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By +1

1. Si consideri la funzione definita ponendo f(x,y) = o

(a) Si determini il dominio di f e si stabilisca dove f si annulla, dove & positiva e dove &

negativa.
(b) Siindividuino e, se esistono, si calcolino i limiti significativi di f.

(c) (Facoltativo) Si dimostri che f & limitata inferiormente.

2. Si consideri la funzione definita ponendo f(x,y) = e vIx,

(a) Sistudi la differenziabilita di f.

(b) Si calcoli la derivata direzionale di f in (0,0) in una generica direzione v.

3. Si considerino le funzioni f : R® — R? e g : R? — R definite ponendo
f(x,y,z) = (3x°y+ 2>, e cos(nz)), g(u,v) =uvd+v.

(a) Si stabilisca se il teorema su differenziabilita e composizione funzionale puo essere

applicato alla funzione composta h:=gof.

(b) In caso affermativo, lo si utilizzi per determinare la matrice jacobiana e il differenziale
di hin (1,0,1).

4. Si determinino gli estremi locali e globali della funzione definita ponendo

f(x,y)=(x—2y)(x* +y* —2x).
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1. Assegnata la curva parametrica y(t) = (1 —cos t, t —sin t), t € [0,27],

(a)

(b)
(c)

si stabilisca se € regolare, semplice, chiusa, e si determini il versore tangente al
sostegno di v nel punto (2, m);

si calcoli la lunghezza di «;

si calcoli I'area del dominio regolare contenuto nel primo quadrante, delimitato dal
sostegno di 7y e dalla retta di equazione x = 0.

2. Assegnata la forma differenziale

(a)
(b)
(c)

Wi, y) = (Cos('/rx) - N%) dx + <2¢% _ 1) dy |

si stabilisca se w & chiusa e se & esatta nel proprio insieme di definizione;

se w e esatta, se ne determini una primitiva;

si calcoli I'integrale di w sulla curva y(t) = (1 —t,2—t?), t €[0,1].

3. Si calcoli I'integrale

///T(X2+y2) |z|dxdy dz,

dove T ¢ il sottoinsieme di R® ottenuto intersecando la palla chiusa di centro I'origine

e raggio 2 e il complementare del cilindro solido avente generatrici parallele all’asse z e

direttrice la circonferenza di centro |'origine e raggio 1 contenuta nel piano z = 0.

4. Si consideri la superficie ottenuta ruotando attorno all'asse z il sostegno della curva

(a)
(b)

(c)

y¥(t)=(0, 1+2t, t), te€]0,2].

Se ne calcoli I'area.

Si calcoli il flusso del campo vettoriale F(x,y,z) = (—z,2y,xy) che attraversa la
superficie dall’alto verso il basso.

(Facoltativo) Si utilizzi il teorema della divergenza per verificare il risultato ottenuto
al punto precedente.
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1. Si studino continuita, derivabilita e differenziabilita della funzione

o xly2-1

)= ern

1
2. Si consideri la funzione f(x,y) = (x — y)? — 1 (x* + y*).

(a) Si determinino i punti stazionari di f e li si classifichino.
(b) Si calcoli il limite di f per ||(x,y)|| — +oo.

(c) Si determinino gli estremi globali di f.

3. Si determini il pil grande insieme aperto in cui la forma differenziale

1 2y

- x4+
x|+ 2 + 1 x[ry2r1”

w(x,y)

e esatta.

4. Sia D il dominio piano, contenuto nel primo quadrante, delimitato dalle curve di equazione
xy=1,xy=2,y=3x% x=1. Sicalcoli

5=
p X2

5. Siconsiderino la superficie parametrica o(u, v) = (u, u+v, uv), definita nella palla chiusa

dxdy .

unitaria di R? e il campo vettoriale F(x, y,z) = (xz, xy, y z), definito in R>.
Si calcoli il flusso del rotore di F attraverso o.
(Facoltativo) Si utilizzi il teorema di Stokes per verificare il risultato ottenuto.
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1. Si stabilisca se la funzione

arctan(x® + y?) )
f(X,y): X2+y2 (X'y) SN \{(0,0)}

0 (x,y) =(0,0)

& continua in (0,0); in caso affermativo, si verifichi se & anche differenziabile in (0, 0).

2. Si consideri la funzione f(x,y) = |x 4 y| e ).

(a) Si determinino gli estremi locali e globali di f.

(b) (Facoltativo) Si determino gli estremi globali di f nel dominio, contenuto nel primo
quadrante, delimitato dalle rette di equazione x = 0, y = 0, x4+ y = 2 e dalla

circonferenza di equazione x2 + y2 = 1.

3. Assegnata la forma differenziale

1 X =2,y
dx + d
X—=3y 2y (x —/Y) 4

(a) si stabilisca se w & esatta nel proprio insieme di definizione; in caso affermativo, se

w(x,y) =

ne determini una primitiva;

(b) si calcoli I'integrale di w sulla curva v(t) = (2+t,1+3t), t €[0,1].

/// In(x*+ y*+ 1) zdxdy dz,
.

dove T 2 il sottoinsieme di R® delimitato dal paraboloide di equazione z = xZ + y? e il

4. Si calcoli I'integrale

piano di equazione z = 4.

5. Sia X la porzione della superficie sferica di centro I'origine e raggio 3 contenuta nel primo
ottante. Si calcoli I'integrale su X della funzione f(x,y,z) = xy z°.
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1. Si stabilisca se la funzione

(x=2y) In(x*+y%)  (x,y) € R*\{(0,0)}
0 (x.y)=(0,0)

f(x,y) =

& continua in (0,0); in caso affermativo, si verifichi se & anche differenziabile in (0, 0).
Si stabilisca inoltre se f ammette limite all'infinito e in caso affermativo lo si calcoli.

2. Si determinino gli estremi locali e globali della funzione definita nel quesito 1.
(Suggerimento: se si tiene conto del segno e degi zeri di f, non & necessario studiarne la

matrice hessiana per classificare i punti stazionari.)

3. Assegnata la curva parametrica y(t) = (ef sin t, et cos t), t € [0, 7/2],

(a) si calcoli la lunghezza di 7;

(b) si calcoli I'integrale curvilineo su <y della forma differenziale

4 x 2y
(,U(X,y): (1+2><2—+y2> dx+2X2—+y2dy.

4. Sia D il dominio, contenuto nel primo quadrante, delimitato dalle rette di equazione x = 0,
XxX+y—3=0, y=2x, y=2x+4 2. Sicalcoli I'integrale

// e3> cos(y — 2x)dxdy .
D

5. Sia T l'insieme limitato, contenuto nel semipiano {z > 0}, delimitato dalla superficie
cilindrica di equazione x> + y? = 4 e dal piano di equazione x —y —3z+6 = 0.
Si calcoli il flusso uscente attraverso la frontiera di T del campo vettoriale

F(x.v.z) = (X2, y°, x +2y).
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1. Si stabilisca se in (0,0) la funzione

sinixy) ) e Re
oy L G ERC0)
0 (x.¥) =(0,0)

e continua, derivabile direzionalmente, differenziabile.
Si stabilisca inoltre se f ammette limite all'infinito e in caso affermativo lo si calcoli.

2. Si determinino gli estremi locali e globali della funzione f(x, y) = e™*(y? — (x> — 1)?).

3. Assegnata la forma differenziale

wix,y)=]1—-x*>—y?|ldx+2xydy,

(a) si stabilisca se w & esatta nel proprio insieme di definizione o in un suo sottoinsieme;

(b) si calcoli I'integrale di w sul segmento congiungente i punti (3,0) e (0, 3).
4. Sia D={(x,y) €R?’|x>0, y >0, 1 <x+y<4}. Sicalcoli I'integrale

//D(x—y+2) In(1+ (x+y)?) dxdy.

5. Si calcoli il flusso del campo vettoriale F(x,y,z) = (x?, y?, z°) uscente attraverso la
frontiera del cubo T = [0, 1]3.
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1. Assegnata la funzione definita ponendo f(x,y) = x e~ V**** per ogni (x, y) € R?,
(a) si stabilisca se f & differenziabile in (0, 0);

1 1
b) si calcoli la derivata di f nella direzione | ———, — | nel punto (2, 0).
(5 (<75 75) rel punto (2,0)

2. Si determinino gli estremi locali e globali della funzione definita ponendo

f(x,y) =y (x*—¢)?

per ogni (x,y) € R?.

3. Assegnata la curva parametrica y(t) = (1 —cos t, t —sin t), t € [0,27],

(a) si calcoli I'integrale su <y della forma differenziale

B y+1 dx — X
 (x+y+1)2 (x +y +1)2

w(x,y) dy;

(b) si calcoli I'area della superficie ottenuta da una rotazione completa del sostegno di y
intorno all’asse y.

4. Sia T:{(X,y,z)€R3|x20, y >0, z>0, x2—|—y2—|—z2§1}.

(a) Si calcoli I'integrale ///Tﬁdx dydz;

(b) assegnato il campo vettoriale F(x, y, z) = (x?, y2, z2), si determini il flusso del rotore
di F uscente attraverso la frontiera di T.
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1. Si studino continuita, derivabilita e differenziabilita della funzione

y|x? — 4

V) =it

2. Si determinino gli estremi locali e globali della funzione definita ponendo
fix.y)=4(x—y)" —x"—y*

per ogni (x,y) € R?.

3. Assegnata la forma differenziale

-2 1
4 VX dx +

YN == T R Y

(a) si stabilisca se w & esatta nel proprio insieme di definizione; in caso affermativo, se
ne determini una primitiva;

(b) si calcoli I'integrale di w sulla curva y(t) = (1+3t,2+1t), t€[0,1].

4. Si calcoli I'integrale

/// In(x*> +y*+1)zdxdydz,
;

dove T ¢ il sottoinsieme di R® delimitato dal paraboloide di equazione z = xZ + y2? e il

piano di equazione z = 9.

5. Si calcoli il flusso del campo vettoriale F(x,y,z) = (x?, y?, z%) uscente attraverso la
frontiera del cubo T = [0, 2]3.
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1. Si studi la differenziabilita in (0,0) della funzione definita ponendo
f(X,y) — ef|xf}/‘y
per ogni (x,y) € R?.

2. Si determinino gli estremi locali e globali della funzione definita ponendo

f(x,y) _ X2yex+3y

per ogni (x,y) € R?.

3. Si calcoli I'integrale della forma differenziale

y
X +

w(x,y):(Qx— 1) dx —In(x+1)dy,

sulla curva y(t) = (t2 -2t +2,t), t €[0,2].

//DX In(y)dxdy,

dove D e il triangolo di vertici (0,1), (0,2) e (2,1).

4. Si calcoli I'integrale

5. Si calcoli il flusso del campo vettoriale F(x, y,z) = (v, —x, 1) che attraversa la porzione
di paraboloide {(x,y,z) € R®|z = x?+ y?, z <1} dall’alto verso il basso.
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1. Si stabilisca se la funzione definita ponendo

fx,y) =xyv(x—1)2+y?

e differenziabile in (1,0).
Si stabilisca inoltre se f & dotata di derivate seconde in (1,0); in caso affermativo, le si
calcolino.

2. Si determinino gli estremi locali e globali della funzione definita ponendo
Fx,y) =Xy +xy —y°.

3. Si stabilisca se la forma differenziale definita ponendo

1 dx — 2
V1—(x—2y)? V1—(x—2y)?

w(x,y) = dy

e esatta nel proprio dominio.

Si calcoli inoltre I'integrale curvilineo di w lungo la curva parametrica

y(t) = (t, t— g) , t€[0,1].

4. Si calcoli il flusso del campo vettoriale
F(x.v.z) = (X*,x*y, x* 2)
uscente attraverso la frontiera dell’'insieme
T={(xy.z) eR*|x*+y* <4, 0<z<1}.

Si applichi inoltre il teorema della divergenza per verificare il risultato ottenuto.



