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non è quindi necessario copiarne il contenuto.



Premessa

Nel corso di Analisi Matematica I si è introdotta la nozione di integrale
di Riemann per funzioni reali di una variabile reale.
Vogliamo estendere la nozione di integrale a funzioni definite tra generici
spazi euclidei di dimensione finita. Tratteremo, nell’ordine:

• funzioni vettoriali di una variabile reale immediato!

• funzioni reali di due e tre variabili reali definite in insiemi normali
(caso particolare, sufficiente per gli scopi di questo corso)

• funzioni vettoriali di due e tre variabili reali definite in insiemi normali
ovvia generalizzazione
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Integrale per funzioni vettoriali di una variabile reale

Siano a, b ∈ R con a < b. Sia g : [a, b]→ Rn, con n ≥ 2.
Diciamo che g è integrabile (secondo Riemann) in [a, b] se lo sono tutte
le sue componenti g1, . . . , gn.
In tal caso, definiamo integrale (di Riemann) di g in [a, b] il vettore∫ b

a
g(t) dt :=

(∫ b

a
g1(t) dt , . . . ,

∫ b

a
gn(t) dt

)
.

Osservazioni
• Se g è continua in [a, b], allora g è integrabile.
• Se g è continua in [a, b] e h è una sua primitiva, allora∫ b

a
g(t) dt = h(b)− h(a).

↖ per ogni i ∈ {1, . . . , n}
la componente i-esima
di h è primitiva di gi

•
∥∥∥∫ b

a
g(t) dt

∥∥∥
Rn
≤
∫ b

a
∥g(t)∥Rn dt disuguaglianza triangolare

2



Sottoinsiemi normali di R2

Sia D ⊂ R2.
Diciamo che D è un insieme normale rispetto all’asse x se esistono un
intervallo [a, b] e due funzioni continue α, β : [a, b]→ R tali che

D =
{

(x , y) ∈ R2 ∣∣ a ≤ x ≤ b , α(x) ≤ y ≤ β(x)
}

.

Diciamo che D è un insieme normale rispetto all’asse y se esistono un
intervallo [a, b] e due funzioni continue α, β : [a, b]→ R tali che

D =
{

(x , y) ∈ R2 ∣∣ a ≤ y ≤ b , α(y) ≤ x ≤ β(y)
}

.

Diciamo che D è un insieme normale se è normale rispetto a (almeno)
uno degli assi coordinati.
In tal caso, chiamiamo area (o misura in R2) di D il numero reale

m2(D) =
∫ b

a
(β(t)− α(t)) dt.

t sta per x o y , a seconda dei casi ↑

Motivazione?
Corso di Analisi I
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Esempi
Descrivere i seguenti sottoinsiemi di R2 come insiemi normali oppure
unioni di insiemi normali:
• il disco di centro l’origine e raggio 1
• il triangolo di vertici (0, 0), (0, 1), (1, 1)
• l’insieme, contenuto nel primo quadrante, delimitato dalle rette di

equazione x = 0, y = 2 e dal grafico della funzione definita ponendo
y =
√

x
• la regione contenuta nel primo quadrante delimitata dalla retta di

equazione 2 x + 2 y = 5 e dall’iperbole di equazione x y = 1
• le due regioni, contenute nel semipiano y ≥ 0, delimitate dalla retta di

equazione x + y = 0 e dalla circonferenza di equazione x2 + y2 = 4
• la regione contenuta nel primo quadrante delimitata dalle rette di

equazione x = 0, y = x e dalla parabola di equazione y = 2− x2

• l’anello circolare di centro l’origine e raggi 1 e 2
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Sia D ⊂ R2 un insieme normale rispetto a un asse coordinato.
Una suddivisione di D in insiemi normali è un insieme finito di insiemi
normali rispetto al medesimo asse coordinato, a due a due privi di punti
interni in comune, la cui unione sia D.

Osservazione
Sia D un insieme normale rispetto all’asse x , come definito a pagina 3.

↓ per asse y osservazione analoga

Scegliamo
• x0, x1, . . . , xh ∈ [a, b] tali che a = x0 < x1 < . . . < xh = b,
• φ0, φ1, . . . , φk ∈ C([a, b],R) tali che α = φ0 ≤ φ1 ≤ . . . ≤ φk = β;
per i ∈ {1, . . . , h} e j ∈ {1, . . . , k} poniamo

Di j :=
{

(x , y) ∈ R2 ∣∣ xi−1 ≤ x ≤ xi , φj−1(x) ≤ y ≤ φj(x)
}

.

Allora: {D11, . . . , Dhk} è una suddivisione di D in insiemi normali.
Notiamo che, suddividendo opportunamente la suddivisione data, ci si può
sempre ricondurre a questa rappresentazione. 5



Esempio (suddivisione uniforme)
Fissiamo k ∈ N∗. Con le notazioni dell’osservazione, scegliamo i punti xi

e le funzioni φj in modo da suddividere in k parti uguali l’intervallo [a, b]
e l’intervallo [α(x), β(x)], al variare di x in [a, b].
Esplicitiamo: per i , j ∈ {0, . . . , k} poniamo

• xi := a + i
k (b − a)

• φj(x) := α(x) + j
k
(
β(x)− α(x)

)
per ogni x ∈ [a, b]

• Di j :=
{

(x , y) ∈ R2 ∣∣ xi−1 ≤ x ≤ xi , φj−1(x) ≤ y ≤ φj(x)
}

Si può dimostrare che il diametro di ciascun insieme della suddivisione
tende a 0 se k tende a +∞. ↖ diam(E ) := sup

{
∥u − v∥Rn | u, v ∈ E

}
↑ sottoinsieme di Rn

“Ingredienti” principali della verifica: α, β limitate e uniformemente continue 6



Proprietà
1 Se D è insieme normale rispetto a un asse coordinato e {D1, . . . , Dk}

è una suddivisione di D in insiemi normali, risulta

m2(D) = m2(D1) + . . . + m2(Dk). additività della misura

2 Se D1 e D2 sono insiemi normali rispetto allo stesso asse coordinato,
la loro intersezione, se diversa dall’insieme vuoto, è ancora un insieme
normale rispetto allo stesso asse coordinato.

3 Se D è un insieme normale rispetto a un asse coordinato e σ1 e σ2

sono suddivisioni di D in insiemi normali, allora l’insieme σ12 delle
intersezioni (non vuote) degli elementi di σ1 e degli elementi di σ2

è ancora una suddivisione di D in insiemi normali, detta suddivisione
generata da σ1 e σ2.
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Somme integrali

Sia D ⊂ R2 un insieme normale rispetto a un asse coordinato.
Sia f : D → R una funzione limitata.

Sia σ := {D1, . . . , Dk} una suddivisione di D in insiemi normali.
Definiamo i numeri reali

sf (σ) :=
k∑

i=1
m2(Di) inf f (Di) Sf (σ) :=

k∑
i=1

m2(Di) sup f (Di).

↑ ↑
somma integrale inferiore
di f relativa a σ

somma integrale superiore
di f relativa a σ

Interpretazione grafica . . .

Osservazione
Per ogni suddivisione σ si ha sf (σ) ≤ Sf (σ).
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Lemma
Siano D ⊂ R2 un insieme normale e f : D → R una funzione limitata.
Siano σ1 e σ2 due suddivisioni di D in insiemi normali.
Sia σ12 la suddivisione generata da σ1 e σ2.
Allora:

sf (σ1) ≤ sf (σ12) ≤ Sf (σ12) ≤ Sf (σ2).

Dimostrazione . . .

Da qui in poi, la costruzione che porta alla definizione di integrale in un
insieme normale è del tutto simile a quella vista nel corso di AM I per la
definizione di integrale di Riemann.
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Integrali doppi

Siano D ⊂ R2 un insieme normale e f : D → R una funzione limitata.
Definiamo l’insieme delle somme inferiori di f

s(f ) :=
{

sf (σ) |σ suddivisione di D in insiemi normali
}
⊂ R

e l’insieme delle somme superiori di f

S(f ) :=
{

Sf (σ) |σ suddivisione di D in insiemi normali
}
⊂ R

Per il lemma alla pagina precedente, questi due insiemi sono separati;
pertanto: sup s(f ) ≤ inf S(f ).

Se sup s(f ) = inf S(f ), cioè gli insiemi s(f ) e S(f ) sono contigui, diciamo
che f è integrabile in D.
L’unico elemento separatore degli insiemi s(f ) e S(f ) si chiama integrale
doppio di f in D e si denota con il simbolo∫∫

D
f (x , y) dx dy

(
:= sup s(f ) = inf S(f )

)
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Esempio
Se D ⊂ R2 è un dominio normale e f : D → R è la funzione costante di
valore c, allora f è integrabile e∫∫

D
f (x , y) dx dy = c m2(D).

Note
• m2(D) coincide con l’integrale in D della funzione costante di valore 1.
• Se c ≥ 0, il numero c m2(D) rappresenta il volume di un “cilindro”.

Osservazione (interpretazione geometrica dell’integrale doppio)
Se f è una funzione integrabile non negativa:
• le somme inferiori e superiori sono volumi di solidi di R3 costituiti da

“cilindri affiancati”;
• l’integrale doppio di f in D rappresenta il volume del solido di R3

delimitato dall’insieme D contenuto nel piano x y , dal grafico di f e dai
segmenti paralleli all’asse z passanti per i punti della frontiera di D. 11



Sottoinsiemi normali di R3 e integrali tripli

Sia T ⊂ R3.
Diciamo che T è un insieme normale rispetto al piano x y se esistono
D sottoinsieme normale di R2 e due funzioni continue γ, δ : D → R
tali che

T =
{

(x , y , z) ∈ R3 ∣∣ (x , y) ∈ D , γ(x , y) ≤ z ≤ δ(x , y)
}

.

Con ovvie modifiche si definiscono gli insiemi normali rispetto agli altri
piani coordinati.

Diciamo che T è un insieme normale se è normale rispetto a (almeno)
uno dei piani coordinati.
In tal caso, chiamiamo volume (o misura in R3) di T il numero reale

m3(T ) =
∫∫

D

(
δ(u, v)− γ(u, v)

)
du dv . Motivazione?

u, v stanno per x , y o x , z o y , z , a seconda dei casi ↑ 12



Esempi
Descrivere i seguenti sottoinsiemi di R3 come insiemi normali oppure
unioni di insiemi normali:
• la palla di centro l’origine e raggio 1

• il tetraedro di vertici (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

• l’insieme delimitato dal paraboloide di equazione z = x2 + y2 e dal
piano di equazione z = 3− 2 y
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La definizione di suddivisione in insiemi normali si ottiene in modo ovvio da
quella data per insiemi normali in R2 sostituendo la parola “asse” con “piano”:

Sia T ⊂ R3 un insieme normale rispetto a un piano coordinato.
Una suddivisione di T in insiemi normali è un insieme finito di insiemi
normali rispetto al medesimo piano coordinato, a due a due privi di punti
interni in comune, la cui unione sia T .

Come si può definire la suddivisione uniforme?

Osservazione
Le proprietà inerenti
• l’esistenza di suddivisioni con diametro arbitrariamente piccolo,

diametro di una suddivisione :=
massimo diametro degli insiemi
che la compongono

↓

• l’additività della misura,
• la suddivisione generata da due suddivisioni
valgono anche per insiemi normali in R3. 14



La definizione di somme integrali si ottiene in modo ovvio da quella data per
funzioni di due variabili sostituendo la misura in R2 con la misura in R3:

Sia T ⊂ R3 un insieme normale rispetto a un piano coordinato.
Sia f : T → R una funzione limitata.
Sia σ := {T1, . . . , Tk} una suddivisione di T in insiemi normali.
Definiamo la somma integrale inferiore e la somma integrale superiore
di f relative a σ ponendo, rispettivamente:

sf (σ) :=
k∑

i=1
m3(Ti) inf f (Ti) Sf (σ) :=

k∑
i=1

m3(Ti) sup f (Ti).

Esattamente come nel caso di funzioni di due variabili, gli insiemi delle
somme inferiori e delle somme superiori sono separati; se sono contigui,
diciamo che f è integrabile in T e chiamiamo l’unico elemento separatore
integrale triplo di f in T , denotato con il simbolo∫∫∫

T
f (x , y , z) dx dy dz . Nota:

∫∫∫
T

1 dx dy dz = m3(T )
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Alcune proprietà dell’integrale multiplo ← doppio se n = 2, triplo se n = 3

Sia U un sottoinsieme normale di Rn, con n ∈ {2, 3}.
Se f : U → R è una funzione integrabile in U, denotiamo con

∫
U

f (u) du
l’integrale multiplo di f in U.

1 Integrabilità delle funzioni continue
Sia f : U → R una funzione continua. Allora:

• f è integrabile in U;

• l’integrale di f è il limite delle somme di Cauchy al tendere a 0 del
diametro della suddivisione utilizzata, nel senso che:
per ogni ε ∈ R∗

+ esiste δ ∈ R∗
+ tale che per ogni suddivisione di U

in insiemi normali U1, . . . , Uk con diametro minore di δ e per ogni
(u1, . . . uk) ∈ U1 × . . .× Uk si ha∣∣∣∣∣

∫
U

f (u) du −
k∑

i=1
mn(Ui)f (ui)

∣∣∣∣∣ < ε.

“Ingredienti”:
uniforme continuità di f ,
esistenza di suddivisioni con
diametro piccolo a piacere
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2 Linearità
L’insieme delle funzioni integrabili in U è uno spazio vettoriale reale e
l’applicazione che a ciascuna funzione integrabile associa l’integrale in U
è lineare. Esplicitare . . .

3 Monotonia
Se f , g : U → R sono integrabili e f (u) ≤ g(u) per ogni u ∈ U, allora:∫

U
f (u) du ≤

∫
U

g(u) du.

4 Additività
Se U è unione di due insiemi normali U1 e U2 privi di punti interni in
comune, in ciascuno dei quali f è integrabile, diciamo che f è integrabile
in U e definiamo∫

U
f (u) du :=

∫
U1

f (u) du +
∫

U2
f (u) du.

Tutto bello, ma... come si calcolano gli integrali multipli? 17



Formule di riduzione per integrali doppi

Teorema
Sia D ⊂ R2 un insieme normale, descritto mediante un intervallo [a, b]
e due funzioni continue α, β : [a, b]→ R. Sia f : D → R continua.
• Se D è normale rispetto all’asse x , cioè

D =
{

(x , y) ∈ R2 ∣∣ a ≤ x ≤ b , α(x) ≤ y ≤ β(x)
}

allora: ∫∫
D

f (x , y) dx dy =
∫ b

a

(∫ β(x)

α(x)
f (x , y) dy

)
dx .

integrazione
per verticali

• Se D è normale rispetto all’asse y , cioè

D =
{

(x , y) ∈ R2 ∣∣ a ≤ y ≤ b , α(y) ≤ x ≤ β(y)
}

allora: ∫∫
D

f (x , y) dx dy =
∫ b

a

(∫ β(y)

α(y)
f (x , y) dx

)
dy .

integrazione
per orizzontali
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Esempi
• Calcolare la misura di un generico insieme normale di R2 integrando

la funzione costante di valore 1.

• Calcolare l’integrale di f (x , y) = x2 + x y nell’insieme [0, 4]× [1, 3].
→ formula di inversione dell’ordine di integrazione

• Calcolare l’integrale di f (x , y) = x y2 nell’insieme [0, 4]× [1, 3].
→ integrazione in rettangoli di funzioni “a variabili separabili”

• Calcolare l’integrale di f (x , y) = x y2 nel triangolo di vertici (0, 0),
(0, 1), (1, 1).

• Calcolare l’integrale di f (x , y) = ey2 nel triangolo di vertici (0, 0),
(0, 1), (1, 1). → scegliere il “giusto” ordine di integrazione!

• Calcolare l’integrale di f (x , y) = x
y nell’insieme delimitato dalle rette di

equazione x = 0, x = y , x + y = 4 e dalla circonferenza di equazione
x2 + y2 = 2. 19



Formule di riduzione per integrali tripli

Teorema (formula di integrazione per fili)
Sia T ⊂ R3 un insieme normale rispetto al piano x y , cioè

T =
{

(x , y , z) ∈ R3 ∣∣ (x , y) ∈ D , γ(x , y) ≤ z ≤ δ(x , y)
}

con D ⊂ R2 insieme normale e γ, δ : D → R funzioni continue.
Sia f : T → R una funzione continua.
Allora: ∫∫∫

T
f (x , y , z) dx dy dz =

∫∫
D

(∫ δ(x ,y)

γ(x ,y)
f (x , y , z) dz

)
dx dy .

integrazione per fili paralleli all’asse z

Con ovvie modifiche si ottengono le formule di integrazione per fili
paralleli agli altri assi.
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Esempi
• Calcolare la misura di un generico insieme normale di R3 integrando

la funzione costante di valore 1.

• Calcolare l’integrale della funzione

f (x , y , z) = x + z

nel tetraedro di vertici (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

21



Teorema (formula di integrazione per strati)
Sia T ⊂ R3 un insieme normale.
Posto a := min πz(T ) e b := max πz(T ),

πz : proiezione sull’asse z
supponiamo che per ogni

z ∈ [a, b] l’insieme

Tz :=
{

(x , y) ∈ R2 ∣∣ (x , y , z) ∈ T
}

sia normale o unione finita di insiemi normali a due a due privi di punti
interni in comune.

sezione di T
di piede z

Sia f : T → R una funzione continua.
Allora: ∫∫∫

T
f (x , y , z) dx dy dz =

∫ b

a

(∫∫
Tz

f (x , y , z) dx dy
)
dz .

integrazione per strati paralleli al piano x y

Con ovvie modifiche si ottengono le formule di integrazione per strati
paralleli agli altri piani. 22



Esempi
• Calcolare il volume della palla di centro l’origine e raggio r .

• Ricalcolare l’integrale della funzione

f (x , y , z) = x + z

nel tetraedro di vertici (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1).

Esempi (volume dei solidi di rotazione)
• Calcolare il volume del solido ottenuto ruotando intorno all’asse z

l’insieme
Γ =

{
(0, y , z) ∈ R3

∣∣∣ 1
2 ≤ z ≤ 2 ,

1
2 ≤ y ≤ 1

z

}
.

• Calcolare il volume del solido ottenuto ruotando intorno all’asse z
il triangolo di vertici (0, 0, 1), (0, 0,−1), (0, 1, 0).
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Cambiamento di variabili negli integrali multipli

Teorema
Sia E ⊂ Rn (n ∈ {2, 3}) un dominio

↓ chiusura di un aperto
e sia Φ ∈ C1(E ,Rn).

Supponiamo che:

• la restrizione di Φ all’interiore di E sia ingettiva,

• per ogni u ∈ int(E ): det
(
JΦ(u)

)
̸= 0,

• gli insiemi E e Φ(E ) siano normali oppure unione finita di insiemi
normali a due a due privi di punti interni in comune.

Allora: per ogni f ∈ C(Φ(E ),R) si ha∫
Φ(E)

f (v) dv =
∫

E
(f (Φ(u))

∣∣det
(
JΦ(u)

)∣∣ du .

Confronto con la formula per funzioni di una variabile reale . . .
24



Coordinate polari nel piano
Definiamo Φ : R2 → R2 ponendo Φ(ρ, θ) =

(
ρ cos θ, ρ sin θ

)
.

↓
oppure:

(
x0 + ρ cos θ, y0 + ρ sin θ

)
Osserviamo che:
• Φ è di classe C1 in R2 e per ogni (ρ, θ) si ha

det
(
JΦ(ρ, θ)

)
= det

(
cos θ −ρ sin θ

sin θ ρ cos θ

)
= ρ

• Φ
(
[0, +∞)× [0, 2π]

)
= R2 anche: Φ

(
[0, +∞)× [−π, π]

)
= R2

• In (0, +∞)× (0, 2π) la funzione Φ è ingettiva e det
(
JΦ(ρ, θ)

)
̸= 0.

Esempio
Calcolare l’integrale della funzione f (x , y) = x2 − 2 y2

• nel disco di centro l’origine e raggio 3;
• nella porzione della corona circolare di centro l’origine e raggi 1 e 2,

contenuta nel semipiano di equazione y ≥ 0, delimitata dalle bisettrici
dei quadranti. 25



Esempi

• Calcolare l’integrale della funzione f (x , y , z) = x y nell’insieme,
contenuto nel primo ottante, delimitato dai piani di equazione x = 0,
y = 0, z = 3 e dal paraboloide di equazione z = x2 + y2.

• Calcolare il volume del solido delimitato dal paraboloide di equazione
z = x2 + y2 e dal piano di equazione z = 3− 2 y .

• Calcolare l’integrale della funzione f (x , y) =
√

x2 + y2 nel cerchio di
centro (1, 0) e raggio 1.

Digressione
Calcoliamo l’integrale improprio

∫ +∞

−∞
e−t2 dt.

26



Coordinate ellittiche nel piano
Modifichiamo il cambiamento in coordinate polari, fissando a, b ∈ R∗

+
e ponendo

Φ(ρ, θ) =
(
a ρ cos θ, b ρ sin θ

)
.

In questo caso:

det
(
JΦ(ρ, θ)

)
= det

(
a cos θ −a ρ sin θ

b sin θ b ρ cos θ

)
= a b ρ

Esempi
Calcolare l’integrale della funzione f (x , y) = x + y
• nell’insieme, contenuto nel primo quadrante, delimitato dalla ellisse di

equazione 3 x2 + 4 y2 = 1;
• nell’insieme, contenuto nel primo quadrante, delimitato dalla ellisse di

equazione 3 x2 + 4 y2 = 1 e dalle rette di equazione x = 0 e x = y .
attenzione!! ↑ 27



Coordinate polari nello spazio (o sferiche)
Definiamo Φ : R3 → R3 ponendo

Φ(ρ, φ, θ) =
(
ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ

)
.

Osserviamo che:
• Φ è di classe C1 in R3 e per ogni (ρ, φ, θ) si ha

det
(
JΦ(ρ, φ, θ)

)
= det


sin φ cos θ ρ cos φ cos θ −ρ sin φ sin θ

sin φ sin θ ρ cos φ sin θ ρ sin φ cos θ

cos φ −ρ sin φ 0


= . . . = ρ2 sin φ

• Φ
(
[0, +∞)× [0, π]× [0, 2π]

)
= R3 oppure . . .

• In (0, +∞)× (0, π)× (0, 2π) la funzione Φ è ingettiva e

det
(
JΦ(ρ, φ, θ)

)
̸= 0.
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Esempi

• Calcolare il volume della palla di centro l’origine e raggio r . Di nuovo!

• Calcolare l’integrale della funzione f (x , y , z) =
√

x2 + y2 + z2

nell’insieme intersezione del primo ottante con la palla unitaria.

• Calcolare il volume del solido, contenuto nel semispazio superiore,
delimitato dalla superficie sferica di equazione x2 + y2 + z2 = 9
e dalla superficie conica di equazione z =

√
x2 + y2.
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Esempio (cambiamenti di variabili “ad hoc”)
Calcolare l’integrale della funzione f (x , y) = x2 y2 nell’insieme, contenuto
nel primo quadrante, delimitato dalle rette di equazione 2 x − y = 0,
x − 2 y = 0 e dalle iperboli di equazione x y = 2, x y = 4.

Esercizi
• Calcolare l’integrale della funzione f (x , y) = x y nell’insieme delimitato

dalle rette di equazione 2 x + y = 1, 2 x + y = −1, x − y = 0,
x − y = 2. Suggerimento: definire le variabili u := 2 x + y , v := x − y .

• Calcolare l’integrale della funzione f (x , y) = (x + y) cos(π(x − y))
nell’insieme delimitato dalle rette di equazione x + y = 1, x + y = 2,
y = 0, y = x . Suggerimento: definire le variabili u := x + y , v := x − y .
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A P P E N D I C E

31



Verifica della disuguaglianza triangolare

Pongo X :=
∫ b

a
g(t) dt e suppongo X ̸= 0 (altrimenti la tesi è verificata).

Risulta:

∥X∥2
↗

ometto
Rn

= X · X = X ·
∫ b

a
g(t) dt =

n∑
i=1

Xi

∫ b

a
gi(t) dt =

∫ b

a

n∑
i=1

Xi gi(t) dt

↓ linearità

=
∫ b

a
X · g(t) dt ≤

∫ b

a
|X · g(t)| dt

↑ monotonia

≤
∫ b

a
∥X∥ ∥g(t)∥ dt

↑ Cauchy-Schwarz + monotonia

= ∥X∥
∫ b

a
∥g(t)∥ dt.

Dividendo per ∥X∥ (strettamente positivo) ottengo ∥X∥ ≤
∫ b

a
∥g(t)∥ dt

e sostituendo X : ∥∥∥∥∥
∫ b

a
g(t) dt

∥∥∥∥∥ ≤
∫ b

a
∥g(t)∥ dt .

□
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Rappresentazione grafica di somme integrali inferiori e superiori

Fonte delle immagini:
https://moodle2.units.it/pluginfile.php/314694/mod resource/content/2/Integrazione1%202.0.pdf
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Dimostrazione del lemma

Introduco le notazioni:
σ1 = {D1, . . . , Dh}, σ2 = {E1, . . . , Ek}
σ12 = {A11, . . . , Ahk} con Ai j := Di ∩ Ej ( ̸= ∅)

Osservo che per ogni i :

Di = Di ∩ D = Di ∩
k⋃

j=1
Ej =

k⋃
j=1

(Di ∩ Ej) =
k⋃

j=1
Ai j

da cui, per l’additività della misura:

m2(Di) =
k∑

j=1
m2(Ai j). (1)

Inoltre, per ogni j :

Ai j ⊆ Di =⇒ f (Ai j) ⊆ f (Di) =⇒ inf f (Di) ≤ inf f (Ai j). (2)
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Tenendo conto di (1) e (2) calcolo

sf (σ1) :=
h∑

i=1
m2(Di) inf f (Di) =

h∑
i=1

k∑
j=1

m2(Ai j) inf f (Di)

≤
h∑

i=1

k∑
j=1

m2(Ai j) inf f (Ai j) =: sf (σ12)

In modo analogo, ragionando sugli insiemi Ej , posso dimostrare che

Sf (σ2) ≥ Sf (σ12).

Dunque:

sf (σ1) ≤ sf (σ12) ≤ Sf (σ12) ≤ Sf (σ2). □
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Insiemi normali rispetto ai piani x z e y z

Diciamo che T è un insieme normale rispetto al piano x z se esistono
D sottoinsieme normale di R2 e due funzioni continue γ, δ : D → R
tali che

T =
{

(x , y , z) ∈ R3 ∣∣ (x , z) ∈ D , γ(x , z) ≤ y ≤ δ(x , z)
}

.

Diciamo che T è un insieme normale rispetto al piano y z se esistono
D sottoinsieme normale di R2 e due funzioni continue γ, δ : D → R
tali che

T =
{

(x , y , z) ∈ R3 ∣∣ (y , z) ∈ D , γ(y , z) ≤ x ≤ δ(y , z)
}

.
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Formule di integrazione per fili paralleli agli assi y e x

• Se T =
{

(x , y , z) ∈ R3 ∣∣ (x , z) ∈ D , γ(x , z) ≤ y ≤ δ(x , z)
}

allora:∫∫∫
T

f (x , y , z) dx dy dz =
∫∫

D

(∫ δ(x ,z)

γ(x ,z)
f (x , y , z) dy

)
dx dz .

integrazione per fili paralleli all’asse y

• Se T =
{

(x , y , z) ∈ R3 ∣∣ (y , z) ∈ D , γ(y , z) ≤ x ≤ δ(y , z)
}

allora:∫∫∫
T

f (x , y , z) dx dy dz =
∫∫

D

(∫ δ(y ,z)

γ(y ,z)
f (x , y , z) dx

)
dy dz .

integrazione per fili paralleli all’asse x
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