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Spazi metrici

Metriche in un insieme. Spazi metrici. Sottospazi metrici. Intorni. Punti interni, esterni, di frontiera.

Interiore; insiemi aperti. Punti di accumulazione; derivato; insiemi chiusi. Operazioni insiemistiche con in-

siemi aperti e insiemi chiusi. Insiemi limitati. Successioni convergenti. Unicità del limite. Caratterizzazione

sequenziale degli insiemi chiusi. Convergenza in sottospazi metrici. Successioni estratte. Successioni di

Cauchy. Proprietà delle successioni di Cauchy∗. Spazi metrici completi. Completezza e chiusura. Spazi

metrici sequenzialmente compatti. Legame tra compattezza, completezza, chiusura e limitatezza∗. Spazi

metrici connessi. Funzioni continue. Proprietà delle funzioni continue rispetto all’immagine reciproca e

rispetto alla composizione funzionale. Teorema di Weierstrass∗; teorema di Cantor; teorema dei valori

intermedi∗ . Spazi normati; spazi di Banach. Spazi con prodotto scalare; spazi di Hilbert.

Funzioni di più variabili

Lo spazio vettoriale reale Rn e il suo duale. Prodotto scalare standard in Rn ; norma e metrica euclidea.

Norma del reticolo e del massimo. Insiemi convessi, stellati, connessi per poligonali. Convergenza in Rn .

Teorema di Bolzano-Weierstrass in Rn ; teorema di Heine-Borel∗. Completezza di Rn .

Funzioni reali e funzioni vettoriali di più variabili reali. Definizioni equivalenti di limite, con intorni e per

successioni. Banalità del limite per funzioni vettoriali. Proprietà delle funzioni continue: continuità e oper-

azioni algebriche, continuità e composizione funzionale, caratterizzazione della continuità mediante i limiti.

Strategie per il calcolo del limite di funzioni di più variabili.

Derivate direzionali. Derivate parziali. Funzioni di classe C1 . Funzioni differenziabili; differenziale. Dif-

ferenziale e derivate direzionali∗. Gradiente; formula del gradiente. Caratterizzazione della differenziabilità.

Continuità delle funzioni differenziabili∗. Teorema del differenziale totale∗. Piano tangente. Derivate di-

rezionali e parziali per funzioni vettoriali. Differenziale di funzioni vettoriali. Matrice jacobiana. Regole di

calcolo per il differenziale. Differenziale e composizione funzionale∗. Derivate parziali successive. Matrice

hessiana. Teorema di Schwarz. Funzioni di classe C2 .

Teorema del valor medio∗. Teorema sulle funzioni a differenziale nullo∗. Teorema degli incrementi finiti.

Polinomio di Taylor di ordine 2; formula di Taylor con il resto di Peano.

Punti di estremo locale. Teorema di Fermat∗. Punti stazionari. Punti di sella. Caratterizzazione del

minimo e del massimo autovalore di una matrice simmetrica∗. Matrici definite positive, definite negative,

indefinite. Condizioni necessarie e condizioni sufficienti per punti di estremo locale∗. Estremi vincolati sul

sostegno di una curva o sul sostegno di una superficie. Teorema delle funzioni implicite in R2 e in R3 .

Teorema dei moltiplicatori di Lagrange.

Integrali multipli

Plurintervalli in Rn e loro misura. Misura interna e misura esterna di un insieme limitato. Insiemi misurabili

secondo Peano-Jordan. Caratterizzazioni degli insiemi misurabili. Proprietà degli insiemi misurabili.

Suddivisioni misurabili. Somme di Riemann inferiori e superiori. Funzioni integrabili secondo Riemann;

integrale di Riemann. Caratterizzazione della integrabilità. Condizioni sufficienti per la integrabilità. Pro-

prietà degli integrali: linearità, monotonia, additività. Media integrale.

Insiemi normali in R2 e in R3 . Formule di riduzione per integrali doppi e per integrali tripli (per fili e per



strati). Volume dei solidi di rotazione. Cambiamento di variabili negli integrali multipli. Coordinate polari

nel piano e nello spazio; coordinate polari ellittiche; coordinate cilindriche.

Integrali curvilinei e di superficie

Curve parametriche. Curve piane assegnate mediante equazione polare. Curve regolari e regolari a tratti;

versore tangente. Curve semplici. Curve chiuse. Curve rettificabili; lunghezza di una curva. Lunghezza per

curve di classe C1 ∗. Cambiamenti di parametro. Curve equivalenti. Ascissa curvilinea. Integrali curvilinei

di prima specie; proprietà. Calcolo di massa e baricentro.

Forme differenziali; forme differenziali esatte. Integrali curvilinei di seconda specie; proprietà. Formula

fondamentale del calcolo integrale per forme differenziali∗. Caratterizzazioni delle forme differenziali esatte∗.

Forme differenziali chiuse. Teorema di Poincaré∗. Esattezza delle forme differenziali chiuse in domini piani

semplicemente connessi.

Superfici parametriche. Superfici regolari e regolari a tratti. Piano tangente; versore normale. Superfici con

bordo e superfici chiuse. Superfici equivalenti. Area di una superficie. Superfici grafico di funzioni reali.

Superfici di rotazione; teorema di Guldino. Integrali di superficie. Flusso di un campo vettoriale attraverso

una superficie.

Domini regolari in R2 e in R3 . Teorema di Gauss-Green nel piano. Calcolo di aree mediante integrali

curvilinei di seconda specie. Integrazione per parti per funzioni di due variabili. Rotore di un campo

vettoriale; teorema di Stokes. Divergenza di un campo vettoriale; teorema della divergenza.

Note

Gli argomenti sono raggruppati per attinenza; l’ordine in cui essi sono elencati non coincide necessariamente

con l’ordine in cui sono stati trattati durante il corso.

La dimostrazione dei risultati contrassegnati con ∗ è parte integrante del programma.
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