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Estremi locali

Siano f ; ACR" - Re x € A.

Diciamo che x & un punto di massimo locale per f se esiste un intorno U
di X tale che f(x) < f(x) per ogni x € UNA.

Diciamo che X & un punto di minimo locale per f se esiste un intorno U
di x tale che f(x) > f(x) per ogni x € UN A.

Diciamo che x & un punto di estremo locale per f se & punto di massimo
o di minimo locale.

Il valore di f in un punto di estremo locale si chiama estremo locale di f.

Esempi

o Flxy) = X2+ y2

o f(x,y) =x%—y?

o flx,y)=(x*+y* 1)



Teorema (di Fermat) <+ analogo al teorema visto in Analisi |

Sia f : ACR"” — R. Sia X un punto di estremo locale per f.
Supponiamo che x sia interno ad A e che f sia differenziabile in x.
Allora: dfs =0. <« zero di Hom(R", R)

Dimostrazione ... ©

Osservazione
In base al teorema di Fermat i punti interni al dominio di f candidati a

essere punti di estremo locale di f sono:
punti

e i punti in cui f & differenziabile con differenziale nullo S
stazionari

e i punti in cui f non & differenziabile.

| punti interni stazionari che non sono punti di estremo locale si chiamano
punti di sella. Esempio ...



Nota

X € un punto stazionario per f se e solo se f & differenziabile in x e

Vi) =0 (<= g:i(;)—o vie{l,...,n})

Significato geometrico (per n =2) ...

Esempi

Determinare i punti stazionari delle funzioni
o fx,y) =x>=3xy+y?

o f(x,y,2) =x3y —y +x?22

E possibile classificare i punti stazionari di una funzione (cioé stabilire se sono
punti di massimo locale, di minimo locale, oppure di sella) senza ricorrere alla
definizione, ossia senza dover risolvere disequazioni in due o piu variabili?



Classificazione dei punti stazionari

Teorema

Siano f : ACR"” — R e X un punto interno di A stazionario per f.
Supponiamo che f sia di classe C? in un intorno di X.

Sia A € R un autovalore di H¢(x) e sia v € R" un autovettore corrispon-
dente. (ciog: v#0e He(X)v=2Av)
Allora:

e se A > 0, la restrizione di f alla retta passante per X individuata da v

ha in X un punto di minimo locale;

e se \ <0, la restrizione di f alla retta passante per X individuata da v

ha in X un punto di massimo locale.

Dimostrazione ... © ) ) o )
simmetrica, perché f e di classe C

!

Nota: ha senso parlare del segno degli autovalori di H¢(x) in quanto sono
tutti numeri reali.



Osservazione

Se A = 0 ¢é autovalore della matrice hessiana, sul comportamento della
restrizione di f alla retta passante per x individuata da un autovalore
corrispondente non si puo fare alcuna previsione.

Esempi:

Fly)=x2+y%  flxy)=x2—y* flxy)=x>+y3



Corollario (classificazione dei punti stazionari)

Sia f : ACR"” — R e sia X un punto interno di A stazionario per f.

Supponiamo che f sia di classe C? in un intorno di X.

@ Se H¢(x) ammette due autovalori discordi, allora X & punto di sella
per f.

@® Se tutti gli autovalori di H(X) sono strettamente positivi, allora
X & punto di minimo locale per f.

© Se tutti gli autovalori di Hf(X) sono strettamente negativi, allora
X & punto di massimo locale per f.

Il punto @ segue immediatamente dal teorema; i punti @ e @ richiedono una

dimostrazione, che omettiamo per brevita.

Nota
La matrice hessiana & detta indefinita nel caso @, definita positiva nel

caso @, definita negativa nel caso ©.



Esempi

Determinare e classificare i punti stazionari delle funzioni

f(x,y) =x3—=3xy+y?

e F(x,y)=In(1+x+y)—x—y>?

o f(x,y,2)=x3y —y + x> 22

o f(x,y,2)=x>+y3+ 22 —xy —xz

o f(x,y,2)=x2y +y?z+ 2% -2 77



Osservazione

Se la matrice hessiana & semidefinita ma non definita, cioe ha almeno
un autovalore uguale a 0 e tutti gli autovalori non nulli concordi tra loro,
il teorema sulla classificazione dei punti stazionari non & applicabile.

Tenendo conto del teorema di pagina 4, in base al segno degli autovalori

non nulli (se ce ne sono) si pud formulare una congettura sulla natura del
punto stazionario, da confermare oppure confutare risolvendo disequazioni
oppure individuando restrizioni della funzione per le quali il punto stazio-

nario ha natura diversa da quella congetturata.

Esempi
Classificare i punti stazionari delle funzioni

° f(x,y):x3y+x2y2+xy3 ° f(x,y):x4+x2y+y2+3
o f(x,y)=24x*+3y* —(x—y)> o flx,y)=x*+x*(y* 1)

1 luogo di punti stazionari
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Esempi

Determinare gli estremi locali e globali delle funzioni

o f(x,y)=(x+y)’x|

o f(x,y)= (x?’—i—2xy2 —x)1/3

F(x,y) =xy? et

x+y—1
° f(XJ):W

fx,y) = (y* = 1) In(x*+y?)



Estremi vincolati (per funzioni di due o tre variabili)

Consideriamo alcuni problemi:

e determinare gli estremi globali della funzione
f(x,y) =2x>+y? —x
nell'insieme D = {(X,y) ER?|x2+y? < 1};
e determinare la minima distanza tra I'origine e I'insieme
{(x,y) e R?|x%y = 16};

e determinare le dimensioni di una scatola a forma di parallelepipedo,

senza coperchio, avente volume massimo, se |'area della superficie & 12.

Per risolvere questi problemi bisogna determinare punti di estremo in insiemi
chiusi, che quindi contengono i punti della propria frontiera; in tali punti, gli
strumenti utilizzati in precedenza (teorema di Fermat, studio degli autovalori
della matrice hessiana) non sono applicabili. Come si fa? 10



Affrontiamo la questione da un punto di vista generale, notando che gli esempi
considerati sono accomunati dal fatto che le variabili sono soggette a una rela-
zione di uguaglianza. Iniziamo con funzioni di due variabili.

Siano A C R? un insieme aperto e f € C}(A,R).
Sia g € C}HA,R) esia Z := {(x,y) € A| g(x,y) =0}.
Supponiamo Z # ().

Gli estremi della restrizione di f all'insieme Z si chiamano estremi vincolati
di f; I'insieme Z si chiama vincolo (di uguaglianza).

Osservazione

Se il vincolo Z ¢ il sostegno di una curva semplice regolare, con parame-
trizzazione r definita nell'intervallo I, allora:

la ricerca degli estremi vincolati di f si riduce alla ricerca degli estremi della

funzione t el f(r(t)) € R. T problema di AM | 0



Esempio
Determinare gli estremi locali e globali della funzione

f(x,y) =2x°4+y%—x

sulla circonferenza unitaria; utilizzare quanto trovato per determinare gli

estremi globali di f nell'insieme

D:{(x,y)€R2|x2+y2§1}.

Come si possono identificare i candidati punti di estremo vincolato in mancanza
di una parametrizzazione del vincolo?
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Teorema (della funzione implicita in R?)

Siano A C R? un insieme aperto e g € C*(A,R).

Siano Z := {(x,y) € A| g(x,y) =0} e (x0, ) € Z.

Supponiamo gy (xo, yo) # 0.

Allora: " derivata parziale di g rispetto a y

e esistono un intorno U di xg e un intorno V di yy tali che per ogni x € U
esiste uno e un solo elemento y di V per cui risulti g(x,y) = 0;

e associando a ciascun x di U I'unico elemento di V previsto al punto
precedente si ottiene una funzione h: U — V, tale che h(xg) = yo;

e hédiclasse C! e per ogni x € U:

H (x) M . (%)

_ B 8y (x; h(x))
Significato ed esempi . ..

La funzione h si dice definita implicitamente dall'equazione g(x,y) =0. |5



Osservazione

Nelle ipotesi e con le notazioni del teorema, I'insieme Z N (U x V)

& il grafico della funzione h, reale di una variabile reale e di classe Ct,
dunque coincide con il sostegno della curva grafico associata ad h,

parametrizzata da r(x) = (x, h(x)), x € U. curva semplice, non chiusa
e regolare
Valutando (%) in xp si ottiene

0 = gx(x0, h(x0)) + gy (x0, h(x0)) H'(x0) = V&(x0,¥0) - ' (x0).

quindi: Vg(xo, o) & ortogonale al vettore tangente a Z in (xo, ¥o).

Nota

Se nel teorema si suppone gx(xo, o) # 0, vale un analogo risultato nel
quale la funzione definita implicitamente dipende dalla variabile y.
Resta valido quanto osservato qui sopra sul gradiente.
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Nota
Il teorema della funzione implicita e la successiva osservazione si possono

applicare a un generico insieme di livello di g, cioe all'insieme

Ec :={(x,y) € A| g(x,y) =c}, (Z = Ey)
con c € R.

In particolare, in ogni punto dell'insieme di livello il vettore gradiente di g,
se non nullo, & ortogonale alla retta tangente all'insieme di livello.

Esempio . ..

Siamo pronti a identificare i candidati punti di estremo vincolato . . .

15



Teorema (“di Fermat sui vincoli")

Siano A C R? un insieme aperto e f € C1(A,R).

Siano g € C}(A/R) e Z:= {(x,y) € A| g(x,y) = 0}.

Sia (xp, o) € Z tale che Vg(xo, yo) # (0,0).

Supponiamo che (xp, yo) sia un punto di estremo locale vincolato per f.
Allora:

Vf(xo0,y0) € ortogonale al vettore tangente a Z in (xo, o).

Corollario (teorema dei moltiplicatori di Lagrange in R?)

Nelle ipotesi del teorema, esiste A\ € R tale che (xp, yo, Ag) risolve il
sistema N moltiplicatore di Lagrange
f(x,y) = Aegx(x,y)
(x)  H(0y) =g (xy)

g(x,y)=0. + appartenenza al vincolo

} “parallelismo” tra V£ (xo, yo) € Vg(xo, ¥0)

16



Nota: le soluzioni del sistema (x) sono i punti stazionari della funzione
lagrangiana L : A x R — R definita ponendo

L(X:y:)‘) = f(Xv)/) - )‘g(xa)/)'

Osservazione
In base al teorema dei moltiplicatori di Lagrange, i candidati punti di

estremo vincolato su Z di f sono:
e i punti del vincolo Z, in cui Vg & diverso da (0,0), che sono stazionari

per la funzione lagrangiana;

e i punti del vincolo Z in cui Vg & uguale a (0,0). (punti singolari)
Esempi

Determinare i punti singolari dei seguenti vincoli:

{(x,y) eR? | X2+ y?> =1 =0} {(x,y) eR? | x2 — y® =0}

{(y)eR? [ x*(1+4x)—y*=0} {(x,y)eR*|xe —y=0} |,



Esempi

Utilizzare il teorema dei moltiplicatori di Lagrange per

e determinare gli estremi globali della funzione f(x,y) = 2x? + y? — x

sulla circonferenza unitaria; gia fatto, ma lo ripetiamo

e determinare la minima distanza tra I'origine e I'insieme

{(x,y) € R?|x%y = 16}.

Risoluzione grafica ...

18



Estremi vincolati per funzioni di tre variabili (solo qualche cenno)

Siano A C R3 un insieme aperto e f € C1(A,R).

La definizione di estremi vincolati & identica a quella data per funzioni
di due variabili, ma consideriamo due diversi tipi di vincoli per f:

@ l'insieme degli zeri di una funzione g € C1(A,R); R2+1 5 R1
@® l'insieme degli zeri di una funzione G € C}(A,R?). R*+2 5 R?

per funzioni di due variabili: R — R1

Esempi
{(x,y,2) R} | x> +y? + 2> -1 =0}
{(x,y,2) ER¥ | 22— x y —1=0}

{(,y,2) ER3 | x2+y?—2z=0, 2x+4y—z=0}

19



Osservazione

Come per le funzioni di due variabili, se il vincolo & sostegno di una curva
semplice regolare con parametrizzazione r definita in un intervallo I,

la ricerca degli estremi vincolati di f si riduce alla ricerca degli estremi
della funzione di una variabile t € I — f(r(t)) € R.

Se invece il vincolo & sostegno di una superficie regolare con parametriz-
zazione o definita in un insieme di parametri K, la ricerca degli estremi
vincolati di f si riduce alla ricerca degli estremi della funzione di due
variabili (u,v) € K — f(o(u,v)) € R.

Esempio
Determinare gli estremi globali della funzione f(x,y,z) = xy z sulla
porzione della superficie sferica unitaria contenuta nel primo ottante.

Come si identificano i candidati punti di estremo vincolato in mancanza di una

parametrizzazione del vincolo? Esaminiamo separatamente i due tipi di vincolo.
20



Vincolo di tipo @  “bidimensionale”

Come per le funzioni di due variabili, il punto di partenza ¢ il teorema

della funzione implicita, che enunciamo in modo informale.

Siano A C R3 insieme aperto, g € C1(A,R), Z I'insieme degli zeri di g.
Sia (xo, Y0, 20) € Z tale che Vg(xo, y0,20) # (0,0,0).

Allora:

esiste un intorno W di (xo, yo, 20) tale che l'insieme Z N W ¢ il grafico

di una funzione reale di due variabili reali di classe C!, e quindi il sostegno

di una superficie regolare. N quali?

Inoltre: dipende da quale derivata di g & diversa da 0

il vettore Vg(xo, yo,20) & ortogonale al piano tangente al sostegno della
superficie in (xo, Yo, 20)-

21



In aggiunta alle ipotesi della pagina precedente, sia f € C1(A,R) e
supponiamo che f abbia in (xo, yo,2p) un punto di estremo locale
vincolato su Z.

Tenendo conto del fatto che “vicino” a (xo, Yo, 20) il vincolo Z & sostegno
di una superficie regolare, si dimostra che il vettore Vf(xo, yo, 2p) & orto-
gonale al piano tangente al sostegno di tale superficie in (xo, yo, 20)-

Da questo si deduce il teorema dei moltiplicatori di Lagrange per vincoli
bidimensionali in R3:
esiste Ao € R tale che (xp, y0, 20, Ao) € soluzione del sistema
Vf(x,y,z) = AVg(x,y,z) parallelismo tra Vf(xo, y0,2) € Vg(xo, Y0, Z0)
g(x,y,z)=0 appartenenza al vincolo

oppure, equivalentemente, & punto stazionario della funzione lagrangiana
L: A xR — R definita ponendo

L(x,y,z,\) :==f(x,y,z) — Ag(x,y, z). 22



Esempi

Utilizzare il teorema dei moltiplicatori di Lagrange per

e determinare gli estremi globali della funzione f(x,y,z) = x? + y? + z?

2

sul vincolo di equazione z© — xy — 1 = 0;

e determinare le dimensioni di una scatola a forma di parallelepipedo,

senza coperchio, avente volume massimo, se I'area della superficie & 12.

23



Vincolo di tipo @  “unidimensionale”

Enunciamo il teorema della funzione implicita. < per funzioni da R3 in R?

Siano A C R3 insieme aperto, G = (G1, Gy) € C1(A,R?), Z I'insieme
degli zeri di G.

Sia (x0, Y0, 20) € Z tale che la matrice jacobiana di G in (xo, yo, 20) ha
rango 2.

Allora:
esiste un intorno W di (xo, yo, 2p) tale che l'insieme Z N W & il grafico di
una funzione reale di una variabile reale di classe C!, e quindi il sostegno

di una curva regolare.  Motivazione ...

Inoltre: J linearmente indipendenti
il piano individuato dai vettori V Gi(xo, y0, 20) € V Ga(x0, Yo, 20) & ortogo-
nale alla retta tangente alla curva in (xo, yo, 20)-

24



In aggiunta alle ipotesi della pagina precedente, sia f € C1(A,R) e
supponiamo che f abbia in (xo, yo,2p) un punto di estremo locale
vincolato su Z.

Il teorema dei moltiplicatori di Lagrange per vincoli unidimensionali in R3
afferma che:

esistono Ao, po € R tale che (xo, yo, 20, Mo, 140) € soluzione del sistema
Vi(x,y,2) = AVGi(x,y,2) + nV Ga(x,y, 2)
G(x,y,z)=0
oppure, equivalentemente, & punto stazionario della funzione lagrangiana
L: A x R? — R definita ponendo
L(x,y,z,\, ) :==f(x,y,2) = AGi(x,y,2) — p Ga(x, y, z.

Nota
La prima equazione del sistema esprime il fatto che il vettore V£ (xo, Yo, 20)
giace nel piano individuato dai vettori V G;(xo, yo, 20) € V Ga(Xo, Y0, 20)- »s



Esempio
Utilizzare il teorema dei moltiplicatori di Lagrange per determinare gli
estremi globali della funzione

f(x,y,z) =x+3y—z
sul vincolo definito dalle equazioni
x> +y?—z=0, 2x+4y—z=0.

Utilizzare una parametrizzazione del vincolo per verificare il risultato

ottenuto.
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APPENDICE
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Dimostrazione del teorema di Fermat

dimostrazione analoga per

Sia x € int(A) di massimo locale per f. S
punti di minimo locale

Sia r € RY tale che B.(x) CAe
f(x) < f(x) perognix e B.(X). (1)

Fisso h € R"\ {0}. Posto v := definisco g : (—r,r) — R tale che

h
Thlle
ben posta perché

g(t)=f(x+tv). X+ tv e B(x)

Osservo che: per ogni t € (—r,r)

o g(t) < g(0) perognite (—r,r) per(l)
o f differenziabile in x == f derivabile in x nella direzione v
<= g derivabilein t =0

Applicando il teorema di Fermat per funzioni reali di una variabile reale
ottengo g’(0) = 0. 28



Siccome
_of

, N e o h 1 .
(0) = 5, (%) = di(v) = dis (i ) = i ().

ottengo dfy(h) = 0.

Noto che h & un arbitrario elemento di R” \ {0}; inoltre, df;(0) = 0.

perché df; ¢ lineare 1
Dunque:

dfy & I'applicazione identicamente nulla, cioé lo zero di Hom(R", R).

29



Dimostrazione del teorema

Sia r € R* tale che B,(X) C Ae f &diclasse C2 in B,(X).

Dato che f & di classe C? posso utilizzare la formula di Taylor di ordine 2
con il resto di Peano.

Per ogni x € B,(X): —o perché x & stazionario
f(x) = f(>_<)+Vf(>_<)'(X—>'<)+%Hf(>_<) (x = %) - (x = %) + o(||x — X[|?),
ometto R” 1
quindi )
F(x) = F(%) = 5 Hr(%) (x = X) - (x = %) + o([lx = %°).

Sia A > 0 un autovalore di H¢(x) e sia v € R" un autovettore corrispon-
dente.

Esprimo la restrizione di f alla retta passante per x individuata da v come

t — f(x + tv), definita in un intorno di 0. < in modo che X + t v € B,(X)
30



Per ogni t appartenente a tale intorno:
1
f(x+tv)—f(x)= 5 He(x) (tv) - (tv)+o(||t v|]2)
che equivale a
t2
f(x+tv)—Ff(x)=— Hf( Jvev+ o(t2|\v||2)
cioe 70
_ .t )
f(x+tv)—f(x)= EAv-v—l-o(t )

ciog, se t # 0:

2
f(x +tv)—f(x) =t ( |v|> + oft )> (%)

s . A S
Per t — 0, la quantita tra parentesi tende a > |v||?, che & strettamente
positivo. <+ perché A >0ev #0
31



Per il teorema della permanenza del segno, esiste un intorno I di t =0

tale che

- : 2y (tz)
per ogni t € I\ {0} : || I+ > 0.

Da () segue allora

perogni t € I\ {0} : f(x+tv)—f(x)>0

che equivale a

per ogni t € I\ {0} : f(x+tv)> f(X),
quindi x & punto di minimo per la restrizione di f alla retta passante per
X individuata da v.

Con identico ragionamento si prova che x & punto di massimo se A < 0.
m}
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