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Funzioni tra spazi euclidei: calcolo integrale
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Premessa

Nel corso di Analisi Matematica | si & introdotta la nozione di integrale

di Riemann per funzioni reali di una variabile reale.

Vogliamo estendere la nozione di integrale a funzioni definite tra generici
spazi euclidei di dimensione finita. Tratteremo, nell’ordine:

e funzioni vettoriali di una variabile reale immediato!

e funzioni reali di due e tre variabili reali definite in insiemi normali

(caso particolare, sufficiente per gli scopi di questo corso)

o funzioni vettoriali di due e tre variabili reali definite in insiemi normali
ovvia generalizzazione



Integrale per funzioni vettoriali di una variabile reale

Siano a,b € R con a < b. Sia g : [a,b] — R", con n > 2.

Diciamo che g ¢ integrabile (secondo Riemann) in [a, b] se lo sono tutte
le sue componenti g1, ..., gn.
In tal caso, definiamo integrale (di Riemann) di g in [a, b] il vettore

./a.bg(t)dt = (/abgl(t)dt, o /abgn(t)dt>.

Osservazioni
e Se g & continua in [a, b], allora g & integrabile.

e Se g & continua in [a, b] e h & una sua primitiva, allora
b " perogniie{l,...,n}
/ g(t) dt = h(b) — h(a). la componente j-esima
di h e primitiva di g;
/ lg(t)||rn dt  disuguaglianza triangolare @
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Sottoinsiemi normali di R?

Sia D C R?.
Diciamo che D & un insieme normale rispetto all’asse x se esistono un
intervallo [a, b] e due funzioni continue «,f : [a, b] — R tali che

D:{(X,y)€R2|a§X§b, a(x)gygﬁ(x)}.

Diciamo che D & un insieme normale rispetto all'asse y se esistono un
intervallo [a, b] e due funzioni continue «,f : [a, b] — R tali che

2
D={(xy)€R?|a<y<b, aly) <x<B(y)}.
Diciamo che D & un insieme normale se & normale rispetto a (almeno)
uno degli assi coordinati.
In tal caso, chiamiamo area (o misura in R?) di D il numero reale

my(D) = /ab(ﬁ(t) — a(t)) dt. Motivazione?

Corso di Analisi |
t sta per x o y, a seconda dei casi



Esempi

Descrivere i seguenti sottoinsiemi di R? come insiemi normali oppure

unioni di insiemi normali:

il disco di centro |'origine e raggio 1

il triangolo di vertici (0, 0), (0,1),(1,1)

I'insieme, contenuto nel primo quadrante, delimitato dalle rette di
equazione x = 0, y = 2 e dal grafico della funzione definita ponendo
y =X

la regione contenuta nel primo quadrante delimitata dalla retta di
equazione 2x + 2y =5 e dall'iperbole di equazione xy =1

le due regioni, contenute nel semipiano y > 0, delimitate dalla retta di
equazione x + y = 0 e dalla circonferenza di equazione x> + y? = 4

la regione contenuta nel primo quadrante delimitata dalle rette di
equazione x = 0, y = x e dalla parabola di equazione y = 2 — x?

I"anello circolare di centro I'origine e raggi 1 e 2



Sia D C R? un insieme normale rispetto a un asse coordinato.

Una suddivisione di D in insiemi normali & un insieme finito di insiemi
normali rispetto al medesimo asse coordinato, a due a due privi di punti
interni in comune, la cui unione sia D.

Osservazione | per asse y osservazione analoga

Sia D un insieme normale rispetto all'asse x, come definito a pagina 3.
Scegliamo
® Xp,X1,...,Xp € [a,b] taliche a=xp<x3 <...<xp=0b,
e 0,01, 0k € C([a,b],R) taliche a=¢y <1 <...<pr=70;
perie€{l,...,h} eje{l,..., k} poniamo

Djj = {(X7Y) ER? | x_1 < x < x;, pji_1(x) <y < SOJ(X)}-
Allora: {D11, ... ,Dpx} & una suddivisione di D in insiemi normali.

Notiamo che, suddividendo opportunamente la suddivisione data, ci si pud
sempre ricondurre a questa rappresentazione.



Esempio (suddivisione uniforme)

Fissiamo k € N*. Con le notazioni dell'osservazione, scegliamo i punti x;
e le funzioni ¢; in modo da suddividere in k parti uguali I'intervallo [a, b]
e l'intervallo [a(x), B(x)], al variare di x in [a, b].
Esplicitiamo: per i,j € {0, ..., k} poniamo
i

- (b —
o X a-+ K ( a)
e ©j(x) = a(x)+ JE (B(x) — a(x)) per ogni x € [a, b]
o Djj = {(X,Y) eR? | xi1 <x<x, pj1(x) <y < SOJ(X)}

Si pud dimostrare che il diametro di ciascun insieme della suddivisione
tende a 0 se k tende a +00. "\ giam(E) := sup{ [|u — vl | u,v € E}

1 sottoinsieme di R”

“Ingredienti” principali della verifica: «, 8 limitate e uniformemente continue
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Proprieta

@ Se D ¢ insieme normale rispetto a un asse coordinato e {Dx, ..., Dy}
€ una suddivisione di D in insiemi normali, risulta

my(D) = my(D1) + ...+ my(Dy).  additivita della misura

® Se Dy e D, sono insiemi normali rispetto allo stesso asse coordinato,
la loro intersezione, se diversa dall'insieme vuoto, &€ ancora un insieme
normale rispetto allo stesso asse coordinato.

® Se D & un insieme normale rispetto a un asse coordinato e o1 e o)
sono suddivisioni di D in insiemi normali, allora I'insieme 015 delle
intersezioni (non vuote) degli elementi di o1 e degli elementi di o2
€ ancora una suddivisione di D in insiemi normali, detta suddivisione
generata da o1 e o7.



Somme integrali

Sia D C R? un insieme normale rispetto a un asse coordinato.
Sia f : D — R una funzione limitata.

Sia 0 :={Dx, ..., D¢} una suddivisione di D in insiemi normali.
Definiamo i numeri reali

k k
se(o) == Z m,(D;) inf f(D;) S¢(o) = Z m,(D;) sup (D).
i=1 i=1

somma integrale inferiore somma integrale superiore
di f relativa a o di f relativa a o
Interpretazione grafica . .. ’

Osservazione
Per ogni suddivisione o si ha s¢(0) < S¢(0).



Lemma

Siano D C R? un insieme normale e f : D — R una funzione limitata.
Siano o1 e o2 due suddivisioni di D in insiemi normali.

Sia 01 la suddivisione generata da o7 e o5.

Allora:

sf(01) < sp(012) < Se(o12) < Sf(02).

Dimostrazione . . . >

Da qui in poi, la costruzione che porta alla definizione di integrale in un
insieme normale ¢ del tutto simile a quella vista nel corso di AM | per la

definizione di integrale di Riemann.



Integrali doppi

Siano D C R? un insieme normale e f : D — R una funzione limitata.
Definiamo I'insieme delle somme inferiori di f

s(f) = {Sf(O') | o suddivisione di D in insiemi normali} CR
e I'insieme delle somme superiori di f

S(f) = {Sf(a) | o suddivisione di D in insiemi normali} CR
Per il lemma alla pagina precedente, questi due insiemi sono separati;

pertanto: sup s(f) < inf S(f).

Se sup s(f) = inf S(f), cioe gli insiemi s(f) e S(f) sono contigui, diciamo
che f & integrabile in D.
L'unico elemento separatore degli insiemi s(f) e S(f) si chiama integrale

doppio di f in D e si denota con il simbolo

'//L;f(x,y) dx dy ( :=sups(f) =inf S(f)) 0



Esempio

Se D c R? & un dominio normale e f : D — R & la funzione costante di
valore c, allora f & integrabile e

// f(x,y)dxdy = c my(D).

D

Note

e m,(D) coincide con l'integrale in D della funzione costante di valore 1.

e Se ¢ >0, il numero ¢ m,(D) rappresenta il volume di un “cilindro”.

Osservazione (interpretazione geometrica dell'integrale doppio)

Se f & una funzione integrabile non negativa:

e le somme inferiori e superiori sono volumi di solidi di R costituiti da
“cilindri affiancati”;

e I'integrale doppio di f in D rappresenta il volume del solido di R3
delimitato dall’'insieme D contenuto nel piano x y, dal grafico di f e dai

segmenti paralleli all'asse z passanti per i punti della frontiera di D. 11



Sottoinsiemi normali di R e integrali tripli

Sia T C R3.
Diciamo che T & un insieme normale rispetto al piano x y se esistono

D sottoinsieme normale di R? e due funzioni continue v,8 : D — R
tali che

T={(xy.2) €R*| (x,) € D, 7(x,y) < 2 < 3(x.y) .

Con ovvie modifiche si definiscono gli insiemi normali rispetto agli altri
piani coordinati. >

Diciamo che T & un insieme normale se & normale rispetto a (almeno)
uno dei piani coordinati.

In tal caso, chiamiamo volume (o misura in R?) di T il numero reale

my(T) = //D((S(u, v) —(u,v)) dudv. Motivazione?

u,v stanno per x,y 0 x,z 0 y, z, a seconda dei casi T 12



Esempi

Descrivere i seguenti sottoinsiemi di R3 come insiemi normali oppure
unioni di insiemi normali:

e la palla di centro I'origine e raggio 1
e il tetraedro di vertici (0,0,0),(1,0,0),(0,1,0),(0,0,1)

e I'insieme delimitato dal paraboloide di equazione z = x? + y? e dal
piano di equazione z =3 —2y
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La definizione di suddivisione in insiemi normali si ottiene in modo ovvio da
. . .. 2 . m " T ",
quella data per insiemi normali in R sostituendo la parola “asse” con “piano”:

Sia T C R3 un insieme normale rispetto a un piano coordinato.

Una suddivisione di T in insiemi normali &€ un insieme finito di insiemi
normali rispetto al medesimo piano coordinato, a due a due privi di punti
interni in comune, la cui unione sia T.

Come si puo definire la suddivisione uniforme?

diametro di una suddivisione :=
Osservazione massimo diametro degli insiemi
che la compongono

1

e |'esistenza di suddivisioni con diametro arbitrariamente piccolo,

Le proprieta inerenti

e |'additivita della misura,

e la suddivisione generata da due suddivisioni

valgono anche per insiemi normali in R3.
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La definizione di somme integrali si ottiene in modo ovvio da quella data per
funzioni di due variabili sostituendo la misura in R? con la misura in R3:

Sia T C R3 un insieme normale rispetto a un piano coordinato.

Sia f : T — R una funzione limitata.

Sia 0 :={T1,..., Tk} una suddivisione di T in insiemi normali.
Definiamo la somma integrale inferiore e la somma integrale superiore

di f relative a o ponendo, rispettivamente:
k
Z my(T;) inf £(T;) S¢(o) == Z my(T;) sup f(T;).
i=1

Esattamente come nel caso di funzioni di due variabili, gli insiemi delle
somme inferiori e delle somme superiori sono separati; se sono contigui,
diciamo che f & integrabile in T e chiamiamo I'unico elemento separatore
integrale triplo di f in T, denotato con il simbolo

/// f(x,y,z)dxdydz. Nota: ///1dx dy dz = my(T)
T T 15



Alcune proprieta dell'integrale multiplo « doppio se n = 2, triplo se n = 3

Sia U un sottoinsieme normale di R”, con n € {2, 3}.
Se f : U — R & una funzione integrabile in U, denotiamo con / f(u) du
I'integrale multiplo di f in U. v

@ Integrabilita delle funzioni continue “Ingredienti”:

uniforme continuita di f,
esistenza di suddivisioni con
diametro piccolo a piacere

Sia f : U — R una funzione continua. Allora:
e f & integrabile in U;

e l'integrale di f & il limite delle somme di Cauchy al tendere a 0 del
diametro della suddivisione utilizzata, nel senso che:
per ogni € € R esiste 6 € RY tale che per ogni suddivisione di U
in insiemi normali Uy, ..., U, con diametro minore di ¢ e per ogni
(ul,...uk)e Up x ... x Uk si ha

: K
|/ f(u)du—Zmn(U,-)f(u,-) <e.
u i=1

16



©® Linearita

L'insieme delle funzioni integrabili in U & uno spazio vettoriale reale e
I'applicazione che a ciascuna funzione integrabile associa l'integrale in U
é lineare.  Esplicitare . ..

©® Monotonia
Se f,g : U — R sono integrabili e f(u) < g(u) per ogni u € U, allora:

/f(u)dug/g(u)du.
U V)
0 Additivita

Se U & unione di due insiemi normali U; e Us privi di punti interni in
comune, in ciascuno dei quali f & integrabile, diciamo che f & integrabile
in U e definiamo

/l‘Jf(u)du = /L/1 f(u)du+ o f(u)du.

Tutto bello, ma... come si calcolano gli integrali multipli?

17



Formule di riduzione per integrali doppi

Teorema
Sia D C R? un insieme normale, descritto mediante un intervallo [a, b]
e due funzioni continue «, 5 : [a, b] — R. Sia f : D — R continua.

e Se D & normale rispetto all’asse x, cioé

D:{(x,y)€R2|a§x§b, a(x)gyg,é’(x)}
allora:

b, rB(x) integrazione
//Df(xa)/) dx dy = /a (/(X) F(x,y) dy)dx. per verticali

«

e Se D & normale rispetto all’asse y, cioé

D:{(X,y)eR2|a§y§b, a(Y)ﬁxgﬁ(y)}
allora:

b, rB(y) integrazione
//Df(xv)/) dx dy _/a (/a()/) flxy) dx) dy - per orizzontali

18



Esempi

Calcolare la misura di un generico insieme normale di R? integrando
la funzione costante di valore 1.
Calcolare I'integrale di f(x,y) = x? + x y nell'insieme [0,4] x [1, 3].
— formula di inversione dell'ordine di integrazione
Calcolare I'integrale di f(x,y) = x y2 nell'insieme [0, 4] x [, 3].
— integrazione in rettangoli di funzioni “a variabili separabili”
Calcolare I'integrale di f(x,y) = x y? nel triangolo di vertici (0, 0),
(0,1), (1,1).
Calcolare I'integrale di f(x,y) = ¢”* nel triangolo di vertici (0,0),
(0,1), (1,1). — scegliere il “giusto” ordine di integrazione!

X
Calcolare I'integrale di f(x,y) = — nell'insieme delimitato dalle rette di

equazione x =0, x =y, x+ y =4 e dalla circonferenza di equazione
x2+y?=2 19



Formule di riduzione per integrali tripli

Teorema (formula di integrazione per fili)

Sia T C R3 un insieme normale rispetto al piano x y, cioe
T={(xy,2) R | (x,y) €D, 7(x,y) <z < d(x,y)}
con D C R? insieme normale e 7,6 : D — R funzioni continue.

Sia f : T — R una funzione continua.

Allora: )
7.y

// f(x,y,z dxdydz—// / f(x y,z)dz)dxdy.
v(xy)

integrazione per fili paralleli all'asse z

Con ovvie modifiche si ottengono le formule di integrazione per fili
paralleli agli altri assi. >

20



Esempi

e Calcolare la misura di un generico insieme normale di R3 integrando
la funzione costante di valore 1.

e Calcolare I'integrale della funzione
f(x,y,z)=x+z
nel tetraedro di vertici (0,0, 0), (1,0,0),(0,1,0),(0,0,1).

21



Teorema (formula di integrazione per strati)

Sia T C R3 un insieme normale. m, . proiezione sull'asse z
Posto a := minm,(T) e b:= maxm,(T), supponiamo che per ogni

z € [a, b] I'insieme

— 2 sezione di T
Tz T {(va)ER |(X7y72)€ T} di piedez
sia normale o unione finita di insiemi normali a due a due privi di punti

interni in comune.

Sia f : T — R una funzione continua.

f(x,y,z)dxdydz = b( f(x,y,z)dxdy)dz.
T a T,

integrazione per strati paralleli al piano x y

Allora:

Con ovvie modifiche si ottengono le formule di integrazione per strati
paralleli agli altri piani.



Esempi
e Calcolare il volume della palla di centro I'origine e raggio r.

e Ricalcolare I'integrale della funzione
f(x,y,z)=x+z
nel tetraedro di vertici (0,0, 0), (1,0,0),(0,1,0),(0,0,1).

Esempi (volume dei solidi di rotazione)

o Calcolare il volume del solido ottenuto ruotando intorno all’asse z
I'insieme }

e Calcolare il volume del solido ottenuto ruotando intorno all’asse z
il triangolo di vertici (0,0,1), (0,0,-1), (0,1,0).

F:{(O,y,z)ER3‘ <z<2,-<y<

N[+

N =
N~
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Cambiamento di variabili negli integrali multipli
Teorema | chiusura di un aperto

Sia E C R" (n € {2,3}) un dominio e sia ® € C}(E,R").
Supponiamo che:

e la restrizione di @ all'interiore di E sia ingettiva,
e per ogni u € int(E): det(Jo(u)) #0,

e gli insiemi E e ®(E) siano normali oppure unione finita di insiemi

normali a due a due privi di punti interni in comune.

Allora: per ogni f € C(®(E),R) si ha

Joe, T = [(F(@(0) [det(1(0)] dur

Confronto con la formula per funzioni di una variabile reale ...

24



Coordinate polari nel piano oppure: (xo + p cosf, yo + p sin6)
Definiamo ® : R? — R? ponendo ®(p, ) = (p cosf, p sinf).
Osserviamo che:

e ® & diclasse C! in R? e per ogni (p,#) si ha

cos  —p sin 9)
=p

det(Jo(p,0)) = det
et(Jo(p,0) ¢ (sinﬁ p cos

o ®([0,400) x [0,27]) =R?  anche: ®([0, +o0) x [~7,7]) = R?

e In (0,400) x (0,27) la funzione ® & ingettiva e det(Jo(p, 8)) # 0.

Esempio

Calcolare I'integrale della funzione f(x,y) = x? —2y?

e nel disco di centro |'origine e raggio 3;

e nella porzione della corona circolare di centro |'origine e raggi 1 e 2,
contenuta nel semipiano di equazione y > 0, delimitata dalle bisettrici
dei quadranti.

25



Esempi

e Calcolare I'integrale della funzione f(x,y,z) = x y nell'insieme,
contenuto nel primo ottante, delimitato dai piani di equazione x = 0,
y =0, z =3 e dal paraboloide di equazione z = x? + y?.

e Calcolare il volume del solido delimitato dal paraboloide di equazione
z = x? 4 y? e dal piano di equazione z =3 — 2.

e Calcolare I'integrale della funzione f(x,y) = v/x2 + y2 nel cerchio di
centro (1,0) e raggio 1.

Digressione
'+OO 5
Calcoliamo I'integrale improprio / e v dt.

J —00
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Coordinate ellittiche nel piano

Modifichiamo il cambiamento in coordinate polari, fissando a, b € R
e ponendo

®(p,0) = (ap cosb, bpsinb).

In questo caso:

acosf —apsind
det(J 0)) = det =ab
et(Jo(p.0) € (b sinf bp cos@) 200

Esempi

Calcolare l'integrale della funzione f(x,y) = x +y

e nell'insieme, contenuto nel primo quadrante, delimitato dalla ellisse di

equazione 3x% 4+ 4y? = 1;

e nell'insieme, contenuto nel primo quadrante, delimitato dalla ellisse di

equazione 3x° 4 4 y? = 1 e dalle rette di equazione x =0e x = y.

attenzione!! 1
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Coordinate polari nello spazio (o sferiche)
Definiamo & : R3 — R3 ponendo
O(p, p,0) = (p sinp cosb, psingsind, pcosp).
Osserviamo che:
o ® & diclasse C!in R3 e per ogni (p,¢,0) si ha
sinp cos @ p cosp cos @ —p siny sinf
det(Jo(p, p,0)) =det | sinpsin@® pcosypsinf psinp cosb
Cos —psing 0
=...= p2 sin @

e ([0, +00) x [0,7] x [0,27]) =R3  oppure . ..

e In (0,+00) x (0,7) x (0,27) la funzione ® & ingettiva e

det(Jo(p, p,0)) # 0.
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Esempi

e Calcolare il volume della palla di centro I'origine e raggio r. Di nuovo!

e Calcolare I'integrale della funzione f(x,y,z) = /x2 + y2 + z2
nell'insieme intersezione del primo ottante con la palla unitaria.

e Calcolare il volume del solido, contenuto nel semispazio superiore,
delimitato dalla superficie sferica di equazione x> + y? + 2> =9
e dalla superficie conica di equazione z = \/x2 + y2.

29



Esempio (cambiamenti di variabili “ad hoc")

Calcolare I'integrale della funzione f(x, y) = x? y? nell'insieme, contenuto
nel primo quadrante, delimitato dalle rette di equazione 2x — y =0,
x — 2y = 0 e dalle iperboli di equazione xy =2, xy = 4.

Esercizi

e Calcolare I'integrale della funzione f(x,y) = x y nell'insieme delimitato
dalle rette di equazione 2x +y =1,2x+y= -1, x—y =0,
X—y=2. Suggerimento: definire le variabili v :=2x+y, v:i=x—y.

e Calcolare I'integrale della funzione f(x,y) = (x + y) cos(m(x — y))

nell'insieme delimitato dalle rette di equazione x +y =1, x4+ y =2,

y =0, y=x. Suggerimento: definire le variabili u:=x+y, v:=x—y.

30



APPENDICE

31



Verifica della disuguaglianza triangolare

b

Pongo X := / g(t) dt e suppongo X # 0 (altrimenti la tesi & verificata).
a

Risulta:

J linearita
b n b b _n
X2 =x-x =X [“goyde =3 X[ a(tyde= [ > xiaile)de
a a i=1 a a =1
ometto
Rn

b b b
= [ xee0de< [Ix-g@ld < [TIX] g0 de
a a a
1 monotonia 1 Cauchy-Schwarz + monotonia

= || X]| /ab lg(t)| dt.

b
Dividendo per || X|| (strettamente positivo) ottengo || X|| < / llg(t)]| dt
e sostituendo X: ?

‘/abg(t)dt < [Mlsola
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Rappresentazione grafica di somme integrali inferiori e superiori

Fonte delle immagini:

https://moodle2.units.it/pluginfile.php/314694 /mod_resource/content/2/Integrazionel1%202.0.pdf
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Dimostrazione del lemma

Introduco le notazioni:
o1 :{Dl,...,Dh}, UQZ{El,...,Ek}
O12 = {Al].)"'aAhk} con A,'j =D;N EJ (7& @)

Osservo che per ogni i
k k k

Di=D;ND=D;n{JE=JDinE)=JA;
j=1 j=1 j=1

da cui, per I'additivita della misura:

m2(D,-) = m2(A,-J-).

.
I M»
I

Inoltre, per ogni j:

AijCDi = f(Aj) Cf(D) = inff(D))<inff(A;).
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Tenendo conto di (1) e (2) calcolo

In modo analogo, ragionando sugli insiemi E;, posso dimostrare che

S¢(o2) = Se(o12).

Dunque:

sf(01) < se(012) < Sf(012) < Sf(02).
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Insiemi normali rispetto ai piani xze yz @&

Diciamo che T & un insieme normale rispetto al piano x z se esistono
D sottoinsieme normale di R? e due funzioni continue v, : D — R
tali che

T= {(X,y,z) ER?| (x,2) €D, y(x,2) <y < 5(X,z)}.

Diciamo che T & un insieme normale rispetto al piano y z se esistono
D sottoinsieme normale di R? e due funzioni continue v,8 : D — R
tali che

T = {(X,y,z) c R3 | (v.z) € D, y(y,z) <x < 5(y,z)}.
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Formule di integrazione per fili paralleli agli assi y e x @&

e SeT = {(X,y,z) €R®|(x,2) € D,v(x,2) <y < d(x,2)}

allora:

d(x,z)
/// (x,y,z dxdydz—/// xy,z)dy)dxdz.
v(x,2)

integrazione per fili paralleli all’asse y

e Se T:{(X,y,z)€R3|(y,z)€D,'y(y, z) <x<(y,z)}

allora:

5(%2)
/// X,y,Z dxdydz—// / f(x y,z)dx)dydz.
Y(y:2)

integrazione per fili paralleli all'asse x
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