a.a. 2024/2025
Laurea triennale in Fisica

Calcolo integrale su curve e superfici

Avvertenza
Al termine della lezione queste pagine verranno rese disponibili online;
non e quindi necessario copiarne il contenuto.



Integrali curvilinei di campi scalari (anche detti: di prima specie)

Sia f : AC R" — R una funzione continua.

Sia (7, r) una curva regolare (a tratti) con v C A e r definita in [a, b].

Definiamo integrale di f sulla curva (7, r) il numero reale

[ rasi= [Tl o o

Per alleggerire la scrittura

Motivazione e interpretazione geometrica: da qui in poi scriverd sempre
pitl avanti || - || invece di || -
Esempio

Calcolare I'integrale della funzione definita ponendo f(x,y,z) =xy + z
sulla curva di parametrizzazione r(t) = (cost, sint, t), t € [0,4n].



A parametrizzazioni distinte di 7 corrispondono, in genere, valori distinti
dell'integrale curvilineo.  Esempio ...

Fanno eccezione parametrizzazioni di ~ “appartenenti alla stessa classe”,
come di seguito precisato.

Siano r : [a,b] = R" e 5 : [c,d] — R" due parametrizzazioni di ~.
Diciamo che r e s sono equivalenti se esiste h: [c,d] — [a, b] tale che
e h & bigettiva, di classe C! e h'(t) # 0 per ogni t,

e s=roh. h : cambiamento di parametro

Osservazione

Ogni cambiamento di parametro & una funzione strettamente monotona;
due parametrizzazioni equivalenti inducono sul sostegno

e |a stessa orientazione se il cambiamento di parametro & crescente,

e orientazioni opposte se il cambiamento di parametro & decrescente.



Esempi
Si consideri la parametrizzazione “standard” di S!, cioe

r(t) = (cost, sint), t e [0,2n].
Le seguenti parametrizzazioni di S* sono equivalenti a r:
s1(t) = (cos(2rt), sin(2nt)) t €[0,1] stessa orientazione
so(t) = (cos(t + ), sin(t + 7)) t € [-m,m| stessa orientazione

s3(t) = (cos(2m—t)), sin(2r—t))) t € [0,27]  orientazione opposta

La seguente parametrizzazione di S non & equivalente a r:

sa(t) = (cost, sint) te[—m, 7



Proposizione (invarianza dell'integrale di campi scalari per riparam. equivalenti)
Siano f : AC R"” — R una funzione continua e v C A.

Ser:[a,b] > R"es:[c, d] — R" sono parametrizzazioni equivalenti

di ~, allora:

d b
/Cf(S(t))Hs’(t)Hdt:/a F(r(t) || (¢)| dt. e

Osservazione (importante!)

Supponiamo che v ammetta una parametrizzazione r (quasi) regolare,
semplice, non chiusa; si pud dimostrare che tutte le sue parametrizza-
zioni (quasi) regolari, semplici, non chiuse sono equivalenti a r (e quindi
tra loro).

Conseguenza: per calcolare I'integrale di un campo scalare su -~y si puo
utilizzare una qualsiasi parametrizzazione (quasi) regolare, semplice,

non chiusa. E per curve chiuse? Regolari a tratti? Non semplici?
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Concatenamento di curve

Siano (71, ) e (72, r2) due curve in R” con intervalli dei parametri
[a1, b1] e [a2, by], rispettivamente, tali che ri(b1) = r(a2).

Riparametrizziamo i sostegni v e 2, mantenendo gli stessi versi di
percorrenza, definendo

A(t) = rn(a + t(b — a1)) te[0,1] Nota:

n(t) =n(a+(t-1)(h—-a)) te[l,2]. n(l) =r(1)
La funzione r : [0,2] — R” definita ponendo
r(t) t €[0,1]
t) =
n(t) te (1,2
e continua e la sua immagine & v; Uy, =: .

curve componenti

Pertanto: / N

(7, r) & una curva, detta concatenamento delle curve (71, r1) e (72, r2).



In modo analogo si puo definire il concatenamento di un qualsiasi numero
finito di curve.

Nota: nella definizione di concatenamento abbiamo riparametrizzato le curve
componenti in intervalli adiacenti, allo scopo di ottenere una funzione definita

e continua in un singolo intervallo, avente per immagine |'unione dei sostegni;
nella pratica non serve riparametrizzare.

N per esempio, nel calcolo degli integrali curvilinei

Proprieta

e Il concatenamento di curve regolari o quasi regolari ¢ in genere una
curva regolare a tratti.

e Il concatenamento non € in genere una curva semplice, nemmeno se
ciascuna delle curve componenti lo e.

¢ Qualsiasi curva regolare (a tratti) semplice € il “naturale” concatena-

mento di curve (quasi) regolari, semplici, non chiuse.  Esempi ...



Osservazione

Sia f : AC R"” — R una funzione continua e sia v C A.

Supponiamo che « sia sostegno del concatenamento di un numero finito
di curve regolari semplici (non chiuse), con sostegni 1, ..., V-

Risulta

/fds: Fds+ ...+ [ fds
vy 71 Yk

Per I'osservazione di pagina 4, l'integrale su ciascuna curva componente
puo essere calcolato utilizzando una sua qualsiasi parametrizzazione.

Conseguenza:

per assegnare l'integrale curvilineo di un campo scalare ¢ sufficiente
prescrivere il sostegno -y, purché si convenga di utilizzare per ciascuna sua
componente soltanto parametrizzazioni semplici.

Altrimenti, occorre esplicitare la parametrizzazione, oppure descrivere il
sostegno mediante espressioni come ‘“circonferenza percorsa due volte”,
“segmento percorso tre volte”, ...



Esempi

e Calcolare I'integrale della funzione definita ponendo f(x,y) = X1

sulla poligonale di vertici (1,1),(0,0),(2,0).
2
o Calcolare I'integrale della funzione definita ponendo f(x,y) = 22
X
sulla circonferenza di centro I'origine e raggio 2. Y



Sia (7, r) una curva regolare (a tratti) in R”, con r definita in [a, b].

Chiamiamo lunghezza della curva il numero reale

b .
integrale sulla curva
Lovr)i= [IF@llde. e
a

della funzione f =1

Nota: per quanto detto per gli integrali curvilinei, a parametrizzazioni
distinte di 4y corrispondono, in genere, lunghezze distinte della curva.
Tuttavia, se si conviene di utilizzare solo parametrizzazioni semplici si puo
parlare di lunghezza del sostegno ~ e utilizzare il simbolo L(7).

Osservazione (ascissa curvilinea)
Ogni curva regolare di lunghezza L ammette una riparametrizzazione
equivalente 7, definita in [0, L], tale che ||F/(t)|| = 1 per ogni t € [0, L].

t
Cambiamento di parametro: funzione inversa di t € [a, b] — / r'(7)| d7
a



Esempi
e Calcolare la lunghezza delle curve definite dalle seguenti parametrizza-
zioni:
r(t) = (cost, sint), tel0,2n]/te€|0,3n]
r(t) = (t+sint, cost), te[0,7]

r(t) = (2 cost, 2sint, 3t), te]0,2n]

e Calcolare la lunghezza della curva ottenuta concatenando la curva
di parametrizzazione

r(t) = (3 cost, 3sint), te[0,n],

e la curva grafico associata alla funzione

f(x):l—x—2

g X€ [-3,3].
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Integrali curvilinei di campi vettoriali (anche: di seconda specie)

T non & quello che ci si potrebbe aspettare
Sia F: ACR"” — R"” un campo vettoriale continuo.
Sia (7, r) una curva regolare (a tratti) con v C A e r definita in [a, b].

Definiamo integrale del campo vettoriale F sulla curva («, r) il numero

reale
b

/YF(P) . dP ::/ F(r(t)) - r'(t) dt. Interpretazione

3 ... pil avanti

Se la curva ¢ chiusa I'integrale si denota con il simbolo ]{ F(P)-dP
gl

e si chiama circuitazione.

Esempi
Calcolare I'integrale del campo vettoriale F(x,y) = (v, xy)
e sulla curva parametrizzata da r(t) = (cost, sint), t € [0,7/2],

e sulla curva grafico associata alla funzione f(x) =1 —x, x € [0,1].
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Osservazione (invarianza per riparam. equival. che conservano |'orientazione)
Siano r : [a,b] = R" e s : [c,d] — R" due parametrizzazioni equivalenti
di v, con s = r o h. Allora:

/ F(s(t)) - s'(t) dt _/Cd(F(r(h(t)))-r’(h(t))> H(t)dt 7= h(t)

b
W0 7 / F(r(r)) - F'(r) dr

h,<0\/Fr(7' -r(r)d /F(r (1) dt

Quindi, I'integrale di F rispetto a due parametrizzazioni equivalenti

e ¢ lo stesso se le parametrizzazioni inducono sul sostegno la medesima

orientazione,

o differisce per il segno se le parametrizzazioni inducono sul sostegno
orientazioni opposte.



In virtl della precedente osservazione, valgono considerazioni simili a
quelle relative a integrali curvilinei di campi scalari.

e Seci si limita a parametrizzazioni (quasi) regolari, semplici, non chiuse,
si puo prescrivere l'integrale curvilineo di un campo vettoriale F
assegnando solamente il sostegno con fissato verso di percorrenza.

e Su una curva regolare (a tratti) ottenuta come concatenamento di
un numero finito di curve (quasi) regolari, semplici, non chiuse,
I'integrale di F & la somma degli integrali di F sulle curve componenti;
ciascuno di questi integrali puo essere calcolato utilizzando una
qualsiasi parametrizzazione, con |'avvertenza di invertirne il segno
se il verso di percorrenza indotto dalla parametrizzazione scelta non &
coerente con il verso di percorrenza assegnato sul concatenamento.

e Nel caso generale occorre esplicitare la parametrizzazione, oppure
descrivere il sostegno mediante espressioni come “circonferenza
percorsa due volte in senso antiorario”. 13



Esempi

e Calcolare I'integrale del campo vettoriale definito ponendo
Fx,y) = (€, x?)
sulla poligonale di vertici (1,1),(0,0),(2,0).

e Calcolare I'integrale del campo vettoriale definito ponendo

F(x,y) = (v, x%)

sulla circonferenza di centro I'origine e raggio 2.
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Relazione tra integrali curvilinei di campi scalari e di campi vettoriali
Premessa: se r e ¥ sono due parametrizzazioni equivalenti di uno stesso
insieme «, con ¥ = roh, risulta:

() )R B ) O
S FO1 PR AT~ W) ey~ O TR0,

pertanto in ciascun punto di 4y i versori tangenti rispetto alle due parame-

T(1)

trizzazioni sono uguali se i > 0, opposti se i < 0.
stessa orientazione 1 1 orientazione opposta

Se v ammette una parametrizzazione (quasi) regolare, semplice, non
chiusa, e fissiamo su ~ un verso di percorrenza, possiamo definire il

campo vettoriale tangente a v ponendo

T(P) := r'(r='(P)) per ogni P € . con la sola possibile
P (e (P))| eccezione degli estremi

con r arbitraria parametrizzazione di v coerente con il verso fissato. 15



Sia F: ACR" — R" un campo vettoriale continuo.
Sia v C A sostegno di una curva regolare (a tratti) semplice.

"\ concatenamento di curve (quasi) regolari,

semplici, non chiuse

Fissato su ~y un verso di percorrenza, con la possibile eccezione di un
numero finito di punti, in -y & definito il campo vettoriale tangente T,
e dunque anche il campo scalare F - T.

Risulta: arbitraria parametrizzazione di ~
/ coerente con il verso fissato

/F T ds _/ T(r(£)) I (2)]] at

b
mtegraled' :/a (F(r(e))- IIrEt;H)” "(0)] dr:/aF(r(t))-r'(t)dt

campo scalare

!

lavoro compiuto / F(P)-dP + integrale di campo vettoriale
dalla forza. .. vy

16



Campi vettoriali conservativi

Premessa / anche: chiusura di un aperto
Sia f € C(A,R), con A C R” insieme aperto.

La funzione gradiente di f & un campo vettoriale continuo in A, che chia-
meremo campo gradiente di f.

Per esempio: il campo gradiente della funzione

1
flxy) = 5 InG2 +52)
& il campo vettoriale in R?\ {(0,0)} di componenti
X Yy
Fl(X>)’):m F2(Xa}’):m

E naturale chiedersi se ogni campo vettoriale sia il campo gradiente di
qualche funzione; come vedremo, la risposta & negativa.
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Sia A C R" insieme aperto e sia F un campo vettoriale continuo in A.

Se esiste f € C1(A,R) tale che

Vf=F,
diciamo che F & conservativo (anche: esatto in A) e che f & un potenziale
di Fin A. articolo indeterminativo? 1
Nota
In base alla definizione data, “conservativo” & sinonimo di “ammette un
potenziale”.
Esempio

1
La funzione f(x,y) = 5 In(x? 4+ y?) & un potenziale in R\ {(0,0)}

del campo vettoriale
X Y
F = :

18



. ecco perché si dice “un” potenziale
Osservazione 1

e Se f & potenziale di F in Ae c € R, allora f + ¢ & potenziale di F in A.

e Se A & connesso e se f e g sono entrambi potenziali di F in A, allora:

esiste c € R tale che f = g+ ¢c.  + caratterizzazione delle funzioni
a gradiente nullo

Osservazione
Denotate con Fi,..., F, le componenti di F, dire che f & potenziale di F
in A equivale a dire che per ogni i € {1,...,n}:
of
OX;

(x) = Fi(x) per ogni x € A.

Esempio
Determinare un potenziale del campo vettoriale

1
F(x,y,z) = (ey+2xz, xe — Pt x2—|-z).
19



Teorema (FFCI per campi vettoriali)
Sia A C R" insieme aperto e sia F campo vettoriale continuo in A.
Supponiamo che F sia conservativo e denotiamo con f un suo potenziale.

Sia (7, r) una curva regolare (a tratti) con sostegno contenuto in A, con
intervallo dei parametri [a, b].

Allora:
/ F(P)-dP = f(r(b)) — f(r(a).
7 T
@ dipende solo dagli estremi della curva
® se gli estremi coincidono & uguale a 0
Verifica :

b b
LF(P)-dP — / F(r(t)) - F(t) dt = / V(1) - F(¢) dt

. /ab(for)'(t)dt = (for)(b) —(for)(a) O

FFClI AM | 20



Esempi
@® Calcolare l'integrale del campo vettoriale

Fley) = (xziy” x2i/ry2)'

sulle curve definite dalle parametrizzazioni
e r(t) =(cost, 2sint), te[0,7/2]

o r(t) = (cost, 2sint), te[0,2n]

@® Calcolare l'integrale del campo vettoriale

1
F(x,y,z) = (ey—|—2xz, xe — 2 X2—|—z)

sulle curve definite dalle parametrizzazioni
e r(t) =(cost, sint, t), te0,2n]

e r(t) = (cost, sint, cos®t), t € [0,2n]



Osservazione (caratterizzazioni dei campi vettoriali conservativi)

Sia A C R" insieme aperto e sia F un campo vettoriale continuo in A.
Consideriamo le tre affermazioni seguenti:

(a) F ammette un potenziale;

(b) comunque si scelgano due curve regolari (a tratti), con sostegni ~1
e 7> contenuti in A, aventi i medesimi estremi, risulta
F(P)-dP = [ F(P)-dP;
Y71 J72
(c) per qualsiasi (v, r) curva chiusa regolare (a tratti), con sostegno

contenuto in A, risulta

f' F(P)-dP = 0.
:

Dalle note @ e @ alla FCCI seguono “(a) = (b)" e “(a) = ()"

Se l'insieme A & connesso valgono anche le implicazioni contrarie, quindi

le tre affermazioni sono equivalenti.  Motivazione . ..
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Conseguenza (criteri per stabilire che un campo vettoriale non & conservativo)

Sia A C R" insieme aperto e sia F campo vettoriale continuo in A.
Se esistono

e due curve regolari (a tratti), con sostegni contenuti in A, aventi i
medesimi estremi, sulle quali F ha integrali diversi,

oppure

e una curva chiusa regolare (a tratti), con sostegno contenuto in A,
sulla quale I'integrale di F & diverso da 0,

allora: F non é conservativo.

Esempio

[l campo vettoriale F(x,y) = (y, xy) non & conservativo.

Tenere presente |'esempio di pagina 11
23



In base a quanto detto fino a ora: | ciod: ammette un potenziale

e per stabilire che un campo vettoriale € conservativo, occorre determi-
narne esplicitamente un potenziale oppure, in un aperto connesso,
valutare infiniti integrali curvilinei; < impossibile in pratica!

e per stabilire che un campo vettoriale non & conservativo, occorre
valutare uno o pit integrali curvilinei.

Per i campi vettoriali di classe C! si pud procedere in modo alternativo.

Premettiamo una definizione.

Sia A C R" un insieme aperto.

Sia F un campo vettoriale di classe C! in A, di componenti Fi, ..., Fp.
Diciamo che F & chiuso in A se per ogni x € A si ha

OF; OF;

5 0) = G0 perogni i e (Lo} (i)

Esempio: il campo vettoriale F(x,y) = (y, xy) non & chiuso.
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Teorema

Siano A C R” insieme aperto e F campo vettoriale di classe C! in A.

@ Se F & conservativo in A, allora F & chiuso in A. Verifica . ..

® Se F & chiuso in A e l'insieme A & stellato, allora F & conservativo in A.

Dimostrazione di tipo costruttivo:

se A & stellato rispetto a xg, ha senso definire I'applicazione che a x € A
associa l'integrale di F sul segmento [xp, x]; tale funzione risulta essere un
potenziale di F.

Il punto @ & noto come teorema di Poincaré.

Osservazione
Senza ipotesi aggiuntive su A, non tutti i campi vettoriali chiusi sono
conservativi. Esempio:

—y x chiuso in R?\ {(0,0}
F(X,)/) = <X2 T2 X2 +y2)

circuitazione su S! diversa da 0 25



Esempi

e Stabilire se il campo vettoriale

Fixy.z) = (

X
l—kxy—i_z7 1+xy’ X)

& conservativo nell'insieme {(x,y,z) € R3 | 1+ xy > 0}.

e Stabilire se il campo vettoriale

F(x,y) = ( In(l—i-x))

& conservativo nel proprio insieme di definizione.

14y
1+ x’

Calcolare I'integrale di F sul segmento congiungente (0,0) e (2,1).

26



Esempio (quando tutto sembra andare male, e invece .. .)

Dato il campo vettoriale

X~y Xty
F =

e stabilire se F & chiuso e se & conservativo nel proprio insieme di
definizione;

e calcolare I'integrale di F sulla curva semplice di estremi (0,1) e (1,0)
con sostegno contenuto nell'insieme

{(,y) | xy+x+y=1}.

27



Integrali di superficie di campi scalari (anche detti: di prima specie)

Sia f : A C R3 — R una funzione continua.
Sia (X, o) una superficie regolare con X C A e o definita in un insieme

normale K.

Definiamo integrale di f sulla superficie (3, o) il numero reale

/ fds _// ) I[N (0, v)]| du dv.

Esempi
Calcolare I'integrale della funzione proiezione sull’asse z sulle superfici

di parametrizzazione
e o(u,v)=(ucosv, usinv, u) (u,v)€[0,1] x [0,27]

e o(u,v)=(ucosv, usinv,v) (u,v)€0,1] x [0,27]

28



Sugli integrali di superficie di campi scalari possiamo fare considerazioni
simili a quelle fatte per gli integrali curvilinei.
T ma pit rapide perché le superfici sono tutte “semplici”

Iniziamo con la nozione di “equivalenza” per superfici.

Sia ¥ C R3 e siano o e & due parametrizzazioni di X, rispettivamente
definite negli insiemi di parametri K e K.

Diciamo che o e o sono parametrizzazioni equivalenti di X se esiste
h: K — K tale che

e h & bigettiva,

< .. . . h : cambiamento
e hediclasse C! nell'interiore di K, .
di parametro

o det(Jy(u,v)) # 0 per ogni (u, v) € int(K),

e o —=o0o0h.

29



Esempio
Sia (X, o) una superficie con insieme di parametri K.

Posto K := {(u,v) € R? | (v,u) € K}, definiamo & : K — R? ponendo
o(u,v):=o(v,u).
Allora: o & una parametrizzazione di ¥ equivalente a o.

h(u,v) = (v,u) = Jup(u,v)= (2 é) = det(Jp(u,v) = -1

Osservazione

Se h & un cambiamento di parametro, la funzione

(u,v) € int(K) — det(Jy(u,v)) € R
& continua in un insieme connesso e non & mai uguale a 0; per il teorema

dei valori intermedi, ha segno costante.
30



Osservazione

Con le notazioni della definizione di parametrizzazioni equivalenti, per
ogni (u, v) € int(K) si ha:

Nx(u, v) = det(J4(u, v)) Ng(h(u,v)) » verifica...
nx(u, v) = sign(det(Jp(u, v))) ng(h(u,v)).

Pertanto:

i campi vettoriali normali delle superfici (2, 0) e (X, a) sono
e uguali se il determinante della matrice jacobiana di h & positivo,

e opposti se il determinante della matrice jacobiana di h & negativo.

Nota: nell’esempio della pagina precedente sono opposti.
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Proposizione (invarianza dell'integrale di campi scalari per riparam. equivalenti)
Siano f : A C R3® — R una funzione continua e ¥ C A.

Seo:K = R3ead: K — R3 sono parametrizzazioni equivalenti di X,
allora:

J] £ ) 1N, ) dudy = [ F(o(uv) [Na ()] du .

Verifica . .. >

corrisponde all'equivalenza tra curve regolari, semplici,
Osservazione < non chiuse aventi lo stesso sostegno

Si pud dimostrare che se due superfici regolari con bordo hanno lo stesso

sostegno, allora le corrispondenti parametrizzazioni sono equivalenti.
Conseguenza: se ci si limita alle superfici regolari con bordo, I'integrale di
superficie del campo scalare f non dipende dalla parametrizzazione scelta
e puo essere prescritto assegnando soltanto I'insieme 3. 32



Se X & sostegno di una superficie regolare a pezzi, con facce Xy,..., X,

definiamo

/‘de:: fdS+...+ [ fds.
JX 3 JEm

Osservazioni
e L'integrale su ciascuna faccia puo essere calcolato utilizzando una sua

qualsiasi parametrizzazione.
e Tra le superfici regolari a pezzi includiamo superfici che sono regolari

ma non regolari con bordo. superficie cilindrica, superficie sferica, . ..

Esempio
Calcolare I'integrale della funzione proiezione sull'asse z sulla frontiera

dell’insieme

{0y, 2) R [ X2 +y2<9, 0<z <4},
33



Sia (X, o) una superficie regolare, avente per insieme dei parametri un
insieme normale K.

Chiamiamo area della superficie il numero reale

AZ) = //KHNU(Ua V)| dudv. « integrale di superficie

della funzione f =1

Nota: I'area di una superficie regolare a pezzi & la somma delle aree delle
singole facce.

Esempi
e Calcolare I'area della superficie sferica di raggio r.

e Calcolare I'area della frontiera dell’insieme

{(X,y,z) eERY| X2+ y2<z< 1}.

34



Esercizio
Calcolare I'area della superficie grafico associata alla funzione definita
ponendo f(x,y) = x? + y? nella palla unitaria chiusa di R

Per ragioni di tempo le superfici di rotazione non vengono presentate in aula

Osservazione (area delle superfici di rotazione)
Siay C {(0,y,2) | y > 0} il sostegno di una curva semplice e regolare, parame-
trizzata da r(t) = (0, y(t), z(t)), con t € [a, b].

Sia X il sottoinsieme di R3 ottenuto ruotando ~ attorno all'asse z.

Risulta: AE) = 27r/aby(t)f’(t)|| dt (: 2W[yﬁyds)

Esempio

Calcolare I'area della superficie (toro) ottenuta ruotando attorno all’asse z una
circonferenza, contenuta nel piano y z, con centro posto sull'asse y a distanza
dall’origine maggiore del raggio. 35



In sospeso:

Interpretazione geometrica dell'integrale curvilineo di campi scalari

Sia v C A C R? il sostegno di una curva regolare semplice.

Sia f € C(A,R) tale che f(x,y) > 0 per ogni (x,y) € 7.

Allora:

I'integrale curvilineo di f su -« & uguale all'area della porzione di superficie
cilindrica di direttrice v e generatrici parallele all'asse z compresa tra il
piano di equazione z =0 e il grafico di f.

Verifica . ..
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Flusso attraverso una superficie (anche detto: integrale di superficie
di seconda specie)

Sia F: AC R3 — R3 un campo vettoriale continuo.
Sia (X, o) una superficie regolare con 3 C A e o definita in un insieme
normale K.

Supponiamo che la superficie sia orientabile e denotiamo con n il campo
vettoriale normale. T cioe: n & definito e continuo in X

Definiamo flusso di F attraverso X il numero reale

&5 (F) = / F-ndS. < integrale di prima specie
= del campo scalare F - n

Nota
Il campo scalare F - n fornisce in ogni punto di ¥ la componente di F
nella direzione di n, ossia nella direzione normale a X.

Quando & massimo (in valore assoluto)? Quando & uguale a 07 37



Esplicitiamo la definizione:

/ F.ndS _// n(o(u, v)) [Ny (u, V)| du dv

def. di campo vett. normale |
:// F(o(u, v)) - (1, v) [Ny (u, V)| dudv
K

def. di versore normale ¢
// F(o(u,v)) - Ny(u,v)dudv
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Osservazione (invarianza per riparam. equival. che conservano |'orientazione)

Calcolando il flusso di F attraverso 3 mediante due parametrizzazioni

equivalenti o e o, ottenute mediante il cambiamento di parametro h,

si ottiene

o il medesimo risultato se i campi vettoriali normali di o e o sono uguali
(ossia det(Jp) > 0),

e risultati opposti se i campi vettoriali normali di o e o sono opposti
(ossia det(Jp) > 0).

Motivazione: basta pensare ai campi vettoriali normali ...

Conseguenza:
se si prescrive il calcolo del flusso di un campo vettoriale attraverso

una superficie orientabile assegnando solo il sostegno della superficie,

& necessario specificare |'orientazione desiderata.
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Esempi

e Calcolare il flusso del campo vettoriale
F(x,y,z) =(0,0,z)
attraverso la superficie di parametrizzazione
o(u,v) = (ucosv, usinv, v) (u,v) €[0,1] x [0, 27].
e Calcolare il flusso del campo vettoriale
F(x,y,2) = (x,y,0)

uscente dalla sfera di centro I'origine e raggio 2 attraverso la calotta
posta al di sopra del piano di equazione z = 1.

e Calcolare il flusso diretto verso il basso del campo vettoriale
F(x.y,z) = (v, x,2)

attraverso la superficie associata al grafico della funzione definita nella

palla unitaria chiusa di R? ponendo f(x,y) = x? + y2. 20



Relazione tra integrali di superficie e integrali curvilinei

Siano A C R3 un insieme aperto e F € C1(A,R3) con F = (F1, F2, F3).
Il campo vettoriale

i (0O O 0B 0F_0F)
" \dy 9z 9z Ox 9Ox Oy

si chiama rotore (o rotazionale; in inglese, curl) del campo vettoriale F;

& definito e continuo in A.

Nota: possiamo determinare il rotore di F mediante e & €3
il determinante simbolico qui a lato; se interpretiamo o o o
gli elementi sulla seconda riga come le componenti Ox Oy Oz

del vettore (simbolico) V, otteniamorot F =V X F. |F £ F

41



Esempi
Determinare il rotore dei seguenti campi vettoriali: perché “rotore”?

F(x,y.2)=(xy,x*, yz) F(x,y.2)=(x.y,2) F(x,y,2)=(y,—x,0)

Nota (sulla terminologia dei campi vettoriali)

Se F € CY(A,R3), dire che F & chiuso in A equivale a dire che
oFF 0F, 0OF1 0F3 0Fy 0F3

dy — Ox ' 9z  Ox ' 90z Oy

cioe rot F = 0. assumendo F3 =0 |

Per questa ragione i campi vettoriali chiusi in R3 (e anche in R?) sono
detti irrotazionali.  “Tradurre” il teorema di Poincare . ..



Teorema di Stokes (o del rotore)
Siano A C R3 un insieme aperto e F € C}(A,R3).

Sia X C A il sostegno di una superficie regolare con bordo con campo

vettoriale normale n. T quindi orientabile
Allora:
Osy(rot F) — j{ F(P)- dP
o+

integrale di superficie circuitazione di F sul bordo di X
orientato positivamente

Esempio
Verificare la validita del teorema di Stokes per il flusso del rotore del
campo vettoriale

_ 2
F(X’y72) - (Xy7 ) yZ)
che attraversa verso |'alto la porzione della superficie sferica unitaria
contenuta nel semispazio superiore.
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Osservazione

e Supponiamo che un campo vettoriale G sia “di tipo rotore”, cioé
G sia il rotore di un altro campo vettoriale F. < “potenziale vettore”
Per il teorema di Stokes, il flusso di G attraverso una superficie X
regolare con bordo dipende solo dai valori di F sul bordo 0X.
Pertanto:
nel calcolo del flusso di un campo vettoriale “di tipo rotore” possiamo
sostituire la superficie data con qualsiasi altra superficie regolare avente
il medesimo bordo, orientato allo stesso modo. Esempio ...

e Inoltre: il flusso di un campo vettoriale “di tipo rotore” attraverso una
qualsiasi superficie regolare orientabile chiusa & uguale a 0.

Nota: questi risultati sono analoghi a quelli sugli integrali curvilinei di
campi vettoriali "di tipo gradiente” (ossia conservativi).
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Relazione tra integrali di superficie e integrali tripli

Siano A C R” un insieme aperto e F € C1(A,R").

La funzione
. 0F OF,
divF = —=+...
v 6x1 * + 8X,,

si chiama divergenza del campo vettoriale F; & definita e continua in A.

Nota: interpretando i simboli di derivate parziali come componenti del
vettore (simbolico) V, otteniamo divF = V - F.

Nota: se f € C%(A,R), allora: divVf = Af.

Esempi

Determinare la divergenza dei seguenti campi vettoriali:

F(x,y.2)=(xy,x%, yz) F(x,y.2)=(x.y,2) F(x,y,2)=(y,—x,0) 45



Teorema di Gauss (o della divergenza) in R®  « vale anche in R
Sia T c R3 un dominio regolare normale, cioé un dominio regolare che
& anche un insieme normale. Sia F € C1(T,R3).

Allora:
// div F(x,y,z)dxdy dz = F-ndS.
T T+
integrale triplo flusso di F uscente attraverso
la frontiera di T
Esempio

Verificare la validita del teorema di Gauss per il campo vettoriale
F(x,y,2) = (xy*, X%y, (x* +y%)2°)
e I'insieme
T:{(X,y,z) | x24+y?<4,0<z< 1}.
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Esercizio

Calcolare il flusso del campo vettoriale
F(x,y,z) =(x,y,2)
uscente dall'insieme
{6y, 2) [P +y*+22 <4, -1<z<1})

attraverso la sua superficie laterale.  + superficie non chiusa 777
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Relazione tra integrali curvilinei e integrali doppi

Premessa

Sia D C R? un dominio regolare normale. <« stesso significato che in R?

Sulla frontiera 9D, con la possibile eccezione di un numero finito di punti.

possiamo definire il campo vettoriale normale ponendo

C(YEP) KNP
n(P) = (ur( i(AY) \rf((r—l(P»u)'

dove r(t) = (x(t), y(t)), t €1, & una arbitraria parametrizzazione della

componente di 0D contenente P.

Ricordiamo che dire che 0D & orientatata positivamente equivale a dire
che il campo vettoriale normale punta verso I'esterno di D
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Enunciamo il teorema della divergenza in R?:

Siano D C R? un dominio regolare normale e F € C}(D,R?).
Allora:
/ divF(x,y)dxdy = F-nds.
D oDt
integrale doppio “flusso” di F uscente attraverso
la frontiera di D

Corollario (teorema di Gauss-Green)
Siano D C R? un dominio regolare (normale) e F = (Fi, F>) € CY(D,R?).
Allora:

// <8Fz %?(X,)/)) dxdy = -~ F(P) - dP.

integrale doppio circuitazione del campo vettoriale F
sulla frontiera di D orientata positivamente

Verifica: applicare il teorema della divergenza a G := (F,, —F1) 49



Esercizio
Verificare la validita del teorema di Gauss-Green per il campo vettoriale

F(x,y) = (x+y% x*+y)
e |'insieme

D={(xy) [ x20, y =0, x2+y* < 4f.

50



Applicazioni del teorema di Gauss-Green

® Calcolo della misura di un dominio regolare

Sia D C R? un dominio regolare (normale). Risulta:

mo(D) = fgm F(P)-dP

OF, OF;
con F = (Fy, Fp) arbitrario campo vettoriale tale che 22 21
Ox 0Oy
Possibili scelte:
_y X
Fley)= 0.0, Floy)=(-50,  Flxy)=(-3 3)

Esempio
Calcolare la misura della regione di piano racchiusa dall’asteroide,
cioé il sostegno della curva parametrizzata da

r(t) = (cos3(t), sin®(t)), t € [0,2x].

1lin

D.
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©® Estensione del teorema di Poincaré

Sia A C R? un insieme aperto connesso.

Diciamo che A & semplicemente connesso se se ogni insieme ~ contenuto
in A, che sia sostegno di una curva regolare (a tratti), semplice e chiusa,
e frontiera di un dominio regolare D contenuto in A.

Esempi ... Formulazione alternativa informale, valida in dimensione qualsiasi . . .

Teorema  + vale anche in dimensione qualsiasi
Sia A C R? un insieme aperto semplicemente connesso.
Allora: ogni campo vettoriale di classe C! e chiuso in A & conservativo.

Dimostrazione . . . >

esempio?
Nota

Ogni sottoinsieme stellato & semplicemente connesso; il viceversa non vale.

Quindi: il teorema qui sopra estende il teorema di Poincaré.
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APPENDICE
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Verifica: invarianza per riparametrizzazioni equivalenti — curve
Siano r : [a,b] = R" e s : [c,d] — R"” due parametrizzazioni equivalenti
di v, cons=roh. (Senza perdere generalita, suppongo r e s regolari.)

Per ogni t € [c,d] si ha s'(t) = r'(h(t)) H'(t), quindi:
AN sl = [ Ao I e () ae

W > 0// F(r(h())) I (h(£))II B'(t) dt

h/<0\/ F(r(h(t))) [l (h(E))II (=K' (1)) dt =/ F(r(h(t))) I (h(2))I| H'(t) dt

d

b

F(r() 7' () d7

54



Verifica della formula per i campi vettoriali normali

Se o = o o h, per ogni (u, v) € int(K) si ha
J5(u,v) = Jo(h(u, v)) Jp(u, v)

Esplicito, usando il simbolo D; per indicare la derivata rispetto alla

i-esima variabile e omettendo gli argomenti per alleggerire la scrittura:

Dio1 Doo Dio1 Do

101 Doon w1 Do) o p
Dioo> Doy | = | Dioo Doroo

_ _ Dihy Dsho
Dio3 Doo3 Dio3  Dsos

Dyo1 Dihy 4+ Daoy Dihy  Dioy Dohy + Daoy Doho
= | D102 D1h1 4 Daop Dihy  Diop Dohy + Daoo Dohy
D103 D1hy + Dyo3z Dihy  Dyoz Dyyhy + Dyos Do ho

Uguaglio le colonne:

D10 = D1hy Dyo + D1hy D>or, Do = D>hy Dyo + D>hy Dro
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Calcolo il prodotto vettoriale:
N5 = Dio X Dyo
= (D1hy Dio + D1hy Dyo) X (Dahy Dio + Daho Dyor)
tengo presente che ax a=0, ax b=—(b X a)
= Dihy Dyhy (Dro X Dao) + Dihy Dahi (Dao X Do)
= Dihy Dyhy (Dro X Dao) — Dihy Dahy (Dio X Dyor)
= (D1h1 Dyhy — Dihy Dohy) (Dro X Dyor)

=: det(Jp) Ny o
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Verifica: invarianza per riparametrizzazioni equivalenti — superfici

Sianoo: K 5> R3e s : K — R3 parametrizzazioni equivalenti di X,
con o =00 h.

Per ogni (u, v) € int(K) si ha
N5 (u,v) = det(Jp(u, v)) Ng(h(u,v)),
quindi:

/]"’ (CN(U7V))||NE(UaV)”dUdV =
K
ﬂ ”(L V HN[T( (U, V))H ‘(Ie (llh(u7 V))‘ dU dV

- //Kf(U(XUV)) [[No(x, )| dx dy .
N

cambiamento di variabili
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Dimostrazione della estensione del teorema di Poincaré

Per la caratterizzazione dei campi vettoriali conservativi, basta dimostrare
che la circuitazione di F su qualsiasi curva regolare (a tratti) chiusa, con
sostegno contenuto in A, € uguale a 0; posso limitarmi a considerare curve

semplici.

Sia dunque (-, r) un’arbitraria curva regolare (a tratti), semplice e chiusa,
con sostegno contenuto in A; siccome A & semplicemente connesso, esiste
D C A tale che 9D = ~.

Applico il teorema di Gauss-Green:

// <8F2 %?(X,y)> dxdy = jém F(P) - dP.

perché F & chiuso

Il
o
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Dall’'uguaglianza deduco
f F(P)-dP =0
oD+

da cui, ricordando che 9D =~ :

Perché il valore assoluto?
% F(P)-dP‘ = ’f F(P)-dP‘ =0 Perché non so se r orienta 0D
Y oD+

positivamente o negativamente

e quindi

]{F(P)-szo. 0
a

Nota

L'argomento usato nella dimostrazione suggerisce che per escludere
che un campo vettoriale chiuso sia conservativo in un aperto connesso
“bucato” di R? ¢ inutile valutarne la circuitazione su curve chiuse che
“non circondano i buchi”. s
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