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Integrali curvilinei di campi scalari (anche detti: di prima specie)

Sia f : A ⊆ Rn → R una funzione continua.
Sia (γ, r) una curva regolare (a tratti) con γ ⊂ A e r definita in [a, b].

Definiamo integrale di f sulla curva (γ, r) il numero reale∫
γ

f ds :=
∫ b

a
f (r(t)) ∥r ′(t)∥ dt. (∗)

↑
Per alleggerire la scrittura
da qui in poi scriverò sempre
∥ · ∥ invece di ∥ · ∥Rn .

Motivazione e interpretazione geometrica:
più avanti

Esempio
Calcolare l’integrale della funzione definita ponendo f (x , y , z) = x y + z
sulla curva di parametrizzazione r(t) = (cos t, sin t, t), t ∈ [0, 4π].
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A parametrizzazioni distinte di γ corrispondono, in genere, valori distinti
dell’integrale curvilineo. Esempio . . .
Fanno eccezione parametrizzazioni di γ “appartenenti alla stessa classe”,
come di seguito precisato.

Siano r : [a, b]→ Rn e s : [c, d ]→ Rn due parametrizzazioni di γ.
Diciamo che r e s sono equivalenti se esiste h : [c, d ]→ [a, b] tale che
• h è bigettiva, di classe C1 e h′(t) ̸= 0 per ogni t,
• s = r ◦ h. h : cambiamento di parametro

Osservazione
Ogni cambiamento di parametro è una funzione strettamente monotona;
due parametrizzazioni equivalenti inducono sul sostegno
• la stessa orientazione se il cambiamento di parametro è crescente,
• orientazioni opposte se il cambiamento di parametro è decrescente. 2



Esempi
Si consideri la parametrizzazione “standard” di S1, cioè

r(t) =
(
cos t, sin t

)
, t ∈ [0, 2π].

Le seguenti parametrizzazioni di S1 sono equivalenti a r :

s1(t) =
(
cos(2πt), sin(2πt)

)
t ∈ [0, 1] stessa orientazione

s2(t) =
(
cos(t + π), sin(t + π)

)
t ∈ [−π, π] stessa orientazione

s3(t) =
(
cos(2π−t)), sin(2π−t))

)
t ∈ [0, 2π] orientazione opposta

La seguente parametrizzazione di S1 non è equivalente a r :

s4(t) =
(
cos t, sin t

)
t ∈ [−π, π]
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Proposizione (invarianza dell’integrale di campi scalari per riparam. equivalenti)
Siano f : A ⊆ Rn → R una funzione continua e γ ⊂ A.
Se r : [a, b]→ Rn e s : [c, d ]→ Rn sono parametrizzazioni equivalenti
di γ, allora: ∫ d

c
f (s(t)) ∥s ′(t)∥ dt =

∫ b

a
f (r(t)) ∥r ′(t)∥ dt. Verifica. . .

Osservazione (importante!)
Supponiamo che γ ammetta una parametrizzazione r (quasi) regolare,
semplice, non chiusa; si può dimostrare che tutte le sue parametrizza-
zioni (quasi) regolari, semplici, non chiuse sono equivalenti a r (e quindi
tra loro).
Conseguenza: per calcolare l’integrale di un campo scalare su γ si può
utilizzare una qualsiasi parametrizzazione (quasi) regolare, semplice,
non chiusa. E per curve chiuse? Regolari a tratti? Non semplici? 4



Concatenamento di curve

Siano (γ1, r1) e (γ2, r2) due curve in Rn con intervalli dei parametri
[a1, b1] e [a2, b2], rispettivamente, tali che r1(b1) = r2(a2).

Riparametrizziamo i sostegni γ1 e γ2, mantenendo gli stessi versi di
percorrenza, definendo

r̃1(t) := r1
(
a1 + t(b1 − a1)

)
t ∈ [0, 1]

r̃2(t) := r2
(
a2 + (t − 1)(b2 − a2)

)
t ∈ [1, 2].

Nota:
r̃1(1) = r̃2(1)

La funzione r : [0, 2]→ Rn definita ponendo

r(t) =

r̃1(t) t ∈ [0, 1]
r̃2(t) t ∈ (1, 2]

è continua e la sua immagine è γ1 ∪ γ2 =: γ.
Pertanto:
(γ, r) è una curva, detta concatenamento delle curve (γ1, r1) e (γ2, r2).

curve componenti
↙ ↘
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In modo analogo si può definire il concatenamento di un qualsiasi numero
finito di curve.

Nota: nella definizione di concatenamento abbiamo riparametrizzato le curve
componenti in intervalli adiacenti, allo scopo di ottenere una funzione definita
e continua in un singolo intervallo, avente per immagine l’unione dei sostegni;
nella pratica non serve riparametrizzare.

↖ per esempio, nel calcolo degli integrali curvilinei

Proprietà
• Il concatenamento di curve regolari o quasi regolari è in genere una

curva regolare a tratti.
• Il concatenamento non è in genere una curva semplice, nemmeno se

ciascuna delle curve componenti lo è.
• Qualsiasi curva regolare (a tratti) semplice è il “naturale” concatena-

mento di curve (quasi) regolari, semplici, non chiuse. Esempi . . .
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Osservazione
Sia f : A ⊆ Rn → R una funzione continua e sia γ ⊂ A.
Supponiamo che γ sia sostegno del concatenamento di un numero finito
di curve regolari semplici (non chiuse), con sostegni γ1, . . . , γk .
Risulta ∫

γ
f ds =

∫
γ1

f ds + . . . +
∫

γk
f ds

Per l’osservazione di pagina 4, l’integrale su ciascuna curva componente
può essere calcolato utilizzando una sua qualsiasi parametrizzazione.
Conseguenza:
per assegnare l’integrale curvilineo di un campo scalare è sufficiente
prescrivere il sostegno γ, purché si convenga di utilizzare per ciascuna sua
componente soltanto parametrizzazioni semplici.
Altrimenti, occorre esplicitare la parametrizzazione, oppure descrivere il
sostegno mediante espressioni come “circonferenza percorsa due volte”,
“segmento percorso tre volte”, . . . 7



Esempi
• Calcolare l’integrale della funzione definita ponendo f (x , y) = ex+y

sulla poligonale di vertici (1, 1), (0, 0), (2, 0).

• Calcolare l’integrale della funzione definita ponendo f (x , y) = y2

x2 + y2
sulla circonferenza di centro l’origine e raggio 2.
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Sia (γ, r) una curva regolare (a tratti) in Rn, con r definita in [a, b].
Chiamiamo lunghezza della curva il numero reale

L(γ, r) :=
∫ b

a
∥r ′(t)∥ dt . ← integrale sulla curva

della funzione f ≡ 1

Nota: per quanto detto per gli integrali curvilinei, a parametrizzazioni
distinte di γ corrispondono, in genere, lunghezze distinte della curva.
Tuttavia, se si conviene di utilizzare solo parametrizzazioni semplici si può
parlare di lunghezza del sostegno γ e utilizzare il simbolo L(γ).

Osservazione (ascissa curvilinea)
Ogni curva regolare di lunghezza L ammette una riparametrizzazione
equivalente r̃ , definita in [0, L], tale che ∥r̃ ′(t)∥ = 1 per ogni t ∈ [0, L].

Cambiamento di parametro: funzione inversa di t ∈ [a, b] 7→
∫ t

a
∥r ′(τ)∥ dτ
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Esempi
• Calcolare la lunghezza delle curve definite dalle seguenti parametrizza-

zioni:

r(t) = (cos t, sin t), t ∈ [0, 2π] / t ∈ [0, 3π]

r(t) = (t + sin t, cos t), t ∈ [0, π]

r(t) = (2 cos t, 2 sin t, 3 t), t ∈ [0, 2π]

• Calcolare la lunghezza della curva ottenuta concatenando la curva
di parametrizzazione

r(t) = (3 cos t, 3 sin t), t ∈ [0, π],

e la curva grafico associata alla funzione

f (x) = 1− x2

9 , x ∈ [−3, 3].
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Integrali curvilinei di campi vettoriali (anche: di seconda specie)
↑ non è quello che ci si potrebbe aspettare

Sia F : A ⊆ Rn → Rn un campo vettoriale continuo.
Sia (γ, r) una curva regolare (a tratti) con γ ⊂ A e r definita in [a, b].

Definiamo integrale del campo vettoriale F sulla curva (γ, r) il numero
reale ∫

γ
F (P) · dP :=

∫ b

a
F (r(t)) · r ′(t) dt.

Interpretazione
. . . più avanti

Se la curva è chiusa l’integrale si denota con il simbolo
∮

γ
F (P) · dP

e si chiama circuitazione.

Esempi
Calcolare l’integrale del campo vettoriale F (x , y) = (y , x y)
• sulla curva parametrizzata da r(t) = (cos t, sin t), t ∈ [0, π/2],
• sulla curva grafico associata alla funzione f (x) = 1− x , x ∈ [0, 1]. 11



Osservazione (invarianza per riparam. equival. che conservano l’orientazione)
Siano r : [a, b]→ Rn e s : [c, d ]→ Rn due parametrizzazioni equivalenti
di γ, con s = r ◦ h. Allora:∫ d

c
F (s(t)) · s ′(t) dt =

∫ d

c

(
F (r(h(t))) · r ′(h(t))

)
h′(t) dt τ := h(t)

=
h′ > 0 ↗

h′ < 0 ↘

∫ b

a
F (r(τ)) · r ′(τ) dτ

∫ a

b
F (r(τ)) · r ′(τ) dτ = −

∫ b

a
F (r(τ)) · r ′(τ) dτ

Quindi, l’integrale di F rispetto a due parametrizzazioni equivalenti
• è lo stesso se le parametrizzazioni inducono sul sostegno la medesima

orientazione,
• differisce per il segno se le parametrizzazioni inducono sul sostegno

orientazioni opposte. 12



In virtù della precedente osservazione, valgono considerazioni simili a
quelle relative a integrali curvilinei di campi scalari.
• Se ci si limita a parametrizzazioni (quasi) regolari, semplici, non chiuse,

si può prescrivere l’integrale curvilineo di un campo vettoriale F
assegnando solamente il sostegno con fissato verso di percorrenza.

• Su una curva regolare (a tratti) ottenuta come concatenamento di
un numero finito di curve (quasi) regolari, semplici, non chiuse,
l’integrale di F è la somma degli integrali di F sulle curve componenti;
ciascuno di questi integrali può essere calcolato utilizzando una
qualsiasi parametrizzazione, con l’avvertenza di invertirne il segno
se il verso di percorrenza indotto dalla parametrizzazione scelta non è
coerente con il verso di percorrenza assegnato sul concatenamento.

• Nel caso generale occorre esplicitare la parametrizzazione, oppure
descrivere il sostegno mediante espressioni come “circonferenza
percorsa due volte in senso antiorario”. 13



Esempi
• Calcolare l’integrale del campo vettoriale definito ponendo

F (x , y) = (ex+y , x2)

sulla poligonale di vertici (1, 1), (0, 0), (2, 0).

• Calcolare l’integrale del campo vettoriale definito ponendo

F (x , y) = (y2, x3)

sulla circonferenza di centro l’origine e raggio 2.
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Relazione tra integrali curvilinei di campi scalari e di campi vettoriali

Premessa: se r e r̃ sono due parametrizzazioni equivalenti di uno stesso
insieme γ, con r̃ = r ◦h, risulta:

T̃ (t)
DEF
=

r̃ ′(t)
∥r̃ ′(t)∥ = r ′(h(t)) h′(t)

∥r ′(h(t)) h′(t)∥ = h′(t)
|h′(t)|

r ′(h(t))
∥r ′(h(t))∥

DEF
= sign(h′(t)) T (h(t)),

pertanto in ciascun punto di γ i versori tangenti rispetto alle due parame-
trizzazioni sono uguali se h′ > 0, opposti se h′ < 0.

stessa orientazione ↑ ↑ orientazione opposta

Se γ ammette una parametrizzazione (quasi) regolare, semplice, non
chiusa, e fissiamo su γ un verso di percorrenza, possiamo definire il
campo vettoriale tangente a γ ponendo

T (P) := r ′(r −1(P))
∥r ′(r −1(P))∥ per ogni P ∈ γ

con r arbitraria parametrizzazione di γ coerente con il verso fissato.

← con la sola possibile
eccezione degli estremi
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Sia F : A ⊆ Rn → Rn un campo vettoriale continuo.
Sia γ ⊂ A sostegno di una curva regolare (a tratti) semplice.

↖ concatenamento di curve (quasi) regolari,
semplici, non chiuse

Fissato su γ un verso di percorrenza, con la possibile eccezione di un
numero finito di punti, in γ è definito il campo vettoriale tangente T ,
e dunque anche il campo scalare F · T .
Risulta:∫

γ
F · T ds :=

∫ b

a

(
F (r(t)) · T (r(t))

)
∥r ′(t)∥ dt

↙
arbitraria parametrizzazione di γ
coerente con il verso fissato

=
∫ b

a

(
F (r(t)) · r ′(t)

∥r ′(t)∥

)
∥r ′(t)∥ dt =

∫ b

a
F (r(t)) · r ′(t) dt

=:
∫

γ
F (P) · dP ← integrale di campo vettoriale

↑
integrale di

campo scalare
↕

lavoro compiuto
dalla forza. . .
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Campi vettoriali conservativi

Premessa
Sia f ∈ C1(A,R), con A ⊆ Rn insieme aperto.

↙ anche: chiusura di un aperto

La funzione gradiente di f è un campo vettoriale continuo in A, che chia-
meremo campo gradiente di f .
Per esempio: il campo gradiente della funzione

f (x , y) = 1
2 ln(x2 + y2)

è il campo vettoriale in R2 \ {(0, 0)} di componenti

F1(x , y) = x
x2 + y2 F2(x , y) = y

x2 + y2

È naturale chiedersi se ogni campo vettoriale sia il campo gradiente di
qualche funzione; come vedremo, la risposta è negativa.
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Sia A ⊆ Rn insieme aperto e sia F un campo vettoriale continuo in A.
Se esiste f ∈ C1(A,R) tale che

∇f = F ,

diciamo che F è conservativo (anche: esatto in A) e che f è un potenziale
di F in A. articolo indeterminativo? ↑

Nota
In base alla definizione data, “conservativo” è sinonimo di “ammette un
potenziale”.

Esempio
La funzione f (x , y) = 1

2 ln(x2 + y2) è un potenziale in R2 \ {(0, 0)}
del campo vettoriale

F (x , y) =
( x

x2 + y2 ,
y

x2 + y2

)
.
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Osservazione
• Se f è potenziale di F in A e c ∈ R, allora f + c è potenziale di F in A.

ecco perché si dice “un” potenziale
↓

• Se A è connesso e se f e g sono entrambi potenziali di F in A, allora:
esiste c ∈ R tale che f = g + c. ← caratterizzazione delle funzioni

a gradiente nullo

Osservazione
Denotate con F1, . . . , Fn le componenti di F , dire che f è potenziale di F
in A equivale a dire che per ogni i ∈ {1, . . . , n}:

∂f
∂xi

(x) = Fi(x) per ogni x ∈ A.

Esempio
Determinare un potenziale del campo vettoriale

F (x , y , z) =
(
ey + 2 x z , x ey − 1

y − 2 , x2 + z
)
.
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Teorema (FFCI per campi vettoriali)
Sia A ⊆ Rn insieme aperto e sia F campo vettoriale continuo in A.
Supponiamo che F sia conservativo e denotiamo con f un suo potenziale.
Sia (γ, r) una curva regolare (a tratti) con sostegno contenuto in A, con
intervallo dei parametri [a, b].
Allora: ∫

γ
F (P) · dP = f (r(b))− f (r(a)).

↑
1 dipende solo dagli estremi della curva
2 se gli estremi coincidono è uguale a 0

Verifica :∫
γ

F (P) · dP =
∫ b

a
F (r(t)) · r ′(t) dt =

∫ b

a
∇f (r(t)) · r ′(t) dt

=
∫ b

a
(f ◦r)′(t) dt = (f ◦r)(b)− (f ◦r)(a) □

↑
FFCI AM I 20



Esempi
1 Calcolare l’integrale del campo vettoriale

F (x , y) =
( x

x2 + y2 ,
y

x2 + y2

)
,

sulle curve definite dalle parametrizzazioni

• r(t) = (cos t, 2 sin t), t ∈ [0, π/2]

• r(t) = (cos t, 2 sin t), t ∈ [0, 2π]

2 Calcolare l’integrale del campo vettoriale

F (x , y , z) =
(
ey + 2 x z , x ey − 1

y − 2 , x2 + z
)

sulle curve definite dalle parametrizzazioni
• r(t) = (cos t, sin t, t), t ∈ [0, 2π]

• r(t) = (cos t, sin t, cos3 t), t ∈ [0, 2π] 21



Osservazione (caratterizzazioni dei campi vettoriali conservativi)
Sia A ⊆ Rn insieme aperto e sia F un campo vettoriale continuo in A.
Consideriamo le tre affermazioni seguenti:
(a) F ammette un potenziale;
(b) comunque si scelgano due curve regolari (a tratti), con sostegni γ1

e γ2 contenuti in A, aventi i medesimi estremi, risulta∫
γ1

F (P) · dP =
∫

γ2
F (P) · dP;

(c) per qualsiasi (γ, r) curva chiusa regolare (a tratti), con sostegno
contenuto in A, risulta ∮

γ
F (P) · dP = 0.

Dalle note 1 e 2 alla FCCI seguono “(a) ⇒ (b)” e “(a) ⇒ (c)”.

Se l’insieme A è connesso valgono anche le implicazioni contrarie, quindi
le tre affermazioni sono equivalenti. Motivazione . . .
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Conseguenza (criteri per stabilire che un campo vettoriale non è conservativo)
Sia A ⊆ Rn insieme aperto e sia F campo vettoriale continuo in A.
Se esistono

• due curve regolari (a tratti), con sostegni contenuti in A, aventi i
medesimi estremi, sulle quali F ha integrali diversi,

oppure

• una curva chiusa regolare (a tratti), con sostegno contenuto in A,
sulla quale l’integrale di F è diverso da 0,

allora: F non è conservativo.

Esempio
Il campo vettoriale F (x , y) = (y , x y) non è conservativo.

Tenere presente l’esempio di pagina 11
23



In base a quanto detto fino a ora:
• per stabilire che un campo vettoriale è conservativo,

↓ cioè: ammette un potenziale
occorre determi-

narne esplicitamente un potenziale oppure, in un aperto connesso,
valutare infiniti integrali curvilinei; ← impossibile in pratica!

• per stabilire che un campo vettoriale non è conservativo, occorre
valutare uno o più integrali curvilinei.

Per i campi vettoriali di classe C1 si può procedere in modo alternativo.
Premettiamo una definizione.

Sia A ⊆ Rn un insieme aperto.
Sia F un campo vettoriale di classe C1 in A, di componenti F1, . . . , Fn.
Diciamo che F è chiuso in A se per ogni x ∈ A si ha

∂Fi
∂xj

(x) = ∂Fj
∂xi

(x) per ogni i , j ∈ {1, . . . , n} (i ̸= j)

Esempio: il campo vettoriale F (x , y) = (y , x y) non è chiuso. 24



Teorema
Siano A ⊆ Rn insieme aperto e F campo vettoriale di classe C1 in A.
1 Se F è conservativo in A, allora F è chiuso in A. Verifica . . .
2 Se F è chiuso in A e l’insieme A è stellato, allora F è conservativo in A.

Dimostrazione di tipo costruttivo:
se A è stellato rispetto a x0, ha senso definire l’applicazione che a x ∈ A
associa l’integrale di F sul segmento [x0, x ]; tale funzione risulta essere un
potenziale di F .

Il punto 2 è noto come teorema di Poincaré.

Osservazione
Senza ipotesi aggiuntive su A, non tutti i campi vettoriali chiusi sono
conservativi. Esempio:

F (x , y) =
( −y

x2 + y2 ,
x

x2 + y2

) chiuso in R2 \ {(0, 0}
circuitazione su S1 diversa da 0 25



Esempi
• Stabilire se il campo vettoriale

F (x , y , z) =
( y

1 + x y + z ,
x

1 + x y , x
)

è conservativo nell’insieme
{
(x , y , z) ∈ R3 ∣∣ 1 + x y > 0

}
.

• Stabilire se il campo vettoriale

F (x , y) =
(1 + y

1 + x , ln(1 + x)
)

è conservativo nel proprio insieme di definizione.
Calcolare l’integrale di F sul segmento congiungente (0, 0) e (2, 1).
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Esempio (quando tutto sembra andare male, e invece . . . )
Dato il campo vettoriale

F (x , y) =
( x − y

x2 + y2 ,
x + y

x2 + y2

)
,

• stabilire se F è chiuso e se è conservativo nel proprio insieme di
definizione;

• calcolare l’integrale di F sulla curva semplice di estremi (0, 1) e (1, 0)
con sostegno contenuto nell’insieme{

(x , y)
∣∣ x y + x + y = 1

}
.
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Integrali di superficie di campi scalari (anche detti: di prima specie)

Sia f : A ⊆ R3 → R una funzione continua.
Sia (Σ, σ) una superficie regolare con Σ ⊂ A e σ definita in un insieme
normale K .

Definiamo integrale di f sulla superficie (Σ, σ) il numero reale∫
Σ

f dS :=
∫∫

K
f (σ(u, v)) ∥Nσ(u, v)∥ du dv .

Esempi
Calcolare l’integrale della funzione proiezione sull’asse z sulle superfici
di parametrizzazione

• σ(u, v) = (u cos v , u sin v , u) (u, v) ∈ [0, 1]× [0, 2π]

• σ(u, v) = (u cos v , u sin v , v) (u, v) ∈ [0, 1]× [0, 2π]
28



Sugli integrali di superficie di campi scalari possiamo fare considerazioni
simili a quelle fatte per gli integrali curvilinei.
↑ ma più rapide perché le superfici sono tutte “semplici”

Iniziamo con la nozione di “equivalenza” per superfici.

Sia Σ ⊂ R3 e siano σ e σ̃ due parametrizzazioni di Σ, rispettivamente
definite negli insiemi di parametri K e K̃ .
Diciamo che σ e σ̃ sono parametrizzazioni equivalenti di Σ se esiste
h : K̃ → K tale che

• h è bigettiva,

• h è di classe C1 nell’interiore di K̃ ,

• det
(
Jh(u, v)

)
̸= 0 per ogni (u, v) ∈ int(K̃ ),

• σ̃ = σ ◦ h.

h : cambiamento
di parametro

29



Esempio
Sia (Σ, σ) una superficie con insieme di parametri K .
Posto K̃ :=

{
(u, v) ∈ R2 ∣∣ (v , u) ∈ K

}
, definiamo σ̃ : K̃ → R3 ponendo

σ̃(u, v) := σ(v , u).

Allora: σ̃ è una parametrizzazione di Σ equivalente a σ.

h(u, v) = (v , u) =⇒ Jh(u, v) =
(

0 1
1 0

)
=⇒ det

(
Jh(u, v) ≡ −1

Osservazione
Se h è un cambiamento di parametro, la funzione

(u, v) ∈ int(K̃ ) 7→ det
(
Jh(u, v)

)
∈ R

è continua in un insieme connesso e non è mai uguale a 0; per il teorema
dei valori intermedi, ha segno costante.
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Osservazione
Con le notazioni della definizione di parametrizzazioni equivalenti, per
ogni (u, v) ∈ int(K̃ ) si ha:

Nσ̃(u, v) = det(Jh(u, v)) Nσ(h(u, v)) verifica. . .

nσ̃(u, v) = sign(det(Jh(u, v))) nσ(h(u, v)).

Pertanto:
i campi vettoriali normali delle superfici (Σ, σ) e (Σ, σ̃) sono

• uguali se il determinante della matrice jacobiana di h è positivo,

• opposti se il determinante della matrice jacobiana di h è negativo.

Nota: nell’esempio della pagina precedente sono opposti.
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Proposizione (invarianza dell’integrale di campi scalari per riparam. equivalenti)
Siano f : A ⊆ R3 → R una funzione continua e Σ ⊂ A.
Se σ : K → R3 e σ̃ : K̃ → R3 sono parametrizzazioni equivalenti di Σ,
allora:∫∫

K̃
f (σ̃(u, v)) ∥Nσ̃(u, v)∥ du dv =

∫∫
K

f (σ(u, v)) ∥Nσ(u, v)∥ du dv .

Verifica . . .

Osservazione ←
corrisponde all’equivalenza tra curve regolari, semplici,
non chiuse aventi lo stesso sostegno

Si può dimostrare che se due superfici regolari con bordo hanno lo stesso
sostegno, allora le corrispondenti parametrizzazioni sono equivalenti.
Conseguenza: se ci si limita alle superfici regolari con bordo, l’integrale di
superficie del campo scalare f non dipende dalla parametrizzazione scelta
e può essere prescritto assegnando soltanto l’insieme Σ. 32



Se Σ è sostegno di una superficie regolare a pezzi, con facce Σ1,. . . , Σm,
definiamo ∫

Σ
f dS :=

∫
Σ1

f dS + . . . +
∫

Σm
f dS.

Osservazioni
• L’integrale su ciascuna faccia può essere calcolato utilizzando una sua

qualsiasi parametrizzazione.
• Tra le superfici regolari a pezzi includiamo superfici che sono regolari

ma non regolari con bordo. superficie cilindrica, superficie sferica, . . .

Esempio
Calcolare l’integrale della funzione proiezione sull’asse z sulla frontiera
dell’insieme {

(x , y , z) ∈ R3 ∣∣ x2 + y2 ≤ 9 , 0 ≤ z ≤ 4
}

.
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Sia (Σ, σ) una superficie regolare, avente per insieme dei parametri un
insieme normale K .
Chiamiamo area della superficie il numero reale

A(Σ) :=
∫∫

K
∥Nσ(u, v)∥ du dv . ← integrale di superficie

della funzione f ≡ 1

Nota: l’area di una superficie regolare a pezzi è la somma delle aree delle
singole facce.

Esempi
• Calcolare l’area della superficie sferica di raggio r .

• Calcolare l’area della frontiera dell’insieme{
(x , y , z) ∈ R3 ∣∣ √x2 + y2 ≤ z ≤ 1

}
.
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Esercizio
Calcolare l’area della superficie grafico associata alla funzione definita
ponendo f (x , y) = x2 + y2 nella palla unitaria chiusa di R2.

Per ragioni di tempo le superfici di rotazione non vengono presentate in aula

Osservazione (area delle superfici di rotazione)
Sia γ ⊂

{
(0, y , z) | y ≥ 0

}
il sostegno di una curva semplice e regolare, parame-

trizzata da r(t) = (0, y(t), z(t)), con t ∈ [a, b].
Sia Σ il sottoinsieme di R3 ottenuto ruotando γ attorno all’asse z .
Risulta:

A(Σ) = 2 π

∫ b

a
y(t) ∥r ′(t)∥ dt

(
= 2π

∫
γ

πy ds
)

Esempio
Calcolare l’area della superficie (toro) ottenuta ruotando attorno all’asse z una
circonferenza, contenuta nel piano y z , con centro posto sull’asse y a distanza
dall’origine maggiore del raggio. 35



In sospeso:

Interpretazione geometrica dell’integrale curvilineo di campi scalari
Sia γ ⊂ A ⊆ R2 il sostegno di una curva regolare semplice.
Sia f ∈ C(A,R) tale che f (x , y) ≥ 0 per ogni (x , y) ∈ γ.
Allora:
l’integrale curvilineo di f su γ è uguale all’area della porzione di superficie
cilindrica di direttrice γ e generatrici parallele all’asse z compresa tra il
piano di equazione z = 0 e il grafico di f .

Verifica . . .
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Flusso attraverso una superficie (anche detto: integrale di superficie
di seconda specie)

Sia F : A ⊆ R3 → R3 un campo vettoriale continuo.
Sia (Σ, σ) una superficie regolare con Σ ⊂ A e σ definita in un insieme
normale K .
Supponiamo che la superficie sia orientabile e denotiamo con n il campo
vettoriale normale. ↑ cioè: n è definito e continuo in Σ

Definiamo flusso di F attraverso Σ il numero reale

ΦΣ(F ) :=
∫

Σ
F · n dS. ← integrale di prima specie

del campo scalare F · n

Nota
Il campo scalare F · n fornisce in ogni punto di Σ la componente di F
nella direzione di n, ossia nella direzione normale a Σ.
Quando è massimo (in valore assoluto)? Quando è uguale a 0? 37



Esplicitiamo la definizione:

ΦΣ(F ) :=
∫

Σ
F · n dS =

∫∫
K

F (σ(u, v)) · n(σ(u, v)) ∥Nσ(u, v)∥ du dv

=
∫∫

K
F (σ(u, v)) · nσ(u, v) ∥Nσ(u, v)∥ du dv

def. di campo vett. normale ↓

=
∫∫

K
F (σ(u, v)) · Nσ(u, v) du dv

def. di versore normale ↓
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Osservazione (invarianza per riparam. equival. che conservano l’orientazione)
Calcolando il flusso di F attraverso Σ mediante due parametrizzazioni
equivalenti σ e σ̃, ottenute mediante il cambiamento di parametro h,
si ottiene
• il medesimo risultato se i campi vettoriali normali di σ e σ̃ sono uguali

(ossia det(Jh) > 0),

• risultati opposti se i campi vettoriali normali di σ e σ̃ sono opposti
(ossia det(Jh) > 0).

Motivazione: basta pensare ai campi vettoriali normali . . .

Conseguenza:
se si prescrive il calcolo del flusso di un campo vettoriale attraverso
una superficie orientabile assegnando solo il sostegno della superficie,
è necessario specificare l’orientazione desiderata.
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Esempi
• Calcolare il flusso del campo vettoriale

F (x , y , z) = (0, 0, z)

attraverso la superficie di parametrizzazione

σ(u, v) = (u cos v , u sin v , v) (u, v) ∈ [0, 1]× [0, 2π].

• Calcolare il flusso del campo vettoriale

F (x , y , z) = (x , y , 0)

uscente dalla sfera di centro l’origine e raggio 2 attraverso la calotta
posta al di sopra del piano di equazione z = 1.

• Calcolare il flusso diretto verso il basso del campo vettoriale

F (x , y , z) = (y , x , z)

attraverso la superficie associata al grafico della funzione definita nella
palla unitaria chiusa di R2 ponendo f (x , y) = x2 + y2.
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Relazione tra integrali di superficie e integrali curvilinei

Siano A ⊆ R3 un insieme aperto e F ∈ C1(A,R3) con F = (F1, F2, F3).
Il campo vettoriale

rot F :=
(

∂F3
∂y −

∂F2
∂z ,

∂F1
∂z −

∂F3
∂x ,

∂F2
∂x −

∂F1
∂y

)
si chiama rotore (o rotazionale; in inglese, curl) del campo vettoriale F ;
è definito e continuo in A.

Nota: possiamo determinare il rotore di F mediante
il determinante simbolico qui a lato; se interpretiamo
gli elementi sulla seconda riga come le componenti
del vettore (simbolico) ∇, otteniamo rot F = ∇ × F .

∣∣∣∣∣∣∣∣∣∣
e1 e2 e3

∂

∂x
∂

∂y
∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
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Esempi
Determinare il rotore dei seguenti campi vettoriali:

F (x , y , z) = (x y , x2, y z) F (x , y , z) = (x , y , z) F (x , y , z) = (y ,−x , 0)

perché “rotore”?

Nota (sulla terminologia dei campi vettoriali)
Se F ∈ C1(A,R3), dire che F è chiuso in A equivale a dire che

∂F1
∂y ≡

∂F2
∂x ,

∂F1
∂z ≡

∂F3
∂x ,

∂F2
∂z ≡

∂F3
∂y

cioè
∂F2
∂x −

∂F1
∂y ≡ 0 ,

∂F1
∂z −

∂F3
∂x ≡ 0 ,

∂F3
∂y −

∂F2
∂z ≡ 0 ,

cioè rot F ≡ 0.
Per questa ragione i campi vettoriali chiusi in R3 (e anche in R2)

assumendo F3 ≡ 0 ↓
sono

detti irrotazionali. “Tradurre” il teorema di Poincarè . . . 42



Teorema di Stokes (o del rotore)
Siano A ⊆ R3 un insieme aperto e F ∈ C1(A,R3).
Sia Σ ⊂ A il sostegno di una superficie regolare con bordo

↑ quindi orientabile
con campo

vettoriale normale n.
Allora:

ΦΣ(rot F ) =
∮

∂Σ+
F (P) · dP

integrale di superficie circuitazione di F sul bordo di Σ
orientato positivamente

Esempio
Verificare la validità del teorema di Stokes per il flusso del rotore del
campo vettoriale

F (x , y , z) = (x y , x2, y z)

che attraversa verso l’alto la porzione della superficie sferica unitaria
contenuta nel semispazio superiore. 43



Osservazione

• Supponiamo che un campo vettoriale G sia “di tipo rotore”, cioè
G sia il rotore di un altro campo vettoriale F . ← “potenziale vettore”
Per il teorema di Stokes, il flusso di G attraverso una superficie Σ
regolare con bordo dipende solo dai valori di F sul bordo ∂Σ.
Pertanto:
nel calcolo del flusso di un campo vettoriale “di tipo rotore” possiamo
sostituire la superficie data con qualsiasi altra superficie regolare avente
il medesimo bordo, orientato allo stesso modo. Esempio . . .

• Inoltre: il flusso di un campo vettoriale “di tipo rotore” attraverso una
qualsiasi superficie regolare orientabile chiusa è uguale a 0.

Nota: questi risultati sono analoghi a quelli sugli integrali curvilinei di
campi vettoriali “di tipo gradiente” (ossia conservativi).
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Relazione tra integrali di superficie e integrali tripli

Siano A ⊆ Rn un insieme aperto e F ∈ C1(A,Rn).
La funzione

div F := ∂F1
∂x1

+ . . . + ∂Fn
∂xn

si chiama divergenza del campo vettoriale F ; è definita e continua in A.

Nota: interpretando i simboli di derivate parziali come componenti del
vettore (simbolico) ∇, otteniamo div F = ∇ · F .

Nota: se f ∈ C2(A,R), allora: div∇f = ∆f .

Esempi
Determinare la divergenza dei seguenti campi vettoriali:
F (x , y , z) = (x y , x2, y z) F (x , y , z) = (x , y , z) F (x , y , z) = (y ,−x , 0)
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Teorema di Gauss (o della divergenza) in R3 ← vale anche in R2

Sia T ⊂ R3 un dominio regolare normale, cioè un dominio regolare che
è anche un insieme normale. Sia F ∈ C1(T ,R3).
Allora: ∫∫∫

T
div F (x , y , z) dx dy dz =

∫
∂T +

F · n dS.

integrale triplo flusso di F uscente attraverso
la frontiera di T

Esempio
Verificare la validità del teorema di Gauss per il campo vettoriale

F (x , y , z) = (x y2, x2 y , (x2 + y2) z2)

e l’insieme
T =

{
(x , y , z)

∣∣ x2 + y2 ≤ 4 , 0 ≤ z ≤ 1
}

.

46



Esercizio
Calcolare il flusso del campo vettoriale

F (x , y , z) = (x , y , z)

uscente dall’insieme{
(x , y , z) | x2 + y2 + z2 ≤ 4 , −1 ≤ z ≤ 1

}
attraverso la sua superficie laterale. ← superficie non chiusa ???
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Relazione tra integrali curvilinei e integrali doppi

Premessa
Sia D ⊂ R2 un dominio regolare normale. ← stesso significato che in R3

Sulla frontiera ∂D, con la possibile eccezione di un numero finito di punti.
possiamo definire il campo vettoriale normale ponendo

n(P) :=
(

y ′(r−1(P))
∥r ′(r−1(P))∥ , − x ′(r−1(P))

∥r ′((r−1(P))∥

)
,

dove r(t) =
(
x(t), y(t)

)
, t ∈ I, è una arbitraria parametrizzazione della

componente di ∂D contenente P.

Ricordiamo che dire che ∂D è orientatata positivamente equivale a dire
che il campo vettoriale normale punta verso l’esterno di D.
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Enunciamo il teorema della divergenza in R2:
Siano D ⊂ R2 un dominio regolare normale e F ∈ C1(D,R2).
Allora: ∫∫

D
div F (x , y) dx dy =

∫
∂D+

F · n ds.

integrale doppio “flusso” di F uscente attraverso
la frontiera di D

Corollario (teorema di Gauss-Green)
Siano D ⊂ R2 un dominio regolare (normale) e F = (F1, F2) ∈ C1(D,R2).
Allora:∫∫

D

(
∂F2
∂x (x , y)− ∂F1

∂y (x , y)
)

dx dy =
∮

∂D+
F (P) · dP.

integrale doppio circuitazione del campo vettoriale F
sulla frontiera di D orientata positivamente

Verifica: applicare il teorema della divergenza a G := (F2,−F1) 49



Esercizio
Verificare la validità del teorema di Gauss-Green per il campo vettoriale

F (x , y) = (x + y2, x2 + y)

e l’insieme

D =
{

(x , y)
∣∣ x ≥ 0, y ≥ 0, x2 + y2 ≤ 4

}
.
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Applicazioni del teorema di Gauss-Green

1 Calcolo della misura di un dominio regolare

Sia D ⊂ R2 un dominio regolare (normale). Risulta:

m2(D) =
∮

∂D+
F (P) · dP

con F = (F1, F2) arbitrario campo vettoriale tale che ∂F2
∂x −

∂F1
∂y ≡ 1 in D.

Possibili scelte:
F (x , y) = (0, x), F (x , y) = (−y , 0), F (x , y) =

(
−y

2 ,
x
2
)

Esempio
Calcolare la misura della regione di piano racchiusa dall’asteroide,
cioè il sostegno della curva parametrizzata da

r(t) =
(
cos3(t), sin3(t)

)
, t ∈ [0, 2π].
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2 Estensione del teorema di Poincaré

Sia A ⊆ R2 un insieme aperto connesso.
Diciamo che A è semplicemente connesso se se ogni insieme γ contenuto
in A, che sia sostegno di una curva regolare (a tratti), semplice e chiusa,
è frontiera di un dominio regolare D contenuto in A.
Esempi . . . Formulazione alternativa informale, valida in dimensione qualsiasi . . .

Teorema ← vale anche in dimensione qualsiasi
Sia A ⊆ R2 un insieme aperto semplicemente connesso.
Allora: ogni campo vettoriale di classe C1 e chiuso in A è conservativo.
Dimostrazione . . .

Nota
Ogni sottoinsieme stellato è semplicemente connesso; il viceversa non vale.

esempio?
↓

Quindi: il teorema qui sopra estende il teorema di Poincaré.
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A P P E N D I C E
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Verifica: invarianza per riparametrizzazioni equivalenti – curve

Siano r : [a, b]→ Rn e s : [c, d ]→ Rn due parametrizzazioni equivalenti
di γ, con s = r ◦ h. (Senza perdere generalità, suppongo r e s regolari.)

Per ogni t ∈ [c, d ] si ha s ′(t) = r ′(h(t)) h′(t), quindi:∫ d

c
f (s(t)) ∥s ′(t)∥ dt =

∫ d

c
f (r(h(t))) ∥r ′(h(t))∥ |h′(t)| dt

=
h′ > 0 ↗

h′ < 0 ↘

∫ d

c
f (r(h(t))) ∥r ′(h(t))∥ h′(t) dt

∫ d

c
f (r(h(t))) ∥r ′(h(t))∥ (−h′(t)) dt =

∫ c

d
f (r(h(t))) ∥r ′(h(t))∥ h′(t) dt

=
∫ b

a
f (r(τ)) ∥r ′(τ)∥ dτ

↑
τ := h(t) □
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Verifica della formula per i campi vettoriali normali

Se σ̃ = σ ◦ h, per ogni (u, v) ∈ int(K̃ ) si ha

Jσ̃(u, v) = Jσ(h(u, v)) Jh(u, v)

Esplicito, usando il simbolo Di per indicare la derivata rispetto alla
i-esima variabile e omettendo gli argomenti per alleggerire la scrittura:

D1σ̃1 D2σ̃1

D1σ̃2 D2σ̃2

D1σ̃3 D2σ̃3

 =


D1σ1 D2σ1

D1σ2 D2σ2

D1σ3 D2σ3


(

D1h1 D2h1

D1h2 D2h2

)

=


D1σ1 D1h1 + D2σ1 D1h2 D1σ1 D2h1 + D2σ1 D2h2

D1σ2 D1h1 + D2σ2 D1h2 D1σ2 D2h1 + D2σ2 D2h2

D1σ3 D1h1 + D2σ3 D1h2 D1σ3 D2h1 + D2σ3 D2h2


Uguaglio le colonne:

D1σ̃ = D1h1 D1σ + D1h2 D2σ, D2σ̃ = D2h1 D1σ + D2h2 D2σ 55



Calcolo il prodotto vettoriale:

Nσ̃ := D1σ̃ × D2σ̃

= (D1h1 D1σ + D1h2 D2σ) × (D2h1 D1σ + D2h2 D2σ)

tengo presente che a × a = 0, a × b = −(b × a)

= D1h1 D2h2 (D1σ × D2σ) + D1h2 D2h1 (D2σ × D1σ)

= D1h1 D2h2 (D1σ × D2σ)− D1h2 D2h1 (D1σ × D2σ)

= (D1h1 D2h2 − D1h2 D2h1) (D1σ × D2σ)

=: det(Jh) Nσ □
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Verifica: invarianza per riparametrizzazioni equivalenti – superfici

Siano σ : K → R3 e σ̃ : K̃ → R3 parametrizzazioni equivalenti di Σ,
con σ̃ = σ ◦ h.

Per ogni (u, v) ∈ int(K̃ ) si ha

Nσ̃(u, v) = det(Jh(u, v)) Nσ(h(u, v)),

quindi:∫∫
K̃

f (σ̃(u, v)) ∥Nσ̃(u, v)∥ du dv =

=
∫∫

K̃
f (σ(h(u, v))) ∥Nσ(h(u, v))∥ |det(Jh(u, v))| du dv

=
∫∫

K
f (σ(x , y)) ∥Nσ(x , y)∥ dx dy

↑
cambiamento di variabili

□
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Dimostrazione della estensione del teorema di Poincaré

Per la caratterizzazione dei campi vettoriali conservativi, basta dimostrare
che la circuitazione di F su qualsiasi curva regolare (a tratti) chiusa, con
sostegno contenuto in A, è uguale a 0; posso limitarmi a considerare curve
semplici.

Sia dunque (γ, r) un’arbitraria curva regolare (a tratti), semplice e chiusa,
con sostegno contenuto in A; siccome A è semplicemente connesso, esiste
D ⊂ A tale che ∂D = γ.

Applico il teorema di Gauss-Green:∫∫
D

(
∂F2
∂x (x , y)− ∂F1

∂y (x , y)
)

dx dy =
∮

∂D+
F (P) · dP.

︸ ︷︷ ︸
≡ 0

perché F è chiuso
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Dall’uguaglianza deduco ∮
∂D+

F (P) · dP = 0

da cui, ricordando che ∂D = γ :∣∣∣∣∮
γ

F (P) · dP
∣∣∣∣ =

∣∣∣∣∮
∂D+

F (P) · dP
∣∣∣∣ = 0

Perché il valore assoluto?
Perché non so se r orienta ∂D
positivamente o negativamente

e quindi ∮
γ

F (P) · dP = 0 . □

Nota
L’argomento usato nella dimostrazione suggerisce che per escludere
che un campo vettoriale chiuso sia conservativo in un aperto connesso
“bucato” di R2 è inutile valutarne la circuitazione su curve chiuse che
“non circondano i buchi”. 59


