Existence results for critical problems
involving p-sub-Laplacians on Carnot
groups

Annunziata Loiudice

Abstract We provide existence results for the quasilinear subelliptic Dirich-
let problem

—Apgu= ulP 2u+g(&u) inf, we Sé’p(.Q),

where A, ¢ is the p-sub-Laplacian on a Carnot group G, p* = pQ/(Q — p)
is the critical Sobolev exponent in this context, {2 is a bounded domain of
G and g(&,u) is a subcritical perturbation. By means of standard variational
methods adapted to the stratified context, we prove the existence of solutions
both in the mountain pass and in the linking case. A crucial ingredient in
this abstract framework is the knowledge of the exact rate of decay of the
p-Sobolev extremals on Carnot groups.
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1 Introduction

In this paper we provide existence results for the following quasilinear subel-
liptic problem with critical Sobolev exponent

—Apgu = \u|p*_2u +g(&,u) in £2, (P,)
u=20 on O12. 9

under suitable subcritical assumptions on the lower order perturbation g(&, u).
Here, A, ¢ is the p-sub-Laplacian operator on a Carnot group G of homoge-
neous dimension @, where 1 < p < @, the exponent p* = pQ/(Q — p) is the
critical Sobolev exponent in this context, 2 is a bounded domain of G and
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the lower order term satisfies subcritical growth assumptions. In particular,
we obtain existence results for the case g(£,u) = Mu|P~2u, with A € R.

The present results extend to the p-sub-Laplacian case the existence re-
sults obtained by the author in [30] for the semilinear Carnot case p = 2,
subsequently generalized in [31] to the semilinear case with a Hardy-Sobolev
nonlinearity and in [35] to the case with a Hardy-type perturbation.

We recall that a great deal of interest has been paid in the literature to
the topic of subelliptic equations with critical Sobolev exponent or gene-
ral power-type nonlinearities on stratified Lie groups. See e.g. [4], [6], [12],
[22], [23], [25], [29], [30-35], [37], [39], [41], [44], [45], [48] and the references
therein. In particular, in the recent papers [44], [45], interesting generaliza-
tions of variational-type results are obtained for Rockland operators on gen-
eral graded Lie groups (see [15] for an overview on this functional setting).
Concerning the quasilinear case, we recall that Vassilev in [48] studies the
main aspects of the critical equation

—Apgu= \u|p*_2u7 u € Sé’p(ﬁ),

where (2 is an arbitrary open subset of G. Precisely, he proves global bounded-
ness and interior regularity of solutions, discusses the problem of the regu-
larity near the characteristic set of the boundary and, in the case 2 = G,
obtains the existence of ground state solutions.

In [33], the author establishes the decay of positive entire solutions u €
S1P(G) of the critical equation

.
—~A,gu=u" "' inG,

obtaining that they have the following asymptotic behavior at infinity

1

u(§) ~ AO@ PG as d(§) — oo, (1)
where d is any fixed homogeneous norm on G. This result applies, in parti-
cular, to the extremals of the p-Sobolev inequality on Carnot groups (4) and
it turns out to be a useful tool in adapting the well-known Brezis-Nirenberg
type techniques [8] to problems of the type (FP,), in absence of the explicit
knowledge of Sobolev minimizers. In fact, such minimizers are only known
when G is a Iwasawa-type group and p = 2.

Further recent results for quasilinear equations and systems on Carnot
groups can be found e.g. in [7], [13], [14], [19], [39], [41], [43], [46], [47]. In
particular, Pucci-Temperini in [41] obtain existence of entire solutions to the
problem

—Ap = k(E)|ul "2u + Aw(€)|u|??u, ue SHHM),
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in the model case of the Heisenberg group G = H"”, where p < ¢ < p*, under
appropriate hypotheses on k and w.

Let us, now, introduce our existence results on bounded domains for prob-
lem (Py). Let G be a Carnot group of homogeneous dimension () and, for
1<p<@,let

Apgu =Y X;(|XulP > X;u)
i=1
be the p-sub-Laplacian operator on G (see Section 2 for the definition). We
denote by Sy (£2) the completion of C§°(£2) with respect to the norm

lullgy ey = (13 ).

We shall deal with weak solutions of problem (P;), i.e. functions u € Sy (£2)
such that

/ | XulP™2 < Xu, X¢ > dé = / lu P*—2u¢dg+/ g(&,u)pde, Vo € CO(02).
2 (93 (9]

Let the functional .J : S3P(£2) — R be defined as

széémwa—éﬁmwﬁ—LG@ma

where G(&,s) = [ g(€,t)dt. If g is continuous, then J € C'(Sy”(£2),R) and
the critical points of J corresponds to weak solutions of equation (P).

Concerning the lower order term, following [1], [24], we assume that g is
subcritical in the following sense

g: 2 xR — Ris a Carathéodory function satisfying:
Ve > 0,3a. € LQ<PP%+P such that (2)
Q(p +p
lg(&,8)] < ac(§) +els| for a.e.£ € £2,Vs e R.

Moreover, other assumptions will be required on the primitive G(§,s) =
fo (&,t)dt. In particular, we assume that

G(&,s) >0 forae €2, VseR, (3)

while ¢(&,s) is allowed to change sign. Further assumptions on G will be
required, according to the different cases to be considered, namely the case
when J has a mountain pass geometry or the case where J has a linking
structure, with or without resonance. Roughly speaking, these three cases
correspond to

G(&,s : A .
0< limﬁ<—1, lim = —, 2L < lim
s—0t+ sP D s—0t+  sP p D s—0+  SsP
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where A; denotes the first eigenvalue of —A, ¢ with Dirichlet boundary con-
dition, that is,

([ X ul|5

min .
wesiP @00y |lullp

A =

As in the Euclidean case, in view of Lemma 1 below, the existence results
in the different three cases will be obtained by constructing suitable Palais-
Smale sequences (in short PS-sequences) for J at a level ¢ € (0, %), where
S denotes the best constant in the Sobolev inequality (4). To this aim, as in
the semilinear cases in [30], [31], [35] the behavior at infinity of the extremals
for the Sobolev inequality on groups recalled in (1) will be used in a crucial
way. We finally quote that analogous considerations have been used in the
Euclidean setting to treat the quasilinear nonlocal case (see [38]).

The paper is organized as follows. In Section 2, we introduce the func-
tional framework of Carnot groups; in Section 3 we treat the case when the
functional J has a mountain pass geometry: we state the existence results in
Theorems 1, 2 and 3, introducing the appropriate additional hypotheses on
G, and we give a sketch of the proofs; in Section 4, we consider the case when
J has a linking geometry, treating both the resonance and the non resonance
case; the related existence results are contained in Theorem 4 and 5.

2 The functional setting

Let us briefly introduce the functional setting of Carnot groups. For a com-
plete overview, we refer the reader to the monographs [5], [15] and the classical
papers [16], [17].

A Carnot group (G,o) (or Stratified Lie group) is a connected, simply
connected nilpotent Lie group, whose Lie algebra g admits a stratification,
namely a decomposition g = 69;:1 Vj,such that [V4,V;] =V for1 <j <,
and [V4,V;] = {0}. The number r is called the step of the group G and the
integer Q@ = Y ._, idimV; is the homogeneous dimension of G. Note that, if
Q < 3, then G is necessarily the ordinary Euclidean space G = (RY, +).

The simplest non-abelian Carnot group is the Heisenberg group H"™ =
(R?"+1 o), which is a two-step Carnot group with homogeneous dimension
Q@ = 2n + 2 and composition law given by £ o &' = (z + 2,y + ¥/, t + +
2(a,y) — (w,y))), for every & = (2,9,), & = (2/,y/,#) € B>, where
z,y € R" and t € R.

By means of the natural identification of G with its Lie algebra via the
exponential map, which we shall assume throughout, it is not restrictive to
suppose that G is a homogeneous Carnot group, according to the definition
in [5], i.e. G = RN = RM x RM2 x ... x RN where N; = dimV}, endowed
with dilations ¢, of the form
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() = AW, N E@ o AT,

where f(j) e RN forj=1,...,r. Let m := Ny and let Xq,..., X,, be the set
of left invariant vector fields of V4 that coincide at the origin with the first m
partial derivatives. It holds that rank(Lie{X1,...,X,»}) = N at any point
of G. We shall denote by X = (Xi,...,X,,) such system of vector fields.
Then, the differential operator

Apcu =Y Xi(|Xu[P">Xu)
i=1

is called the canonical p-sub-Laplacian on G. Note that for any ¢ > 0, one has
Apg(cu) = P71 A, gu and furthermore, since the X;’s are homogeneous of
degree one with respect to the dilations dy, the operator A, ¢ is homogeneous
of degree p with respect to §y, namely

AP,G(U o (SA) = /\pAmgu o 5)\.

By definition, a homogeneous norm on G is a continuous function d :
G — [0,+00), smooth away from the origin, such that d(§,(§)) = Ad(&), for
every A > 0 and £ € G,d(§) = 0 if and only if £ = 0. We recall that any
two homogeneous norms on a Carnot group G are equivalent, as observed
in [5, Prop. 5.1.4]. If we let d(&,n) := d(n~' 0£), d is a pseudo-distance on G.
Throughout the paper, d will indicate a fixed homogeneous norm on G; we
shall denote by B(&,r) the d-ball with center at £ and radius r, i.e.

B(&,r)={ne€GldE " on) <r},

and we will simply denote by B, the d-ball centered at 0 with radius r.

The starting point of the variational formulation of our problem is the
validity of the following Sobolev-type inequality on G (see Folland [16]): for
any p € (1,Q), there exists S > 0, depending on p and G, such that

N p/p"*
/ | XulPd& > S (/ |ul? d§> , YueCg°(G). (4)
G G

It is know that the best constant in (4) is achieved (see [23], [48]); however,
the explicit form of the extremal functions is not known, except for the case
when p = 2 and G is a group of Iwasawa type (see Jerison-Lee [28], Frank-
Lieb [18] for the Heisenberg case, Ivanov-Minchev-Vassilev [27] and Christ-
Liu-Zhang [11] for the remaining cases). Nevertheless, relevant qualitative
properties of such extremals in the general case have been obtained by the
author in [33].

Concerning the main regularity tools for quasilinear subelliptic equa-
tions, such as Moser-type estimates and Harnack-type inequality, we refer
to Capogna-Danielli-Garofalo [9]. Moreover, we indicate the paper [2] for an



6 Annunziata Loiudice

overview on the main aspects of nonlinear potential theory on Carnot groups.
We also quote [3] for a strong maximum principle for quasilinear equations
involving Hérmander vector fields.

3 The mountain pass case

In this section, we treat the case when J has a mountain pass geometry. We
introduce the additional needed assumptions on GG and we state the related
existence results in Theorems 1, 2 and 3 below. Finally, we sketch the proof
of the theorems.

Before introducing the additional assumptions which ensure the mountain
pass geometry, we state a compactness result which is valid under the only
assumption (2). Recall here that a sequence {u,} C S§(£2) is called a Palais-
Smale sequence (PS sequence in short) for J at level ¢ if J(u,) — ¢ and
J'(u,) — 0 in S~V (£2).

Lemma 1 Assume that (2) holds. If {u,} C Si(£2) is a PS sequence for J

at level ¢ € (0, Sgp), there exists u € S3(82) \ {0} such that u, — u up to a

subsequence and J'(u) = 0.

The proof is standard and it will be omitted, referring to the Euclidean coun-
terpart (see, for instance, Lemma 1 in [1]). In view of the above result, the
solutions to problem (P,), both in the mountain pass and in the linking case,

will be obtained by constructing a PS sequence at a level ¢ € (0, = gp ).

Assume, now, that there exist an open subset {2y C {2 and some constants
0,0, >0 and a,b > 0, a < b, such that

G(&,s) < ;1)()\1 —o)ls|? forae.£ € 2, V|s|<§ (5)
and
G s)>p for a.e. £ € £29,Vs € [a, b]. (6)

Under these assumptions, the following existence results hold.

Theorem 1 Assume that (2), (3), (5), (6) hold.

If1 < p? < Q, then problem (Py,) admits a positive solution.

If @ = p? and p in (6) is large enough, then problem (P,) admits a positive
solution.

From the above theorem, we obtain, for the particular case g(&, u) = A|u|P~2u,
the following result, which was proved in the Euclidean context by Garcia
Azorero and Peral [20] (see also [26] for related regularity and nonexistence
results).
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Corollary 1 Let 1 < p? < Q. Then, problem

— Ay gu = |ulP” 72w+ Mu|P~2u in £,
{ p,G | | | | (p/\)

u=20 on 0f2

admits a positive solution for any X € (0, A1).

If, instead, p < @ < p?, in the ordinary Euclidean setting we are in the case
of critical dimensions in the sense of Pucci-Serrin [40]. Therefore, in order to
get existence of solutions for problem (P,), the assumption (6) is no longer
sufficient; we require that there exists a nonempty open set {29 C {2 such

that o
s— 400 33

where 3 = %. Under this additional assumption, the following result

holds.

uniformly in (2, (7)

Theorem 2 Let 1 < p < Q < p?. Assume that conditions (2), (3), (5) and
(7) hold. Then problem (P;) admits a positive solution.

We notice that, in the Euclidean setting, Theorems 1 and 2 were gene-
ralization of results proved in [21].

Finally, in the same range of dimensions considered in Theorem 2, we can
also prove the following result about problem (Py), which provides existence
of solutions in a left neighborhood of A;. For the semilinear subelliptic coun-
terpart, see [30, Theorem 1.2].

Theorem 3 Let A = S|2|7P/Q and assume that 1 < p < Q < p* and
X € (A1 — A, \1). Then, problem (Py) admits a positive solution.

In what follows, we prove the existence results stated above. The idea of the
proofs is to find a nonnegative function v € Sé’p(ﬂ) such that max;>¢ J(tv) <
s Indeed, noting that there exists ¢, > 0 such that J(¢,v) < 0, consider
the set

Ly ={y € C([0,1))|4(0) = 0,~(1) = t,v}

and the inf-max value
c:= inf max J(v(t)).
~veT, te[0,1] (7( ))
By standard variational arguments (see, for instance, [42]), if such v exists,

we obtain a PS sequence at level ¢ € (0, S%/p ). In the proofs of Theorems 1,

2 and 3, a different choice of v will be done.

Proof of Theorem 1. Let U > 0 be a fixed extremal function for (4). We
can assume, up to a normalization, that | XU|b = HU||§* = S9/P. For e > 0,
define

Ue(§) = @ PU(3,0(8), €€ (8)
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Of course, U, are also minimizers and verify || XUc[|} = ||U. g: = S9/P. Now,
observe that it is not restrictive to suppose 0 € 2. Let R > 0 be such that
Br C 2 and let ¢ € C§°(Bg) be a cut-off function, 0 < ¢ < 1, p =1 in
BR/2~ Define

ue(§) = p(§Ue(S). (9)
Reasoning as in [30], by exploiting the asymptotic estimate (1) proved in [33],
we are able to prove that

[ X |2 < S§Q/P 4 0c@=P)/(p=1) ||u6||5i > §Q/P _ 0Q/(p=1) (10)

We claim that, for e sufficiently small, it holds

1
—gQ/p 11
r?zagc(](tus) < QS . (11)
Indeed, assume by contradiction that for all € > 0, there exists t. > 0 such
that

J(teue) > %5%. (12)

It is easily seen that, as e — 0, the sequence {t.} is upper and lower bounded
by two positive constants; moreover, by the expansions (10), as ¢ — 0 we
have

X (teue)||P tetie P: Q/p — . Q/p
EXCIAT A +<t€_1_62 p(tp_l))s
p p Q Q P
+ O(@=P)/(p=1)y (13)

SQ/p

< + O(el @/ =1y,
It can be also verified that there exists ¢1,co > 0 such that, for e sufficiently
small

c1€YP < d(€) < cpet/P implies a < teuc(€) < b,

where a, b are as in (6). Hence, since B, C {2 for small ¢, by (3) and (6) we

have
6261/P

/ G(gvteue> > C/,C/ pQ—ldp > C/,LEQ/p, (14>
2 c

1el/p

where we used the appropriate polar coordinates formula. So, if Q > p?, we
get that there exists a function ¢ = ((¢) such that lim._ {(¢) = 400 such
that, for € small,

/ G(& teue) > C(e) - (@—p)/(P—1)
0

Hence, from (13) and the latter estimate, we get that, for € small enough,
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SQ/p
J(teu) < 0
Analogously, if Q = p?, from (13) and (14), we get
SQ/p SQ/p
J(teue) < 0 + O(€P) — cue? < 0

for suitable small € and p large enough. Hence,(12) cannot hold. So, from (11),
we obtain a Palais-Smale sequence for J, belonging to the cone of nonnegative

functions in Sy (£2), at level ¢ € (0, S%/p

): its weak limit is nonnegative,
nontrivial and it solves (Py).

Finally, such solution turns out to be strictly positive by the nonlinear
strong maximum principle in [3]. O

Proof of Theorem 2. The proof follows the scheme of the proof of Theorem
1, except for estimate (14), which is replaced by the following considerations.
From (7), there exists an increasing function ¢ such that lim;_, 4o ((t) = +00
such that G(&,s) > ((s) - s° for a.e. £ € £2p and all s > 0. Therefore,

/ G(é,teue)zc(ce@*@/p) Br—Q)/p / 29 1dp
’ 0 (15)
> ¢ (ce(p*Q)/p> (@1,

where it is used that ming¢)<c tetie > celr=@)/p, O

Proof of Theorem 3. Also in this case, we prove that the PS sequence
obtained by the mountain pass argument is at level below the compactness
threshold. Following the idea in [10], let e; be the first positive eigenfunction
of —A, ¢ in {2 and let us estimate J(te1), where ¢t > 0. We have

Al — A — . X
J(ter) = 22 47ley |2 - %ﬁ” eillp-
AL — A Q—-p *
< T|Q|p/Qtp||el b — o 7 [|eq B (16)
_ \\Q/p

where in the last inequality we have maximized with respect to t > 0. So, if
A€ ()\1 — A, /\1), then

1
Q/p
max J(ter) < =S%/P,

and the existence of a solution follows as in the preceding proofs. O
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4 The case with linking geometry

This section is devoted to the case with linking geometry. We introduce the
necessary notation and, under the appropriate hypotheses on G, we state the
related existence results (see Theorems 4 and 5 below). Finally, after some
preliminary lemmas, we sketch the proofs.

4.1 Statement of the results

Let us introduce some further notation. Let w € S~1#'(£2), the dual space
of Sy?(£2). We denote by E;- the subspace of Sy*(£2) orthogonal to w, i.e.

Ey = {ue 557(2) | (w,u) = 0},

where () is the duality product between S~ (£2) and S3*(£2); denote by
B' = {u'e S17(2)]| lully = 1} Let

A= su inf XullP.
wES‘lgl(Q) ueELNB! H ||p

It is possible to verify that A\ < X, where )y is the second eigenvalue of
—A, g If p =2, then X = \g; if p # 2, it is not clear whether the equality
holds or not. However, it holds that A > \; (see Lemma 2 below).

The non-resonance case corresponds to requiring the following assumptions

on G(&,u):

1()\1 +0)|sP <G(E,s) < E(X— o)|s|P for a.e. € 2,V|s| <6
’ P )
G(&,s) > ;(Al +o)|sP — E|s|p for a.e. £ € £2,Vs # 0.

We observe that (5) and (17) imply ¢(£,0) = 0 a. e. in 2 and u = 0 is a
solution of (Py). In this case, we prove the following result.

Theorem 4 If 1 < p? < Q, assume that (2), (3) and (17) hold; if 1 < p <
Q < p?, assume that (2), (3), (7), (17) hold. Then, problem (P,) admits a
nontrivial solution.

We conclude with the case of resonance near the origin. We assume that
there exists 6 > 0 and o € (0,1/p*) such that

1)\1|s|p <G, s) < E(Xf o)|s|P for a.e. € £2,V|s| < ¢
p p

1 (13)
G(€7S) > 5A1|5| - (

1 .
— —o)|s|P forae € 2,VseR.
p
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We also need the following condition on G(&, s) at infinity: there exists an
open nonempty set {29 C {2 such that

h G&3)

s—+o00 sY

= 400 uniformly inf?2y, (19)

where y = 22(Qpt2p 72@). The following result holds.

(Q—p)(Qp+p—Q

Theorem 5 Let 1 < p < Q and assume that (2), (3), (18), (19) hold. Then,
problem (Py) admits a nontrivial solution.

We observe that v < p* for any 1 < p < @ and v > 0 for p > QQ—EQ From
Theorem 5, we deduce the following result for problem (Py).

Corollary 2 Let p > 1 and Q such that QQ—_; > p?. Then, problem (Py)
admits a nontrivial solution for A = A1.

4.2 Proof of the results

In this subsection, we sketch the proof of Theorems 4 and 5. We begin with
some preliminary lemmas. We first need a lemma which provides a sufficient
condition for the linking geometry to hold.

Lemma 2 For any w € S~Y7' () such that (w,e1) # 0 there exists a con-
stant c,, > 0 depending on w such that if u € E, then [ Xul[p — A llullb >
cwl| Xul[B; therefore, X > Ay

Proof The proof follows the Euclidean outline in [1], so we omit it. O

Now, let e; denote the positive eigenfunction relative to A\; and such that
llex]l, = 1 and let {2y be as in (7) or (19). Without restriction, we can assume
that 0 € £y C 2. Denote by B, the d-ball centered at 0 with radius r. For
m € N sufficiently large so that Bj/,, C {2, define the functions ¢,, : 2 — R
as follows

0 lfg S Bl/m
Pm(€) = 4 md(§) =1 if { € By \ Biym (20)
1 if £ € 2\ Bam.

Let e* := ¢mer and let E™ := span{ef*}. We prove the following approxi-
mation result.

Lemma 3 As m — oo, there holds
et — e in SyP(R2) and [ X (eI < A1+ vmP~@, (21)

for a suitable v > 0.
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Proof Let us compute

[X (e —e)llp = ller X dm + (¢m — 1) Xea|lp
< llerXomllp + [(0m — 1) Xeallp (22)
<e(mP?4+m9) -0,

where we have used that
/ | X pm|P = mp/ | Xd[P < CmP|Byyy \ Bijm| = CmP~ €,
2] By/m\B1/m
due to the boundedness of ¢ = | X d|. Hence, ef* — e; and by the definition

of ef*, the second estimate in (21) follows. O

Let now observe that, for all § > 0, there exists w € S=12'(£2) such that
min,cpinpt || Xull, > A — 4. Let, for such w, Ef == E}.

Lemma 4 Assume that (2), (3) and either (17) or (18) hold. Then, there
exists a, 0, p > 0 such that

J(u) >a Vue€dB,NEj.

Now, consider the family of Sobolev minimizers U, defined in (8) and, for
m € N, take a cut-off function n,, € C§°(B1 ), 0 < n < 1, such that n,, =1
in By /m and || XN |lo < 3m. Then, for e > 0, define

UT(Q = nm(g)Ue(§)> §eG. (23)

Then, as em — 0, analogous estimates as in (10) hold

| Xum b < SQ/P 4 C(em) @)/ (=1 ||u;n||£: > SQ/P _ C(em)Q/ P,
(24)
Note that, by construction, for all € > 0 and m € N we get

supp(u*) Nsupp(ef”) = 0. (25)
Now, define
QS, = {u e SyP(2)|u=ael +bu™,|a| < R,0<b< R}.

It can be verified that Q¢, and 9B, N E+ link (see [42]) if R > p, where
p is as in Lemma 4. Moreover, by (25), if R and m are large enough, then
J(u) <0 for all u € 0Q¢,. By these choices on R and m, if we let

I'={heC(Q,, S (2)|h(u) = u,Yu € 0Q%,},

by standard arguments, we obtain a PS sequence for J at level
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= inf J(h(u)).
°= iy T

Then, the conclusions of Theorems 4 and 5 will follow by showing that, for e
sufficiently small, ¢ < £ (z)/p.

Proof of Theorem 4. Let 1 < p? < Q. Choose m large enough so that
vmP~@ < o, where v is as in Lemma 3 and o is as in (17). It follows that

Yw e E™ J(w) <0. (26)

We prove that there exists € > 0 such that

1
J(u) < =89/P, 27
Jnax (u) 0 (27)

Arguing by contradiction, assume that

1
Ve >0, max J(u)> éSQ/p.

u€QY,
By the compactness of the set {u € Q¢,|J(u) > 0}, for all € > 0 there exist
we € E™ and t. > 0 such that, letting v. = we + tul”, it holds

1
J(ve) = J(u) > = S9P,
(ve) Jnax (u) > 0

that is

1 1 « 1

vaep—/Gg,ve — —lve]|P. > =897, Ve > 0. 28
pll HpQ()p*HpQ (28)
As in Theorem 1, it follows that ¢, is bounded between two positive constants.
We now estimate the term fQ G(&, teu). We claim that there exists a function
¢ = ((€) satistying lim._,o ((€) = +o0, such that for e sufficiently small, it
holds

/ G(& teue) > ((e) - el@=p)/(p=1), (29)
2

The above estimate can be seen as follows. For e sufficiently small, there
exists a constant ¢; > 0 such that t.Uc(€) € (0,9) for all £ such that d(§) >
616(”_1)/”2; we also observe that, if § € By, then u* = U.. Therefore, by
(17) and (1), we get
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/Q G, toue) > ¢ / v Ur(e)

151/17

1/2m 9
> ¢e@P)/(-1) / ATy (g)
c1€+/P
cel@—p)/(p—1) v/ itQ > p?
|log €] ifQ = p*.

Hence, the function ((e) in (29) is obtained.
So, from (13), (25), (26) and (30), we have

SQ/p
Q

and choosing e small, we get a contradiction with (28).
The case p < Q < p® can be treated analogously, taking into account
estimate (15). O

J(ve) < J(teue) < + (c— (€)@ =),

Proof of Theorem 5. The proof follows the scheme of that of Theorem 4:
as before, we can show that, (27) holds for sufficiently large m € N, under
the asymptotic assumption (19) on G. We omit the details, referring to the
Euclidean outline in [1]. O
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