale definizione
di stellatezza nel caso di dilatazioni isotrope. In tal caso, infatti, il campo Z
altro non e che Z = ), xia%i e quindi la condizione (4.1.4) si riscrive come
z-N > 0.
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Esempio 4.1.3. Se d ¢ una norma dy-omogenea su H", ¢ facile verificare
che le sfere per la distanza indotta da d sono insiemi 0y-strettamente stellati
rispetto al proprio centro. Infatti, si consideri la d-sfera di centro 0 e raggio
R, ovvero

Bq(0,R) = {§ € H" [d(£) < R}

Allora, essendo N = % su 0BR, risulta:

Vvd Zd R

<Z,N >=< 2, >= =
|Vd| |\Vd|  |Vd]

>0 sudBp

ove si ¢ usato che d ¢ una funzione omogenea di grado 1 rispetto alle di-
latazioni, per cui Zd = d.

Elenchiamo qui di seguito alcune conseguenze immediate dell’identita di
Pohozaev e delle definizioni appena introdotte.

Teorema 4.1.4. Sia @ C H"™ un aperto limitato regolare strettamente §y-
stellato rispetto ad un punto (29,tg) € Q. Allora il problema

—Apru = f(u) inQ
{ U 0 su 0f) (4.1.6)

non ha soluzioni non-negative non banali u € T%(Q), se f ¢ localmente Lip-
schitziana, f(0) =0 e

2QF (u) — (Q —2)uf(u) <0 peru>0. (4.1.7)

DIMOSTRAZIONE. Trasliamo (zp,ty) nell’origine e consideriamo la funzione
v(2,t) = U(T(z9,t9)-1 (2, 1)) nell’insieme 7., ;)-1(2). La funzione v soddisfa la
stessa equazione di u in 7, ,y-1(2) ev € F2(T(Z(),t())_1 (€2)). Dunque, possiamo
supporre sin dal principio che 0 € Q e che X - N > 0 su 0f2. Dall’identita
(4.1.3) e dall'ipotesi X - N > 0 su 012, segue che

|Vinul? = 0 su 09Q. (4.1.8)
Ora, ricordando che denotata con A la seguente matrice (2n + 1) x (2n + 1):
IRn 0 2y

A= 0 IRn —2x
2y —2z 4|z|?
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risulta

Apnu = div(AVu) e |Vinul|? = AVu - Vu
dalla (4.1.8) segue che AVu - N = 0 su 09, per cui

0:/ AVu-N:/div(AVu):/AHnu:/up
19) Q Q Q

da cul w =0 in Q. O

Osserviamo subito che nel caso
flu)=uwP L+ u p>1,

la condizione di non esistenza (4.1.7) si riscrive come segue

-2 2
2)\u2—|—Qp<Qi22— )UPSO peruZO.

Quindi, se 2 C H"™ & un aperto limitato regolare strettamente dy-stellato
rispetto ad un punto (zg, %) € €2, il problema

—Apruy = w14 u in Q
u > 0 in Q (4.1.9)
u = 0 su 02

non ha sicuramente soluzione nei seguenti due casi:

1. )\:Oepzé—%;

2.)\§Oep:Q2—92.

Osservazione 4.1.5. Sottolineamo esplicitamente che I'ipotesi di stellatezza
¢ essenziale nella proposizione precedente. Infatti, in [24] si dimostra che il
problema (4.1.9) nel caso critico e senza termini perturbativi nell’equazione
ha soluzioni non negative non banali in aperti cilindrico-annulari del seguente
tipo:

{(z,t) eH" | r < |2| <R, [t|<T}, rR,T>0.
Dunque, una “perturbazione” della geometria di €2 puo produrre risultati di

esistenza nel caso critico, analogamente a quanto dimostrato da Kazdan e
Warner nel caso euclideo.
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4.2 1l problema critico per il Laplaciano di Kohn
Agn

Il problema di Yamabe per le varieta di Cauchy-Riemann conduce in maniera
naturale allo studio di problemi semilineari per il Laplaciano di Kohn del
seguente tipo:

{ —Apruy = uP inQ

v = 0 sudf2 (4.2.1)

ove 2 denota un sottoinsieme aperto limitato di H" e 1 < p < 2* — 1.

Lo spazio naturale per studiare il problema (4.2.1) ¢ lo spazio di Sobolev-Stein
S3(€), ovvero la chiusura di C§°(€2) rispetto alla norma ||uHS(1) =(Jq |Vinul?)1/2.
Una funzione non-negativa u si dice soluzione debole di (4.2.1) se risulta

/anu-anh :/uph Vh € S§(Q).
Q Q

La disuguaglianza di immersione assicura che la funzione uPh & sommabile in
Q per ogni u, h € S§(2), qualunque sia p < %

Le soluzioni deboli di (4.2.1) sono i punti critici del funzionale:

1 1
.l _ 1 ul2 P+l
I:5,(92) =R, I(u) 2/QWH ul p+1/9u

Utilizzando collaudate tecniche di teoria variazionale dei punti critici, in [24]
e stato dimostrato che il problema (4.2.1) ha (almeno) una soluzione positiva
se

Q+2
l<p< =——
Questo risultato ¢ ottimale nel senso seguente. Se p = Q—J_r2, il problema non
Q-2

ha soluzioni se 9€) e u sono abbastanza regolari e se {1 e §y-stellato rispetto
ad un suo punto come osservato nella sezione precedente. Mediante tecniche
piu sofisticate, introdotte da Brezis e Nirenberg nel caso del Laplaciano classi-
co, Citti ha dimostrato che nel caso critico (p = %), il problema (4.2.1)
“acquista” soluzione se si perturba opportunamente il termine semilineare

nell’equazione. Il problema cui facciamo riferimento e il seguente:

—Apru = w¥ V4 Ay inQ
0 in Q (4.2.2)
0 su 0f)

V

u
u
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dove €} € un dominio regolare limitato di H", 2* = QQ—?Q con QQ = 2n + 2
dimensione omogenea di H".

Allo studio di questo problema e dedicato il seguito di questa sezione.

Come dimostrato mediante 'identita di Pohozaev, il problema (4.2.2) non
ammette soluzioni per A < 0 in domini Jdy-stellati.

Osserviamo, inoltre, che la richiesta di positivita di u implica che il problema
(4.2.2) non ha soluzione per A > Ay, ove A1 denota il piu piccolo autovalore di
Dirichlet dell’operatore —Apn, ovvero:

/ |Vinu|? dzdt
A\ = inf 2

ueS§(Q)\0) / W dadt
Q

Infatti, grazie alla disuguaglianza di Poincaré per 'integrale di Dirichlet su H"
risulta che A\; > 0 ed esiste una funzione positiva 1 € S} () tale che

_AH"QO]. )\1%01 in Q
pr = 0 su 0f)

Allora, se u ¢ soluzione di (4.2.2), segue che

Al/ugol dzdt:—/golAHnu
Q Q

:/uPLm—i—)\/ugm
Q Q

> )\/ ugpy dzdt.
Q

da cui A < Aq.

In virtu delle precedenti considerazioni, si esamina il problema dell’esistenza di
soluzioni del problema (4.2.2) al variare del parametro A nell’intervallo (0, A).
Si prova il seguente teorema.

Teorema 4.2.1. Il problema (4.2.2) ammette soluzione per ogni A € (0, A1),
dove A1 € il primo autovalore di Dirichlet di — Apn.

Alla dimostrazione del teorema premetteremo alcuni lemmi e considera-
zioni. Osserviamo, intanto, che dal teorema si evince 'assenza di dimensioni
critiche per il Laplaciano subellittico su H™. Non ci sono, infatti, dimensioni
spaziali, come ad esempio la dimensione N = 3 per il Laplaciano euclideo, per



4.2. 11 problema critico per il Laplaciano di Kohn Agn 99

le quali il problema in esame non ammetta soluzioni per A sufficientemente
piccoli. Questa differenza di comportamento rispetto all’analogo euclideo &
dovuta sostanzialmente al fatto che in questo contesto il ruolo della dimensione
spaziale & assunto dalla dimensione omogenea ) = 2n + 2 di H", che & sempre
maggiore o uguale a 4. In effetti, dalle stime asintotiche che realizzeremo nel
corso della dimostrazione del teorema, risultera evidente che vi ¢ una perfetta
corrispondenza di comportamento ad esempio tra la dimensione omogenea
@ = 4 nel caso Heisenberg e la dimensione topologica N = 4 nel caso euclideo.
L’approccio variazionale scelto per trattare il problema, analogamente al caso
euclideo, ¢ il seguente. Le soluzioni del problema corrispondono ai punti critici
del funzionale

1 A 1 X
fA(u)—/ (Venf? —/u2 L[ wesio.
2 Ja 2 Jo 2* Ja

Un approccio alternativo e quello di cercare soluzioni non banali come punti

critici del funzionale
1 A
Ia _ 1 Vinul? — 2 2
() 2/9' e 2/9“

sulla seguente varietd di Sg(€2):
M = {ue S5Q) | ||lull2» =1}.

In particolare, cercheremo punti critici che risultino punti di minimo assoluto
di F su M, il che equivale a tentare di minimizzare il rapporto

/(|VHnu|2 — M) dzdt
Q

2/2*
</ |u|? dzdt)
Q

Denoteremo con Sy 'estremo inferiore di Fy(u) su M, ovvero

Qa(u) = , uwe SH()\ {o}.

Sy = inf F\(u) = inf {||Vyeul? — [|ul?
A= inf A\(u) uesé(m{H Hoully — lull3}
l[ulgr =1

Si noti che, per A = 0, risulta

So= inf {||Vgnul?} =S
0 ue{%(m{ll Hrull}

[lullox=1
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cioe Sy corrisponde alla miglior costante di Sobolev S per I'immersione di
S3(Q) in L2 (Q).

Supponiamo che Sy sia raggiunto da una funzione ug € S(€2). Senza perdita
di generalita, possiamo assumere ug > 0 in 2, a meno di sostituire ug con
|ug|. Poiche up ¢ un punto critico di F\ su M, esistera un moltiplicatore di
Lagrange i € R tale che

—Aprt— Au = pu® 7t in Q.

In realta, p = Sy, e se A < Ay, risulta Sy > 0. Dunque, posto u = Si/(?*z)uo,
u & soluzione del nostro problema (4.2.2). Si noti che u & positiva in , grazie
al principio del massimo forte per Ay» dimostrato da Bony in [1].

Il lemma seguente, dovuto a Lieb nel caso euclideo, riveste un ruolo cardine
nella risoluzione del problema. Esso fornisce una condizione sufficiente affinche
S sia raggiunto.

Lemma 4.2.2. Se S) < S, allora Sy é raggiunto.

DIMOSTRAZIONE. La dimostrazione ¢ ’esatta trasposizione al contesto in
esame di quella euclidea, per la quale si veda [7]. O

Possiamo, ora, procedere con la dimostrazione del teorema.
DIMOSTRAZIONE DEL TEOREMA 4.2.1 Supponiamo per semplicita che 0 € 2.

In virtu del lemma precedente, ¢ sufficiente provare che Sy < S. A tal fine,
stimiamo il quoziente

/(|anu|2 — u?) dzdt
Q
2/2%
</ || dzdt)
Q

ue(za t) = ‘P(Zv t)Ue(za t)

ove le U, sono le soluzioni del problema limite

Qx(u) =

(4.2.3)

nelle funzioni della forma

—Agnu=u> ! suH"

ovvero
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e ¢ € C§°(2) e una fissata funzione di cut-off, 0 < ¢ <1, ¢ =1 in un intorno
di 0 che supponiamo del tipo By(0, R), ove d & la norma omogenea naturale
su H", ovvero d(z,t) = (|z|* + t2)/4.

Come si puo osservare, esiste una stretta relazione tra le funzioni U, e la norma
d. Infatti, le U lontano dall’origine hanno lo stesso comportamento della
funzione d?~ 9, ovvero della soluzione fondamentale del Laplaciano subellittico
su H". Questo fatto ci consente di stimare i termini nella (4.2.3) facendo uso
della formula per le coordinate polari su H' che qui richiamiamo. Per ogni
0 < r; < rg e per ogni funzione misurabile f : [r1, 73] — R, si ha

j/ F(d(©)) de ::cede«L1>{/’2f<p>pQ-1dp
B4(0,r2)\B4(0,r1) 1

se almeno uno dei due integrali esiste.
Utilizzando la formula precedente, si ottengono le seguenti stime per ciascun
termine in (4.2.3), per ¢ — 07

[Vhnue||2 = U3 + O((9-2/2) (4.2.4)
ucll3: = U3+ + O(9?) (4.2.5)
nu@:{06+069”% Q>4

(4.2.6)
Cellnel + O(e) se@Q =4

Infatti, per quanto riguarda il termine ||Vynu,||3, si ha che
Ve |2 = / U2 (2, ¢)dadt +/ Voo 2U2dzdt + O(=2/2)
RN Q

come dimostrato nella Sezione 2.4.1. Inoltre, valutando il secondo integrale
nella precedente, tenuto conto che ¢ = 1 sulla sfera Br = By(0,R) e che



102 Capitolo 4. Il problema critico per Agn e A, + |z[2A,

U:(§) = €¥U1(5%§), si ottiene
[ Vwelvz= [ wweprz<c [ o2
Q O\Br Q\Bgr
=C e QPTG €)de
d(€)>R Ve

1
N CE/ dzdt
de>2 (1+ 122)2 + £2)(@-2/2

1
< Ce / ——s5o—1 I
d(my>2 d(m)?@4

Quindi si ha che:
[Vhnuclls = |U-[13- + O('97%) + 0(e9?) = |U.

come annunciato dalla (4.2.4). Per quanto riguarda la stima (4.2.5), essa ¢
stata dimostrata nella Sezione (2.4.1). Resta, dunque, da verificare la stima
per il termine ||uc||3. Valutiamo quindi:

ucll = / U2 > / UZ(€)ds = ¢ / UF(€)d¢
Q Bg4(0,R) Bd(O,%)
=c </ U12 —i—/ U12>
Ba(0,1) Ba(0, J5)\Ba(0,1)
R
e o1
>Cel1 +/ ——d

Ce+ 0@EQ2?) se Q>4
Cellnel + O(e)  se@Q =4

2+ 0@/,

Dunque, sostituendo in @y (ue), per @ > 4 si ottiene:
(1013~ exe + 0(c@-2/2))
* 2/2*
(-3 +0(=2/2)

=8 —che + 0@V < g

/\(us S
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per ¢ > 0 sufficientemente piccolo. Analogamente, per ) = 4 abbiamo

(i

B 2/2*
(I3 + o))
=S8 —chellnel + O(e) < S

2 chellne| + 0(5))

)\(Us) <

per € > 0 sufficientemente piccolo.
Si e, dunque, dimostrato che

Sx < Qa(us) < S

in tutte le dimensioni ammissibili per H", da cui la tesi. U

Osservazione 4.2.3. Facciamo notare che se la dimensione omogenea Q) = 3
fosse ammissibile per il problema, si avrebbe, analogamente al caso euclideo
in dimensione N = 3, una stima del tipo

Qr(us) < S + O(Ve) — CAVe +O(e).

In questo caso, il “guadagno” dovuto a A e la “perdita” dovuta al troncamento
potrebbero essere dello stesso ordine in €, costringendo la stima Sy < S a valere
soltanto per A sufficientemente “grandi”.

4.3 1l problema critico per 'operatore A, + |z|?A,

4.3.1 Alcune premesse

In questa sezione ci occupiamo di un problema critico per 'operatore £ = A, +
|x\2Ay, analogo a quello studiato nella precedente sezione per il Laplaciano di
Kohn.

Sia 2 C RY = RZ" x R? un aperto limitato intersecante l'insieme {z = 0}.
Si ricordi che domini di questo tipo hanno dimensione locale omogenea pari
alla dimensione omogenea dell’intero spazio @ = m + 2n.
Dunque, in virtu del Teorema 1.2.12, ’embedding

DL(Q) — L7(9)
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risulta essere compatto per p < 2* =2Q/(Q — 2).

2
D’altra parte 'invarianza rispetto alle dilatazioni d, del rapporto qu2||2 causa
[l

2%

o
la mancanza di compattezza dell’embedding D} () — L2 ().
Quindi per i domini 2 intersecanti l'insieme {x = 0} il problema

—Lu = v 14X u inQ
u > 0 in (4.3.1)
u = 0 su 0f2

risulta essere “critico” nel senso usuale delle immersioni di Sobolev.
Nel seguito affronteremo il problema dell’esistenza di soluzioni del problema
(4.3.1) in dimensioni basse, ove sono noti gli estremali della disuguaglianza di
Sobolev associata ad L (si vedano i risultati di [1], da noi richiamati nei Teo-
remi 3.3.1 e 3.3.2), ed avremo modo di rilevare la “criticita” della dimensione
omogenea @) = 3.
Cominciamo, intanto, col premettere una identita di tipo-Pohozaev per le
soluzioni del problema di Dirichlet semilineare associato ad L, che interverra
nella trattazione del problema (4.3.1).
Analogamente al caso Heisenberg, I’omogeneita dell’operatore rispetto al grup-
po di dilatazioni

Sx(z,y) = Az, ’y), A>0

suggerisce di calcolare identita di Pohozaev utilizzando il campo vettoriale
generatore delle suddette dilatazioni, ovvero

i 0 - 0

Z = i 2y —.
Z%&L’j + Z yj@yj
Jj=1 j=1

Nel seguito, denoteremo spesso con z = (x,%) la variabile complessiva in RY.
La classica identita di Pohozaev si riscrive in questo contesto come segue:

Teorema 4.3.1. Sia Q C RY un aperto limitato, C* a tratti e sia u € C?(2)N
CY(Q) soluzione del problema

—Lu = f(u) inQ
u = 0 su 0f)

ove f : R — R é una funzione continua t.c. f(0) =0, con primitiva F(u) =

fou f(v)dv.
Allora, u soddisfa l'identita:

/ | Xul? < Z,N>dHy_; = / [2QF(u) — (Q —2)u f(u)]dz  (4.3.2)
o0 Q
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ove Z ¢ il campo vettoriale generatore delle dilatazioni 6y sopra definito, N
¢ la normale unitaria esterna a 0S) e dHn_1 denota la misura di Hausdorff
(N — 1)-dimensionale in R .

La dimostrazione si deduce facilmente dalla seguente identita integrale, per
la cui dimostrazione vedasi [23, Teor.2.2].

Lemma 4.3.2. Sia Q C RN un aperto limitato, C' a tratti e sia u € C%(Q) N
CY(Q). Allora
2/ < AVu,N > Zu dHy_1 — / | Xu|* < Z,N >dHy_4
oN o0

_(2—Q)/ ]Xquz—i—Q/ZuEudz
Q Q

ove A é la matrice definita in (1.2.1) per cui risulta £ = div(AVu).
DiMOSTRAZIONE DEL TEOREMA 4.3.1 Tenendo conto del fatto che u = 0 su
0R2 e quindi Vu = —N |Vu/, si ha:

/ < AVu, N > Zu dHy_1 :/ < AVu,N >< Z,Vu>dHn_1
o0 o0

:/ < AVu,Vu >< Z,N>dHN_1:/ | Xu|> < Z,N >dHy_,
a0 a0
(4.3.3)

Inoltre, essendo u soluzione di —Lu = f(u), valgono le seguenti:

/Q\Xu|2: —/Quﬁu :/Quf(u); (4.3.4)

/QZuﬁu _ /QZuf(u) _ /QZ(F(u))
:—/ F(u)Z - NdHy +/dinF(u) (4.3.5)
o0 Q

:QAFW7

dove nell’ultima disuguaglianza si e usato il fatto che divZ = @, mentre il
primo dei due integrali risulta nullo, essendo u = 0 su 92 e F'(0) = 0. Infine,
sostituendo le (4.3.3), (4.3.4) e (4.3.5) nellidentita del lemma precedente, si
ottiene la tesi. O
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Ora, in maniera perfettamente analoga a quanto visto per il caso Heisenberg,
introduciamo gli insiemi stellati rispetto alle dilatazioni ).

Sia Q ¢ RY, C! a tratti, 0 € Q. L’insieme § si dira dy-stellato rispetto
all’origine se, denotata con N la normale unitaria esterna alla frontiera di €2,
si ha che

Z-N>0

in ogni punto regolare di 0f2.

Dal Teorema 4.3.1 segue, analogamente al caso Heisenberg, che il problema
(4.3.1) non ammette soluzioni non banali su domini Jy-strettamente stellati
per A < 0. Inoltre, la richiesta di soluzioni positive impone che sia A < Aj.
Confineremo, dunque, la nostra analisi all’intervallo dei A compresi tra 0 e A;.

4.3.2 Criticita della dimensione omogenea () = 3

Questa sezione ¢ dedicata allo studio del problema critico (4.3.1) per l'oper-
atore £ = A, + |x]2Ay in dimensioni basse. Si prova, in particolare, che la
dimensione omogenea ) = 3 ¢ critica per il problema in esame e costituisce,
dunque, "analogo della dimensione N = 3 per il Laplaciano euclideo.

Sia © un dominio limitato regolare in RY = R x R}, 0 € ©Q, e si consideri
il problema

—Lu = v 14X inQ
u > 0 in Q (4.3.6)
v = 0 su 0f2
dove 2* = 22 e @ =m+2n.

=05
Il nostro risultato ¢ il seguente:
Teorema 4.3.3. Sia Q un aperto limitato regolare, 0 € Q. Allora
(i) Se @ = 4 (m = 2,n = 1), il problema (4.3.6) ammette almeno una
soluzione u € DO}((Q) per 0 < X < Ap.
(ii)) Se @ = 3 (m = n = 1), il problema (4.3.6) ammette almeno una
soluzione u € DO}((Q) per Ay < XA < A1, dove
[ Xo(@,y)I”
A= mf Jo d@yr

1 2
0eDL (Q) / LAY (z,9) dzd
* Q d(xv y)2 Y

dxdy
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ove d(z,y) = (|z|* + 4]y|?)/* denota la norma omogenea naturale asso-
ciata ad L.

(iii) Se Q@ = 3 e Q & un aperto limitato Jy-strettamente stellato rispetto
all’origine, e se il problema (4.3.6) ammette soluzione, allora

A > )\Q(Q) > 0.

DIMOSTRAZIONE DELLA(i) Sia @ = 3,4. Ragionando come in [7], dal lem-
ma di Lieb deduciamo che una condizione sufficiente per l’esistenza di una

o
soluzione di (4.3.6) per 0 < A < \; & l'esistenza di una funzione u € DL ()
tale che
w3 — Aul3

lull-

Qx(u) < 8.

A questo scopo, stimiamo @ (u) nelle funzioni della forma

u€($’ y) = gD(fL‘,y)Ug(l‘,y)

dove U, e una funzione estremale per la disuguaglianza di Sobolev, ovvero

C Q-
Ue(z,y) = = PR Cg:CsTQ, e>0
((e+ |?)? +4fyP)

che risulti, per C' opportuna, soluzione del problema limite —£U = U? ~! in
RY e ¢ & una opportuna funzione di cut-off per Q, i.e.

e eD*(Q)={peCi(2)|0<p <1, ¢ =1inun intorno di 0}.
Ora, posto U. = g—z, un’attenta stima per € — 0 conduce alla seguente
espansione asintotica:

Qi) = § + CF [ (1Xpl - XA02a)dady +oeg) (437

dove o(e, ) — 0 per ¢ — 0, per ogni fissata funzione regolare ¢; inoltre, per
¢ = const in un intorno di 0, risulta o = o(C?).
Infatti, stimando ciascun termine in @) (u.), analogamente a quanto visto per
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il caso Heisenberg, risulta:
IXuelg = [ PIXUP 42 [ pUXeXU 4 [ U2XP
Q Q Q
= _/ 902U5£U5 +/ UEZ‘XQ‘D’Z
Q Q
—+ [ $UF + [ U2X0P
Q Q

z/ Ug2*+/Us2|Xs0|2+Oé(<p,8)
RN Q

dove
a(p,e) = _/ U2 + / (¥ - 1)U”.
Q¢ Q
e
e |3+ = (/ U +/(<P2* — DU
Q Q
= (/ U-*" + B, €)™
RN
dove
Blp,e) = _/ U +/(<p2* - 1)U~
QcC Q
da cui
/ U + Cf/(!)ﬁp\2 — ") U2 (w,y)dudy + ale, o)
Ox () = R Q (4.3.8)

( /R JUE+ B(w))w
/ |XU.? / vz
S =

(e ()

dalla (4.3.8) segue che Qx(u:) < S per ¢ — 0, se entrambe le seguenti
condizioni si verificano, per € — 0:

Ora, ricordando che
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(a) C2 / (1Xgl? — AT (2, y)dady < O;
Q

(b) ale,¢), Be,¢) = 0 (03 JICTE A¢2>ﬁs<x,y>dxdy> .

Ora, se ¢ € D*(R), si verifica direttamente che a(e, @), B(e, @) = O(e?/?), da
cui la (b), ricordando che C2? = Ce(@=2/2 ¢ quindi la (4.3.7). Infatti, essendo
@ =1 in un intorno di 0 € 2, risulta

og/(1—¢2)U2* / UQ*dz—/ Uf*dz
d(z) (z)>
+o0 pQ 1
<C’/ dzC/
>

Q/2)

e analogamente si stimano gli altri termini in a(e, p) e B(e, ¢).

Per quanto riguarda la (a), osserviamo che essa ¢ soddisfatta per ogni A > 0
se (e solo se) U. tende, per ¢ — 0, ad una funzione il cui quadrato non &
sommabile intorno a 0. Ma poiche

0.(:) = T6) = g

e I' non & L%-sommabile in 0 per Q > 4, allora la (a) & verificata per Q > 4 e,
quindi, risulta dimostrata la tesi (i).

DIMOSTRAZIONE DELLA (ii).

Si premette il seguente lemma:

Lemma 4.3.4. Sia Q C R? un dominio limitato, 0 € Q. Definiamo:

XZ
/ledz

WEDI () / dz
o d(2)?

o

Allora A\, € raggiunto da una funzione positiva @ € D}((Q), e risulta 0 < A <
A1, dove A1 € il piu piccolo autovalore di —L.

Ax =

(4.3.9)
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DIMOSTRAZIONE. L’esistenza di un minimo @ in (4.3.9), cosi come la posi-
tivita di @ e la stima A, > 0 si possono ottenere mediante argomenti standard
di minimizzazione in spazi di Sobolev con peso. Ne omettiamo qui i dettagli.
Facciamo, invece, vedere che A, < Aj.

o
Denotata con u; € D% () una autofunzione (positiva) relativa a Aq, i.e.
—Luy = Ajug, e posto ¢(z) = d(z)u;(z), risulta per calcolo diretto:

2
JRCl
o d(2)?
2 =M
/ ©°(2) &
o d(2)?
da cuil A\x < Aq.

D’altra parte, osserviamo che z = 0 ¢ un minimo interno (assoluto) per ¢, il che
rende ¢ non compatibile con il ruolo di minimizzante nella (4.3.9). Dunque,

A < AL O
Proviamo, ora, la (ii).
Per @ = 3, la funzione I'(z) = ﬁ ¢ L?-sommabile in 0 e quindi, per
z

€ — 0, risulta

J1Xe@P = AP @02 — [ (Ko@) - e (:)d(z) >/ Das
¢ ¢ (4.3.10)
ove il secondo integrale & ovviamente positivo se A & sufficientemente piccolo;
quindi non esiste alcuna possibilita di ottenere la (a) per valori piccoli di A.
D’altra parte, se A > A, allora dal lemma precedente e da teoremi di den-
sita standard, si deduce che esiste ¢ € D*(§2) che rende il secondo integrale in
(4.3.10) negativo, per cui la (a) & soddisfatta, insieme alla (b), essendo ¢ = cost
in un intorno di 0; dunque la (ii) ¢ soddisfatta.

DIMOSTRAZIONE DELLA (iii). Si adattera la dimostrazione del Teorema 1.2”
in [7]. Per ipotesi, Q & un aperto regolare di R? (Q=3), d)-strettamente stella-
to rispetto ad un punto dell’asse x = 0 che supponiamo per semplicita essere
Porigine. Stiamo, dunque, considerando il problema

—Lu = v+l inQcCR? 0e€Q
u > 0 in Q (4.3.11)
u = 0 su 02
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per 0 < A < Aj. Dall’identita di Pohozaev (4.3.2) nel caso particolare f(u) =
u? 1 + Au si ricava che, se u ¢ una soluzione sufficientemente regolare del

problema (4.3.11), allora:

)\/u2
Q

1/ < AVu,Vu >< Z, N > do
o0

(< AVu, N >)?
> A do = d
_a/aQ< Vu,Vu > do a/{m “AN.N> o

2
Zb/ (<AVU,N>)2dUZc</ <AVU7N>dO'>
o o0N

:c</ﬂdiv(A2Vu)>2:c</Q£u>2
([
> d/Qu2

ove a, b, ¢, d sono costanti positive, da cui la tesi.
Giustifichiamo alcuni dei precedenti passaggi. Nella prima disuguaglianza si &

usata la stretta stellatezza di 2 limitato. Poi, tenuto conto che su 92 risulta

2
Vu = —N|Vul, si & usata 'uguaglianza < AVu, Vu >= (<<AAVNU”% i) su

08, ove < AN, N > 0 poiche 0 ¢ 90 e < AN, N >< C essendo ? limitato.
Infine nell’ultima disuguaglianza, posto Lu = f si ¢ usata una stima della
norma L? di v in termini della norma L' di f, valida in dimensione omogenea
@ = 3. Ricaviamo qui di seguito questa stima, utilizzando la rappresentazione
delle soluzioni di Lax-Milgram del problema Lu = f in termini di funzioni
di Green approssimate. Come visto nel Capitolo 1, Prop. 1.2.24, se u ¢ la

o
soluzione di Lu = f in D (Q), allora risulta

wl(®) = £, e RGNS

ove Gg = GP(&,-) e la funzione di Green p-approssimata di 2 con polo in &.
La validita di stime L? uniformi rispetto al polo £ per la funzione GZ2, i.e.

sup [GP(6, e < €, g < =2 (43.12)

ceQ Q-2
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consente di studiare le proprieta di integrabilita di u,, adattando la dimostra-
zione del teorema di Young sulla convoluzione in RY .

Si prova, infatti, che se f € LP, p > 1, posto:
1 1 1
—-_= -4 - = 1
r p g

risulta che u, € L"(Q) e [Ju,|, < C||fllp-
Scrivendo, infatti, per f € LP

GP(&,2)|£(2)] = [GP(&, 2)7 £ (2)[P] /7| £ () POV Gr (g, 2)900-1/p)

dalla disuguaglianza di Holder generalizzata si ottiene

otz (fore i) ([ ra)” (i)

ed integrando questa disuguaglianza

</Q \w(ﬁ)!”dg) 1/r < 21618 1G2(€, ) </Q |f(Z)|pdz) 1/p

da cui, tenendo conto che la stima (4.3.12) da noi dimostrata in (1.2.17) ¢
uniforme in p, e che u, — w q.0. in €2, si ha per convergenza dominata la
stima per u, i.e.

ullr@) < Cllf e

Dunque, tornando alla nostra dimostrazione, nel caso p = 1 si ha che u € L"
per r < %, e quindi in dimensione () = 3 si ritrova la stima

ull2 < C|If]l1
sopra utilizzata. O

Osservazione 4.3.5. Data 'invarianza dell’operatore L rispetto alle traslazioni
euclidee nella variabile y, il precedente teorema vale per ogni aperto limitato
() intersecante la varieta {z = 0}.

Osservazione 4.3.6. Poiche le concentrazioni delle u. si possono realizzare
intorno ad ogni punto dell’asse {x = 0}, 'intervallo dei A per cui il problema
ammette soluzioni in dimensione Q = 3 individuato nel punto (ii) si puo
ulteriormente estendere a sinistra considerando ’estremo

A = inf A
zOEQII’IWl{x:O} (ZO)
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dove )
| Xo(z,y)|* dedy

) d(z, y — yo)?

A(20) = Au(0,50) = inf =2 g it 1),
o ¢*(z,y) dedy
pepl(e) [ LAYy

o d(z, y —yo)

per ogni punto zg = (0,y9) € QN {z = 0}.

Riepilogando, abbiamo dimostrato che, se 2 & un aperto limitato regolare
di R?, strettamente dy stellato rispetto all’origine, esistono due numeri positivi
Ao e Ax in (0, A1) tali che

(i) VA €0, ] il problema (4.3.1) non ammette soluzioni;

(ii) VX € (A, A1) il problema (4.3.1) ammette soluzioni.

Resta aperto il problema di determinare una classe di domini, come le sfere
per il Laplaciano, sui quali il problema si possa descrivere completamente,
risultando \g = A..
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