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Estremi locali

Siano f : A ⊆ Rn → R e x̄ ∈ A.
Diciamo che x̄ è un punto di massimo locale per f se esiste un intorno U
di x̄ tale che f (x) ≤ f (x̄) per ogni x ∈ U ∩ A.
Diciamo che x̄ è un punto di minimo locale per f se esiste un intorno U
di x̄ tale che f (x) ≥ f (x̄) per ogni x ∈ U ∩ A.
Diciamo che x̄ è un punto di estremo locale per f se è punto di massimo
o di minimo locale.
Il valore di f in un punto di estremo locale si chiama estremo locale di f .

Esempi
• f (x , y) = x2 + y2

• f (x , y) = x2 − y2

• f (x , y) = (x2 + y2 − 1)2
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Teorema (di Fermat) ← analogo al teorema visto in Analisi I
Sia f : A ⊆ Rn → R. Sia x̄ un punto di estremo locale per f .
Supponiamo che x̄ sia interno ad A e che f sia differenziabile in x̄ .
Allora: dfx̄ = 0. ← zero di Hom(Rn,R)

Dimostrazione . . .

Osservazione
In base al teorema di Fermat i punti interni al dominio di f candidati a
essere punti di estremo locale di f sono:
• i punti in cui f è differenziabile con differenziale nullo punti

stazionari
• i punti in cui f non è differenziabile.

I punti interni stazionari che non sono punti di estremo locale si chiamano
punti di sella. Esempio . . . 2



Nota
x̄ è un punto stazionario per f se e solo se f è differenziabile in x̄ e

∇f (x̄) = 0
(
⇐⇒ ∂f

∂xi
(x̄) = 0 ∀i ∈ {1, . . . , n}

)
Significato geometrico (per n = 2) . . .

Esempi
Determinare i punti stazionari delle funzioni
• f (x , y) = x3 − 3 x y + y2

• f (x , y , z) = x3 y − y + x2 z2

È possibile classificare i punti stazionari di una funzione (cioè stabilire se sono
punti di massimo locale, di minimo locale, oppure di sella) senza ricorrere alla
definizione, ossia senza dover risolvere disequazioni in due o più variabili?
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Classificazione dei punti stazionari

Teorema
Siano f : A ⊆ Rn → R e x̄ un punto interno di A stazionario per f .
Supponiamo che f sia di classe C2 in un intorno di x̄ .
Sia λ ∈ R un autovalore di Hf (x̄) e sia v ∈ Rn un autovettore corrispon-
dente. (cioè: v ̸= 0 e Hf (x̄) v = λ v)
Allora:
• se λ > 0, la restrizione di f alla retta passante per x̄ individuata da v

ha in x̄ un punto di minimo locale;
• se λ < 0, la restrizione di f alla retta passante per x̄ individuata da v

ha in x̄ un punto di massimo locale.

Dimostrazione . . .

Nota: ha senso parlare del segno degli autovalori di Hf (x̄) in quanto sono
tutti numeri reali.

simmetrica, perché f è di classe C2

↓
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Osservazione
Se λ = 0 è autovalore della matrice hessiana, sul comportamento della
restrizione di f alla retta passante per x̄ individuata da un autovalore
corrispondente non si può fare alcuna previsione.
Esempi:
f (x , y) = x2 + y4, f (x , y) = x2 − y4, f (x , y) = x2 + y3
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Corollario (classificazione dei punti stazionari)
Sia f : A ⊆ Rn → R e sia x̄ un punto interno di A stazionario per f .
Supponiamo che f sia di classe C2 in un intorno di x̄ .
1 Se Hf (x̄) ammette due autovalori discordi, allora x̄ è punto di sella

per f .
2 Se tutti gli autovalori di Hf (x̄) sono strettamente positivi, allora

x̄ è punto di minimo locale per f .
3 Se tutti gli autovalori di Hf (x̄) sono strettamente negativi, allora

x̄ è punto di massimo locale per f .

Il punto 1 segue immediatamente dal teorema; i punti 2 e 3 richiedono una
dimostrazione, che omettiamo per brevità.

Nota
La matrice hessiana è detta indefinita nel caso 1 , definita positiva nel
caso 2 , definita negativa nel caso 3 .
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Esempi
Determinare e classificare i punti stazionari delle funzioni

• f (x , y) = x3 − 3 x y + y2

• f (x , y) = ln(1 + x + y)− x − y2

• f (x , y , z) = x3 y − y + x2 z2

• f (x , y , z) = x2 + y3 + z2 − x y − x z

• f (x , y , z) = x2 y + y2 z + z2 − 2 ???
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Osservazione
Se la matrice hessiana è semidefinita ma non definita, cioè ha almeno
un autovalore uguale a 0 e tutti gli autovalori non nulli concordi tra loro,
il teorema sulla classificazione dei punti stazionari non è applicabile.
Tenendo conto del teorema di pagina 4, in base al segno degli autovalori
non nulli (se ce ne sono) si può formulare una congettura sulla natura del
punto stazionario, da confermare oppure confutare risolvendo disequazioni
oppure individuando restrizioni della funzione per le quali il punto stazio-
nario ha natura diversa da quella congetturata.

Esempi
Classificare i punti stazionari delle funzioni

• f (x , y) = x3 y + x2 y2 + x y3 • f (x , y) = x4 + x2 y + y2 + 3

• f (x , y) = 24 x4 + 3 y4 − (x − y)2 • f (x , y) = x4 + x2 (y2 − 1)
↑ luogo di punti stazionari 8



Esempi
Determinare gli estremi locali e globali delle funzioni

• f (x , y) = (x + y)3 |x |

• f (x , y) = (x3 + 2 x y2 − x)1/3

• f (x , y) = x y2 e2 x+y

• f (x , y) = x + y − 1
x2 + y2

• f (x , y) = (y2 − 1) ln(x2 + y2)

9



Estremi vincolati (per funzioni di due o tre variabili)

Consideriamo alcuni problemi:
• determinare gli estremi globali della funzione

f (x , y) = 2 x2 + y2 − x

nell’insieme D =
{

(x , y) ∈ R2 | x2 + y2 ≤ 1
}

;

• determinare la minima distanza tra l’origine e l’insieme{
(x , y) ∈ R2 | x2 y = 16

}
;

• determinare le dimensioni di una scatola a forma di parallelepipedo,
senza coperchio, avente volume massimo, se l’area della superficie è 12.

Per risolvere questi problemi bisogna determinare punti di estremo in insiemi
chiusi, che quindi contengono i punti della propria frontiera; in tali punti, gli
strumenti utilizzati in precedenza (teorema di Fermat, studio degli autovalori
della matrice hessiana) non sono applicabili. Come si fa? 10



Affrontiamo la questione da un punto di vista generale, notando che gli esempi
considerati sono accomunati dal fatto che le variabili sono soggette a una rela-
zione di uguaglianza. Iniziamo con funzioni di due variabili.

Siano A ⊆ R2 un insieme aperto e f ∈ C1(A,R).
Sia g ∈ C1(A,R) e sia Z :=

{
(x , y) ∈ A | g(x , y) = 0

}
.

Supponiamo Z ̸= ∅.

Gli estremi della restrizione di f all’insieme Z si chiamano estremi vincolati
di f ; l’insieme Z si chiama vincolo (di uguaglianza).

Osservazione
Se il vincolo Z è il sostegno di una curva semplice regolare, con parame-
trizzazione r definita nell’intervallo I, allora:
la ricerca degli estremi vincolati di f si riduce alla ricerca degli estremi della
funzione t ∈ I 7→ f (r(t)) ∈ R. ↑ problema di AM I
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Esempio
Determinare gli estremi locali e globali della funzione

f (x , y) = 2 x2 + y2 − x

sulla circonferenza unitaria; utilizzare quanto trovato per determinare gli
estremi globali di f nell’insieme

D =
{
(x , y) ∈ R2 | x2 + y2 ≤ 1

}
.

Come si possono identificare i candidati punti di estremo vincolato in mancanza
di una parametrizzazione del vincolo?
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Teorema (della funzione implicita in R2)
Siano A ⊆ R2 un insieme aperto e g ∈ C1(A,R).
Siano Z :=

{
(x , y) ∈ A | g(x , y) = 0

}
e (x0, y0) ∈ Z .

Supponiamo gy (x0, y0) ̸= 0.
↖ derivata parziale di g rispetto a yAllora:

• esistono un intorno U di x0 e un intorno V di y0 tali che per ogni x ∈ U
esiste uno e un solo elemento y di V per cui risulti g(x , y) = 0;

• associando a ciascun x di U l’unico elemento di V previsto al punto
precedente si ottiene una funzione h : U → V , tale che h(x0) = y0;

• h è di classe C1 e per ogni x ∈ U:

h′(x) = −gx (x , h(x))
gy (x , h(x)) · (∗)

Significato ed esempi . . .

La funzione h si dice definita implicitamente dall’equazione g(x , y) = 0. 13



Osservazione
Nelle ipotesi e con le notazioni del teorema, l’insieme Z ∩ (U × V )
è il grafico della funzione h, reale di una variabile reale e di classe C1,
dunque coincide con il sostegno della curva grafico associata ad h,
parametrizzata da r(x) = (x , h(x)), x ∈ U. curva semplice, non chiusa

e regolare
Valutando (∗) in x0 si ottiene

0 = gx (x0, h(x0)) + gy (x0, h(x0)) h′(x0) = ∇g(x0, y0) · r ′(x0),

quindi: ∇g(x0, y0) è ortogonale al vettore tangente a Z in (x0, y0).

Nota
Se nel teorema si suppone gx (x0, y0) ̸= 0, vale un analogo risultato nel
quale la funzione definita implicitamente dipende dalla variabile y .
Resta valido quanto osservato qui sopra sul gradiente.
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Nota
Il teorema della funzione implicita e la successiva osservazione si possono
applicare a un generico insieme di livello di g , cioè all’insieme

Ec := {(x , y) ∈ A | g(x , y) = c},

con c ∈ R.

(Z = E0)

In particolare, in ogni punto dell’insieme di livello il vettore gradiente di g ,
se non nullo, è ortogonale alla retta tangente all’insieme di livello.

Esempio . . .

Siamo pronti a identificare i candidati punti di estremo vincolato . . .
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Teorema (“di Fermat sui vincoli”)
Siano A ⊆ R2 un insieme aperto e f ∈ C1(A,R).
Siano g ∈ C1(A,R) e Z :=

{
(x , y) ∈ A | g(x , y) = 0

}
.

Sia (x0, y0) ∈ Z tale che ∇g(x0, y0) ̸= (0, 0).
Supponiamo che (x0, y0) sia un punto di estremo locale vincolato per f .
Allora:
∇f (x0, y0) è ortogonale al vettore tangente a Z in (x0, y0).

Corollario (teorema dei moltiplicatori di Lagrange in R2)
Nelle ipotesi del teorema, esiste λ0 ∈ R tale che (x0, y0, λ0) risolve il
sistema

(∗)


fx (x , y) = λ gx (x , y)
fy (x , y) = λ gy (x , y)
g(x , y) = 0.

}
“parallelismo” tra ∇f (x0, y0) e ∇g(x0, y0)

← appartenenza al vincolo

↖ moltiplicatore di Lagrange
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Nota: le soluzioni del sistema (∗) sono i punti stazionari della funzione
lagrangiana L : A× R→ R definita ponendo

L(x , y , λ) := f (x , y)− λ g(x , y).

Osservazione
In base al teorema dei moltiplicatori di Lagrange, i candidati punti di
estremo vincolato su Z di f sono:
• i punti del vincolo Z , in cui ∇g è diverso da (0, 0), che sono stazionari

per la funzione lagrangiana;
• i punti del vincolo Z in cui ∇g è uguale a (0, 0). (punti singolari)

Esempi
Determinare i punti singolari dei seguenti vincoli:{
(x , y) ∈ R2 | x2 + y2 − 1 = 0

} {
(x , y) ∈ R2 | x2 − y3 = 0

}
{
(x , y) ∈ R2 | x2(1 + 4 x)− y2 = 0

} {
(x , y) ∈ R2 | x ey − y = 0

}
17



Esempi
Utilizzare il teorema dei moltiplicatori di Lagrange per

• determinare gli estremi globali della funzione f (x , y) = 2 x2 + y2 − x
sulla circonferenza unitaria; già fatto, ma lo ripetiamo

• determinare la minima distanza tra l’origine e l’insieme{
(x , y) ∈ R2 | x2 y = 16

}
.

Risoluzione grafica . . .
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Estremi vincolati per funzioni di tre variabili (solo qualche cenno)

Siano A ⊆ R3 un insieme aperto e f ∈ C1(A,R).

La definizione di estremi vincolati è identica a quella data per funzioni
di due variabili, ma consideriamo due diversi tipi di vincoli per f :

1 l’insieme degli zeri di una funzione g ∈ C1(A,R); R2+1 → R1

2 l’insieme degli zeri di una funzione G ∈ C1(A,R2). R1+2 → R2

per funzioni di due variabili: R1+1 → R1

Esempi{
(x , y , z) ∈ R3 | x2 + y2 + z2 − 1 = 0

}
{
(x , y , z) ∈ R3 | z2 − x y − 1 = 0

}
{
(x , y , z) ∈ R3 | x2 + y2 − z = 0 , 2 x + 4 y − z = 0

}
19



Osservazione
Come per le funzioni di due variabili, se il vincolo è sostegno di una curva
semplice regolare con parametrizzazione r definita in un intervallo I,
la ricerca degli estremi vincolati di f si riduce alla ricerca degli estremi
della funzione di una variabile t ∈ I 7→ f (r(t)) ∈ R.
Se invece il vincolo è sostegno di una superficie regolare con parametriz-
zazione σ definita in un insieme di parametri K , la ricerca degli estremi
vincolati di f si riduce alla ricerca degli estremi della funzione di due
variabili (u, v) ∈ K 7→ f (σ(u, v)) ∈ R.

Esempio
Determinare gli estremi globali della funzione f (x , y , z) = x y z sulla
porzione della superficie sferica unitaria contenuta nel primo ottante.

Come si identificano i candidati punti di estremo vincolato in mancanza di una
parametrizzazione del vincolo? Esaminiamo separatamente i due tipi di vincolo.
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Vincolo di tipo 1 “bidimensionale”

Come per le funzioni di due variabili, il punto di partenza è il teorema
della funzione implicita, che enunciamo in modo informale.

Siano A ⊆ R3 insieme aperto, g ∈ C1(A,R), Z l’insieme degli zeri di g .
Sia (x0, y0, z0) ∈ Z tale che ∇g(x0, y0, z0) ̸= (0, 0, 0).
Allora:
esiste un intorno W di (x0, y0, z0) tale che l’insieme Z ∩W è il grafico
di una funzione reale di due variabili reali di classe C1, e quindi il sostegno
di una superficie regolare. ↖ quali?

dipende da quale derivata di g è diversa da 0Inoltre:
il vettore ∇g(x0, y0, z0) è ortogonale al piano tangente al sostegno della
superficie in (x0, y0, z0).
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In aggiunta alle ipotesi della pagina precedente, sia f ∈ C1(A,R) e
supponiamo che f abbia in (x0, y0, z0) un punto di estremo locale
vincolato su Z .

Tenendo conto del fatto che “vicino” a (x0, y0, z0) il vincolo Z è sostegno
di una superficie regolare, si dimostra che il vettore ∇f (x0, y0, z0) è orto-
gonale al piano tangente al sostegno di tale superficie in (x0, y0, z0).

Da questo si deduce il teorema dei moltiplicatori di Lagrange per vincoli
bidimensionali in R3:
esiste λ0 ∈ R tale che (x0, y0, z0, λ0) è soluzione del sistema∇f (x , y , z) = λ∇g(x , y , z)

g(x , y , z) = 0
parallelismo tra ∇f (x0, y0, z0) e ∇g(x0, y0, z0)

appartenenza al vincolo

oppure, equivalentemente, è punto stazionario della funzione lagrangiana
L : A× R→ R definita ponendo

L(x , y , z , λ) := f (x , y , z)− λ g(x , y , z). 22



Esempi
Utilizzare il teorema dei moltiplicatori di Lagrange per

• determinare gli estremi globali della funzione f (x , y , z) = x2 + y2 + z2

sul vincolo di equazione z2 − x y − 1 = 0;
• determinare le dimensioni di una scatola a forma di parallelepipedo,

senza coperchio, avente volume massimo, se l’area della superficie è 12.
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Vincolo di tipo 2 “unidimensionale”

Enunciamo il teorema della funzione implicita. ← per funzioni da R3 in R2

Siano A ⊆ R3 insieme aperto, G = (G1, G2) ∈ C1(A,R2), Z l’insieme
degli zeri di G .
Sia (x0, y0, z0) ∈ Z tale che la matrice jacobiana di G in (x0, y0, z0) ha
rango 2.
Allora:
esiste un intorno W di (x0, y0, z0) tale che l’insieme Z ∩W è il grafico di
una funzione reale di una variabile reale di classe C1, e quindi il sostegno
di una curva regolare. Motivazione . . .

Inoltre:
il piano individuato dai vettori ∇G1(x0, y0, z0) e ∇G2(x0, y0, z0) è ortogo-
nale alla retta tangente alla curva in (x0, y0, z0).

↓ linearmente indipendenti
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In aggiunta alle ipotesi della pagina precedente, sia f ∈ C1(A,R) e
supponiamo che f abbia in (x0, y0, z0) un punto di estremo locale
vincolato su Z .

Il teorema dei moltiplicatori di Lagrange per vincoli unidimensionali in R3

afferma che:
esistono λ0, µ0 ∈ R tale che (x0, y0, z0, λ0, µ0) è soluzione del sistema∇f (x , y , z) = λ∇G1(x , y , z) + µ∇G2(x , y , z)

G(x , y , z) = 0

oppure, equivalentemente, è punto stazionario della funzione lagrangiana
L : A× R2 → R definita ponendo

L(x , y , z , λ, µ) := f (x , y , z)− λ G1(x , y , z)− µ G2(x , y , z .

Nota
La prima equazione del sistema esprime il fatto che il vettore ∇f (x0, y0, z0)
giace nel piano individuato dai vettori ∇G1(x0, y0, z0) e ∇G2(x0, y0, z0). 25



Esempio
Utilizzare il teorema dei moltiplicatori di Lagrange per determinare gli
estremi globali della funzione

f (x , y , z) = x + 3 y − z

sul vincolo definito dalle equazioni

x2 + y2 − z = 0, 2 x + 4 y − z = 0.

Utilizzare una parametrizzazione del vincolo per verificare il risultato
ottenuto.
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A P P E N D I C E
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Dimostrazione del teorema di Fermat

Sia x̄ ∈ int(A) di massimo locale per f . dimostrazione analoga per
punti di minimo locale

Sia r ∈ R∗
+ tale che Br (x̄) ⊂ A e

f (x) ≤ f (x̄) per ogni x ∈ Br (x̄). (1)

Fisso h ∈ Rn \ {0}. Posto v := h
∥h∥Rn

definisco g : (−r , r) → R tale che

g(t) = f (x̄ + t v).
ben posta perché
x̄ + t v ∈ Br (x̄)
per ogni t ∈ (−r , r)Osservo che:

• g(t) ≤ g(0) per ogni t ∈ (−r , r) per (1)

• f differenziabile in x̄ =⇒ f derivabile in x̄ nella direzione v
⇐⇒ g derivabile in t = 0

Applicando il teorema di Fermat per funzioni reali di una variabile reale
ottengo g ′(0) = 0. 28



Siccome

g ′(0) = ∂f
∂v (x̄) = dfx̄ (v) = dfx̄

( h
∥h∥Rn

)
= 1
∥h∥Rn

dfx̄(h) ,

ottengo dfx̄ (h) = 0.

Noto che h è un arbitrario elemento di Rn \ {0}; inoltre, dfx̄ (0) = 0.
perché dfx̄ è lineare ↑

Dunque:
dfx̄ è l’applicazione identicamente nulla, cioè lo zero di Hom(Rn,R). □
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Dimostrazione del teorema

Sia r ∈ R∗
+ tale che Br (x̄) ⊂ A e f è di classe C2 in Br (x̄).

Dato che f è di classe C2 posso utilizzare la formula di Taylor di ordine 2
con il resto di Peano.
Per ogni x ∈ Br (x̄):

f (x) = f (x̄) +∇f (x̄) · (x − x̄) + 1
2 Hf (x̄) (x − x̄) · (x − x̄) + o(∥x − x̄∥2),

ometto Rn ↑

↙
= 0 perché x̄ è stazionario

quindi
f (x)− f (x̄) = 1

2 Hf (x̄) (x − x̄) · (x − x̄) + o(∥x − x̄∥2).

Sia λ > 0 un autovalore di Hf (x̄) e sia v ∈ Rn un autovettore corrispon-
dente.

Esprimo la restrizione di f alla retta passante per x̄ individuata da v come
t 7→ f (x̄ + t v), definita in un intorno di 0. ← in modo che x̄ + t v ∈ Br (x̄)
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Per ogni t appartenente a tale intorno:

f (x̄ + t v)− f (x̄) = 1
2 Hf (x̄) (t v) · (t v) + o(∥t v∥2)

che equivale a

f (x̄ + t v)− f (x̄) = t2

2 Hf (x̄) v · v + o(t2∥v∥2)
̸= 0cioè

f (x̄ + t v)− f (x̄) = t2

2 λ v · v + o(t2)

cioè, se t ̸= 0:

f (x̄ + t v)− f (x̄) = t2
(

λ

2 ∥v∥
2 + o(t2)

t2

)
. (∗)

Per t → 0, la quantità tra parentesi tende a λ

2 ∥v∥
2, che è strettamente

positivo. ← perché λ > 0 e v ̸= 0
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Per il teorema della permanenza del segno, esiste un intorno I di t = 0
tale che

per ogni t ∈ I \ {0} : λ

2 ∥v∥
2 + o(t2)

t2 > 0.

Da (∗) segue allora

per ogni t ∈ I \ {0} : f (x̄ + t v)− f (x̄) > 0

che equivale a

per ogni t ∈ I \ {0} : f (x̄ + t v) > f (x̄),

quindi x̄ è punto di minimo per la restrizione di f alla retta passante per
x̄ individuata da v .

Con identico ragionamento si prova che x̄ è punto di massimo se λ < 0.
□

32


