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Derivate direzionali

Sia f : A ⊆ Rn → R (n ≥ 2).
Sia x̄ un punto interno di A. Sia v ∈ Rn tale che ∥v∥Rn = 1.

↓
versore, direzione

Diciamo che f è derivabile in x̄ nella direzione v se esiste finito

lim
t→0

f (x̄ + t v)− f (x̄)
t =: ∂f

∂v (x̄) derivata di f in x̄
nella direzione v

Osservazione
Dato che x̄ è interno ad A, esiste r ∈ R∗

+ tale che Br (x̄) ⊆ A.
Per ogni t ∈ (−r , r) è lecito valutare f nel punto x̄ + t v , che appartiene
a Br (x̄). Pertanto, la funzione rapporto incrementale

(∗) t 7→ f (x̄ + t v)− f (x̄)
t

è definita in (−r , r) \ {0} e ha senso considerarne il limite per t → 0.
↖ non è detto che esista o che sia finito 1



Osservazione
Con le notazioni già introdotte, definiamo la funzione g : (−r , r)→ R
ponendo

g(t) := f (x̄ + t v).

Notiamo che g è una funzione reale di una variabile reale; è la restrizione
di f a un segmento, “centrato” in x , giacente sulla retta passante per x̄
individuata dalla direzione v .
Possiamo riscrivere la funzione rapporto incrementale (∗) in termini di g :

t ∈ (−r , r) \ {0} 7→ f (x̄ + t v)− f (x̄)
t = g(t)− g(0)

t ·

Deduciamo immediatamente:

• f è derivabile in x̄ nella direzione v se e solo se g è derivabile in t = 0;

•
∂f
∂v (x̄) = g ′(0).
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Esempi
Stabilire se le seguenti funzioni sono derivabili nei punti e nelle direzioni
assegnate:

f (x1, x2) = x2
1
2 + x2

2 x̄ = (3, 1) v =
( 1√

2
,

1√
2

)
x̄ =

(1
2 , 1

)

f (x1, x2) = |x1 − 1|(x1 + x2) x̄ = (1, 3) v =
( 2√

5
,

1√
5

)

v = (0, 1)
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Derivate parziali

Per i ∈ {1, . . . , n} denotiamo con ei l’elemento di Rn avente la i-esima
componente uguale a 1 e tutte le altre uguali a 0.
Evidentemente ∥ei∥Rn = 1, ossia ei è una direzione.

Nota: {e1, . . . , en} è la base canonica di Rn; ogni x ∈ Rn si rappresenta come

x = x1 e1 + . . . + xn en.

Sia f : A ⊆ Rn → R e sia x̄ ∈ int(A).
Se f è derivabile in x̄ nella direzione ei , si dice che f è derivabile parzial-
mente in x̄ rispetto alla i-esima variabile; la derivata di f in x̄ nella dire-
zione ei si chiama derivata parziale in x̄ rispetto alla i-esima variabile e
si denota con uno dei simboli

∂f
∂xi

(x̄), Di f (x̄), fxi (x̄) invece di ∂f
∂ei

(x̄)
4



Esplicitando:

∂f
∂xi

(x̄) := lim
t→0

f (x̄ + t ei)− f (x̄)
t = ei := (0, . . . , 0, 1, 0, . . . , 0)

= lim
t→0

f (x̄1, . . . , x̄i−1, x̄i + t, x̄i+1, . . . , x̄n)− f (x̄1, . . . , x̄i−1, x̄i , x̄i+1, . . . , x̄n)
t

perciò: la derivata parziale rispetto alla variabile xi si ottiene considerando
come fissate tutte le altre variabili e derivando rispetto a xi .

Esempi
Calcolare (dove possibile) le derivate parziali delle seguenti funzioni:

• f (x , y) = 8 x y + 5 x4 y2 − y3

• f (x , y , z) = ln(x2 + y2 − z)

• f (x , y) =
√

x2 + y2
5



Sia f : A ⊆ Rn → R.
Sia x̄ un punto interno di A in cui f è derivabile parzialmente rispetto a
tutte le variabili. Per brevità diremo: “derivabile parzialmente”

Il vettore di Rn le cui componenti sono, nell’ordine, le derivate parziali
di f in x̄ rispetto alle variabili x1, . . . , xn si chiama gradiente di f in x̄
e si denota con il simbolo ∇f (x̄), o anche con gradf (x̄), Df (x̄).
Esplicitando:

∇f (x̄) :=
(
∂f
∂x1

(x̄), . . . , ∂f
∂xn

(x̄)
)

Esempio
Scrivere il gradiente di f (x , y , z) = ln(x2 + y2 − z) in (1, 1,−1).

Se B ⊆ int(A) e f è derivabile parzialmente in B,
↓ cioè in tutti i punti di B

chiamiamo funzione
gradiente di f la funzione vettoriale che a ogni x ∈ B associa il gradiente
di f in x . 6



Esempio (importante)
Verificare che la funzione f : R2 → R definita ponendo

f (x , y) =


x2 y

x4 + y2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0).

è derivabile in qualsiasi direzione nel punto (0, 0).
Nota: f non è continua in (0, 0)

Osservazione
L’esempio precedente mostra che per le funzioni di più variabili reali
la derivabilità parziale o direzionale in un punto non implica la continuità.
Differenza con le funzioni di una variabile!

È possibile introdurre una nozione “più forte” di derivabilità, che implichi
la continuità come nel caso delle funzioni di una variabile? 7



Differenziabilità e differenziale

Siano f : A ⊆ Rn → R e x̄ un punto interno di A.
Diciamo che f è differenziabile in x̄ se

1 f è derivabile parzialmente in x̄

2 lim
h→0

f (x̄ + h)− f (x̄)−∇f (x̄) · h
∥h∥Rn

= 0.

Esempi
Verificare se le seguenti funzioni sono differenziabili in (0, 0):

f (x , y) =
√

x2 + y2 f (x , y) =


x2 y3

x2 + y2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0)

f (x , y) = |x y | f (x , y) =


x4 y2

(x4 + y2)2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0) 8



Siano f : A ⊆ Rn → R e x̄ ∈ int(A) con f differenziabile in x̄ .

Chiamiamo differenziale di f in x̄ l’applicazione lineare dfx̄ : Rn → R
definita ponendo

dfx̄ (h) := ∇f (x̄) · h per ogni h ∈ Rn.

↑ perché?

Nota: dfx̄ è un omomorfismo tra gli spazi vettoriali Rn e R.

Esempi
• Se f : Rn → R è costante, allora f è differenziabile in ogni x ∈ Rn

con differenziale uguale all’applicazione costante di valore 0.
• Se f : Rn → R è lineare, allora f è differenziabile in ogni x ∈ Rn

con differenziale uguale a f .
• La funzione definita ponendo f (x , y) = x2 + y2 per ogni (x , y) ∈ R2

è differenziabile ovunque.
9



Proposizione (proprietà delle funzioni differenziabili)
Siano f : A ⊆ Rn → R e x̄ ∈ int(A) con f differenziabile in x̄ . Allora:

1 f è continua in x̄ ;

2 f è derivabile in x̄ in qualsiasi direzione v e
∂f
∂v (x̄) = dfx̄ (v)

(
= ∇f (x̄) · v

)
Dimostrazione . . .

Osservazione
Per il punto 1 della proposizione, la continuità in un punto è condizione
necessaria per la differenziabilità; tale condizione non è sufficiente.
Esempio . . .

↙ identica a quella che vale per le funzioni derivabili
di una variabile... È un caso? No!
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Nota
L’uguaglianza ∂f

∂v (x̄) = ∇f (x̄) · v viene chiamata formula del gradiente.

Affinché la formula del gradiente abbia senso è sufficiente che in x̄ la
funzione f sia derivabile parzialmente e nella direzione v ; tuttavia, se f
non è differenziabile in x̄ , non è detto che l’uguaglianza sia soddisfatta.

Esempi

f (x , y) =


x2 y

x4 + y2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0)

non differenziabile in (0, 0)

∇f (0, 0) · v = 0 per ogni v
∂f
∂v (0, 0) ̸= 0 se v ̸∈ {e1, e2}

f (x , y) =


x4 y2

(x4 + y2)2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0)

non differenziabile in (0, 0)

∇f (0, 0) · v = 0 per ogni v
∂f
∂v (0, 0) = 0 per ogni v
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Osservazione
Siano f : A ⊆ Rn → R e x̄ ∈ int(A), con f differenziabile in x̄ .
Supponiamo ∇f (x̄) ̸= 0.
Allora:

• per ogni direzione v :
∣∣∣∣∂f
∂v (x̄)

∣∣∣∣ = |∇f (x̄) · v | ≤ ∥∇f (x̄)∥Rn

↓
disug. di Cauchy-Schwarz

• l’uguaglianza è verificata per v = ± ∇f (x̄)
∥∇f (x̄)∥Rn

Dunque:
il vettore gradiente ∇f (x̄) individua la direzione di massima pendenza.

↑ interpretazione geometrica
del gradiente

12



Teorema (del differenziale totale) ← condiz. sufficiente per differenziabilità
Siano f : A ⊆ Rn → R e x̄ ∈ int(A). Supponiamo che:
• f sia derivabile parzialmente in un intorno di x̄ ,

• le derivate parziali di f siano continue in x̄ .

Allora: f è differenziabile in x̄ .

Dimostrazione per n = 2 . . .

Sia A ⊆ Rn un insieme aperto.
Se f è derivabile parzialmente in A con derivate parziali continue in A,
diciamo che f è di classe C1 in A e scriviamo f ∈ C1(A,R).

Corollario
Ogni funzione di classe C1 in un insieme aperto è differenziabile in tale
insieme (cioè in ogni punto di tale insieme). 13



Esempi
• Le funzioni polinomiali e le funzioni razionali sono differenziabili nei

rispettivi domini.

• Studiare la differenziabilità delle funzioni negli esempi di pagina 8.

• Sia f la funzione reale definita in R2 ponendo

f (x , y) = y4 + 3 x3 y − y2 cos(x)

e sia v = (1/
√

5 , 2/
√

5).
Stabilire se è lecito utilizzare la formula del gradiente per calcolare la
derivata di f in (0, 1) nella direzione v ; in caso affermativo, calcolarla.
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Linearizzazione e piano tangente

Siano f : A ⊆ Rn → R e x̄ ∈ int(A), con f differenziabile in x̄ .
Per definizione:

lim
h→0

f (x̄ + h)− f (x̄)− dfx̄ (h)
∥h∥Rn

= 0

che equivale a

f (x̄ + h)− f (x̄)− dfx̄ (h) = o(∥h∥Rn) per h→ 0

e si può riscrivere come

f (x̄ + h) = f (x̄) + dfx̄ (h) + o(∥h∥Rn) per h→ 0.

Con h = x − x̄ , questo equivale a

(∗) f (x) = f (x̄) + dfx̄ (x − x̄) + o(∥x − x̄∥Rn) per x → x̄ .
15



Chiamiamo linearizzazione di f in x̄ la funzione φx̄ : Rn → R definita
ponendo

φx̄ (x) = f (x̄) + dfx̄ (x − x̄).

Nota: φx̄ si ottiene sommando la costante f (x̄)− dfx̄ (x̄) all’applicazione
lineare dfx̄ , pertanto in genere non è lineare. (È “affine”.)

Rileggiamo (∗):
in prossimità di x̄ la linearizzazione φx̄ approssima f a meno di infinite-
simi di ordine superiore rispetto a ∥x − x̄∥Rn .
Dunque: il grafico di φx̄ approssima “bene” il grafico di f .

Il grafico di φx̄ si chiama piano tangente in x̄ al grafico di f ; l’equazione
del piano tangente è

xn+1 = f (x̄) + dfx̄ (x − x̄)
(
= f (x̄) +∇f (x̄) · (x − x̄)

)
.

“Piano” tangente? 16



Esempi
• Determinare l’equazione del piano tangente nel punto (1, 1) al grafico

della funzione definita ponendo

f (x , y) = 4− x2 − y2.

• Determinare l’equazione del piano tangente nel punto (1,−1, 1)
al grafico della funzione definita ponendo

f (x , y , z) = ex+y z2 + 1.

Nota
Il piano tangente in x̄ al grafico di f contiene le rette tangenti in x̄ ai
grafici di tutte le “restrizioni direzionali” di f .

17



Derivate e differenziale di funzioni vettoriali

Sia f : A ⊆ Rn → Rm, m ≥ 2; siano f1, . . . , fm, nell’ordine, le componenti
di f . Sia x̄ ∈ int(A).
La definizione di derivata direzionale di f in x̄ (e quindi anche quella di
derivata parziale di f in x̄) è formalmente identica alla definizione data
per una funzione scalare.
È immediato riconoscere che f è derivabile in x̄ nella direzione v se e solo
se lo sono tutte le sue componenti; inoltre:

∂f
∂v (x̄) =

(
∂f1
∂v (x̄), . . . , ∂fm

∂v (x̄)
)

.

Analogamente, f è derivabile parzialmente in x̄ rispetto alla i-esima varia-
bile se e solo se lo sono tutte le sue componenti; inoltre:

∂f
∂xi

(x̄) =
(
∂f1
∂xi

(x̄), . . . , ∂fm
∂xi

(x̄)
)

.
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Con le notazioni della pagina precedente, supponiamo f derivabile parzial-
mente in x̄ .
Chiamiamo matrice jacobiana (o jacobiano) di f in x̄ la matrice reale con
m righe e n colonne la cui riga i-esima contiene gli elementi del gradiente
di fi in x̄ . In simboli:

Jf (x̄) :=



∂f1
∂x1

(x̄) · · · ∂f1
∂xn

(x̄)
...

...
∂fm
∂x1

(x̄) · · · ∂fm
∂xn

(x̄)

 =


∇f1(x̄)

...
∇fm(x̄)


↓

piccolo abuso
di notazione

Esempi
Scrivere la matrice jacobiana delle funzioni
• f : R2 → R3 tale che f (x , y) =

(
x y2, e3 x−y2

, x2 + y4)
• f : R3 → R2 tale che f (x , y , z) =

(
x y2 + z2, 5 x2 + ex y z)

. 19



Sia f : A ⊆ Rn → Rm, m ≥ 2; siano f1, . . . , fm, nell’ordine, le componenti
di f . Sia x̄ ∈ int(A).

Diciamo che f è differenziabile in x̄ se tutte le componenti f1, . . . , fm sono
differenziabili in x̄ ; chiamiamo differenziale di f in x̄ la funzione vettoriale
dfx̄ di componenti df1(x̄), . . . , dfm(x̄), nell’ordine.

Evidentemente, dfx̄ è un omomorfismo tra Rn e Rm; per ogni h ∈ Rn:

dfx̄ (h) :=

df1(x̄)(h)
...

dfm(x̄)(h)

 =

∇f1(x̄) · h
...

∇fm(x̄) · h



=


∂f1
∂x1

(x̄) h1 + . . .+ ∂f1
∂xn

(x̄) hn
...

∂fm
∂x1

(x̄) h1 + . . .+ ∂fm
∂xn

(x̄) hn

 = Jf (x̄) h,

prodotto “righe
per colonne”

↓

quindi: la matrice jacobiana Jf (x̄) è la matrice m × n associata a dfx̄ .

↗
vedi Geometria
↙

20



Osservazioni
• Con le ovvie modifiche, alle funzioni vettoriali si estendono le condizioni

necessarie e le condizioni sufficienti per la differenziabilità. Cioè?

• Se f è differenziabile in x̄ vale l’uguaglianza

f (x) = f (x̄) + dfx̄ (x − x̄) + o(∥x − x̄∥Rn) per x → x̄

equivalente a

f (x) = f (x̄) + Jf (x̄) (x − x̄) + o(∥x − x̄∥Rn) per x → x̄

e si può parlare di linearizzazione di f in x̄ .

Esercizio
Stabilire se la funzione vettoriale f (x , y) =

(
x y2, e3 x−y2

, x2 + y4)
è differenziabile in (0, 0); in caso affermativo, scriverne la linearizzazione.
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Regole di calcolo per le derivate parziali (per gradienti, per differenziali)

Siano A ⊆ Rn, f , g : A→ Rm, φ : A→ R, λ ∈ R. Sia x ∈ int(A).
Supponiamo f , g , φ derivabili parzialmente rispetto a xi in x .
Allora:
f + g , λ f , φ f , f · g sono derivabili parzialmente rispetto a xi in x e

•
∂(f + g)
∂xi

(x) = ∂f
∂xi

(x) + ∂g
∂xi

(x)

•
∂(λ f )
∂xi

(x) = λ
∂f
∂xi

(x)

•
∂(φ f )
∂xi

(x) = ∂φ

∂xi
(x) f (x) + φ(x) ∂f

∂xi
(x)

•
∂(f · g)
∂xi

(x) = ∂f
∂xi

(x) · g(x) + f (x) · ∂g
∂xi

(x)

22



Differenziale e composizione funzionale

Teorema
Siano n,m, p ∈ N∗ (n+m+p ≥ 4). ← altrimenti il risultato è noto
Siano f : A ⊆ Rn → Rm e g : B ⊆ Rm → Rp; supponiamo f (A) ⊆ B.
Sia x ∈ int(A); supponiamo f (x) ∈ int(B).
Se f è differenziabile in x e g è differenziabile in f (x), allora:
1 g ◦f è differenziabile in x

2 d(g ◦f )x = dgf (x) ◦ dfx

3 Jg◦f (x) = Jg(f (x)) Jf (x)

Esempio
Verificare la validità di 3 per le funzioni

f (x , y) = (x + y , x y , x y2), g(u, v ,w) = u v2w .
23



Con le notazioni del teorema, esplicitiamo 3 in modo da ricavare le
derivate parziali della funzione composta:
Jg◦f (x) = Jg(f (x)) Jf (x)

=


∂g1

∂y1
(f (x)) · · · ∂g1

∂ym
(f (x))

...
...

∂gp

∂y1
(f (x)) · · · ∂gp

∂ym
(f (x))




∂f1

∂x1
(x) · · · ∂f1

∂xn
(x)

...
...

∂fm

∂x1
(x) · · · ∂fm

∂xn
(x)



=



m∑
j=1

∂g1

∂yj
(f (x)) ∂fj

∂x1
(x) · · ·

m∑
j=1

∂g1

∂yj
(f (x)) ∂fj

∂xn
(x)

...
...

m∑
j=1

∂gp

∂yj
(f (x)) ∂fj

∂x1
(x) · · ·

m∑
j=1

∂gp

∂yj
(f (x)) ∂fj

∂xn
(x)


=⇒ ∀ k ∈ {1, . . . , p}

∀ i ∈ {1, . . . , n}
: ∂(g ◦f )k

∂xi
(x) =

m∑
j=1

∂gk
∂yj

(f (x)) ∂fj
∂xi

(x)
24



Caso particolare: n = p = 1

(g ◦f )′(x) =
(
∂g
∂y1

(f (x)) · · · ∂g
∂ym

(f (x))
)

f ′
1(x)

...
f ′
m(x)


=

m∑
j=1

∂g
∂yj

(f (x)) f ′
j (x) = ∇g(f (x)) · f ′(x)

Esempio
Verificare la validità della formula qui sopra per le funzioni

f (x) = (x + 2, x2 + x), g(u, v) = u2 − 2 v3.
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Derivate parziali successive

Siano f : A ⊆ Rn → R e x̄ ∈ int(A). Fissiamo i , j ∈ {1, . . . , n}.
Supponiamo che f sia derivabile parzialmente rispetto a xi in un intorno
U di x̄ . Se la funzione

∂f
∂xi

:= x ∈ U 7→ ∂f
∂xi

(x)

è derivabile parzialmente in x̄ rispetto alla variabile xj , diciamo che
f è derivabile parzialmente due volte in x̄ rispetto a xi e xj .

La derivata parziale in x̄ rispetto alla variabile xj della funzione ∂f
∂xi

si chiama derivata parziale seconda di f in x̄ rispetto a xi e xj ;

si denota con uno dei simboli ∂2f
∂xj∂xi

(x̄), Dij f (x̄), fxi xj (x̄).

Per j ̸= i la derivata parziale seconda si dice mista; per j = i si dice pura

e il primo simbolo si scrive ∂2f
∂x2

i
(x̄).
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Siano f : A ⊆ Rn → R e x̄ ∈ int(A).
Supponiamo che f sia derivabile parzialmente due volte in x̄
(cioè derivabile parzialmente rispetto a xi e xj , per ogni i , j ∈ {1, . . . , n}).
La matrice

Hf (x̄) :=



∂2f
∂x2

1
(x̄) ∂2f

∂x2∂x1
(x̄) · · · ∂2f

∂xn∂x1
(x̄)

∂2f
∂x1∂x2

(x̄) ∂2f
∂x2

2
(x̄) · · · ∂2f

∂xn∂x2
(x̄)

...
...

...

∂2f
∂x1∂xn

(x̄) ∂2f
∂x2∂xn

(x̄) · · · ∂2f
∂x2

n
(x̄)


si chiama matrice hessiana di f in x̄ .

Nota: Hf (x̄) = J∇f (x̄)
27



Osservazione
In generale, le derivate parziali seconde miste dipendono dall’ordine in cui
si esegue la derivazione. Esempio:

f (x , y) =

y2 arctan
(

x
y

)
(x , y) ∈ R× R∗

0 (x , y) ∈ R× {0}

∂2f
∂y∂x (0, 0) = 1

∂2f
∂x∂y (0, 0) = 0

Se la funzione è sufficientemente regolare, l’ordine di derivazione non è
rilevante:

Teorema (di Schwarz)
Siano f : A ⊆ Rn → R e x̄ ∈ int(A). Siano i , j ∈ {1, . . . , n} con i ̸= j .

Se le derivate parziali seconde ∂2f
∂xj∂xi

e ∂2f
∂xi∂xj

esistono in un intorno di x̄
e sono continue in x̄ , allora

∂2f
∂xj∂xi

(x̄) = ∂2f
∂xi∂xj

(x̄).
28



Sia A ⊆ Rn un insieme aperto.
Diciamo che f è di classe C2 in A (e scriviamo f ∈ C2(A,R)) se f è
derivabile parzialmente in A con derivate parziali seconde continue in A.

Osservazione
Come corollario del teorema di Schwarz, per ogni funzione di classe C2:
• le derivate parziali seconde miste non dipendono dall’ordine in cui si

esegue la derivazione;
• la matrice hessiana è simmetrica. ← ??

Esempio
Scrivere la matrice hessiana della funzione definita in R3 ponendo

f (x , y , z) = x5 + y4 z3 − 3 x z2.

Nota
Data f ∈ C2(A,R), la funzione ∆f :=

n∑
i=1

∂2f
∂x2

i
si chiama laplaciano di f .

↗traccia della matrice hessiana 29



“Esercizio teorico” Cioè: pensateci se ne avete voglia . . .

• Come si possono introdurre le nozioni di derivabilità parziale e di
derivate parziali di ordine k ≥ 3?
Cosa vuole dire che una funzione è di classe Ck?

• Come si generalizza il teorema di Schwarz?

• Come si definisce la derivabilità parziale di ordine k ≥ 2 per funzioni
vettoriali?

30



Alcune applicazioni del calcolo differenziale

Teorema (del valor medio di Lagrange)
Sia f : A ⊆ Rn → R e siano x , y ∈ A. Supponiamo che:
• il segmento [x , y ] sia contenuto nell’interiore di A;
• f sia differenziabile nei punti di [x , y ].
Allora: esiste z ∈ [x , y ] \ {x , y} tale che

f (y)− f (x) = ∇f (z) · (y − x)
(
= dfz(y − x)

)
.

Dimostrazione . . . Si estende a funzioni vettoriali? No!

Corollario (caratterizzazione delle funzioni a gradiente nullo)
Sia f : A ⊆ Rn → R, con A insieme aperto e connesso.
Supponiamo che f sia derivabile parzialmente in A e che ∇f (x) = 0 per
ogni x ∈ A. Allora: f è costante in A.

↓ ??

Dimostrazione . . . Si estende a funzioni vettoriali? Si! 31



Teorema (formula di Taylor di ordine 2, con il resto di Peano)
Siano f : A ⊆ Rn → R e x̄ ∈ int(A).
Supponiamo che f sia di classe C2 in un intorno di x̄ .
Posto

Tx̄ ,2(x) := f (x̄) +∇f (x̄) · (x − x̄) + 1
2 Hf (x̄) (x − x̄) · (x − x̄)

si ha
lim
x→x̄

f (x)− Tx̄ ,2(x)
∥x − x̄∥2Rn

= 0

e quindi

f (x) = Tx̄ ,2(x) + o(∥x − x̄∥2).

Motivazione . . .

La funzione polinomiale Tx̄ ,2 si chiama polinomio di Taylor di f di centro
x̄ e ordine 2. 32



Esempi
Scrivere la formula di Taylor con il resto di Peano di centro (0, 0)
e ordine 2 delle funzioni

• f (x , y) = cos(x)
cos(y) (x , y) ∈ R×

(
−π2 ,

π

2
)

• f (x , y) = x2 − y2

x2 + y2 + 1 (x , y) ∈ R2

33



Calcolo differenziale per curve e superfici

Sia (γ, r) una curva in Rn, con intervallo dei parametri I.

Diciamo che la curva è regolare se
• r ∈ C1(I,Rn);

• se la curva è chiusa, r ′(min I) = r ′(max I);

• r ′(t) ̸= 0 per ogni t ∈ I.

In tal caso, per ogni t0 ∈ I possiamo considerare

• la retta parametrizzata da
s ∈ R 7→ r(t0) + s r ′(t0) retta tangente in t0

• il versore T (t0) := r ′(t0)
∥r ′(t0)∥Rn

versore tangente in t0

Motivazione . . . Interpretazione cinematica . . . 34



Esempi
Verificare se le curve di parametrizzazione

• t ∈ [0, 1] 7→ x + t (y − x) (x , y ∈ Rn, con x ̸= y)

• t ∈ [0, 2π] 7→ (cos(t), sin(t))

• t ∈ [−1, 1] 7→ (t3, t2)

• t ∈ R 7→ (a cos(t), b sin(t), c t) (a, b ∈ R∗
+, c ∈ R∗) elica

cilindrica

sono regolari; in caso affermativo, determinarne il versore tangente in ogni
punto.
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Diciamo che la curva è regolare a tratti se l’intervallo dei parametri I
si può suddividere in un numero finito di intervalli I1, . . . , Ik tali che
• la restrizione di r a ciascun intervallo è di classe C1,
• r ′(t) ̸= 0 per ogni t ∈ int(I1) ∪ . . . ∪ int(Ik).

↑ ↑
l’esistenza del versore tangente non è garantita
negli estremi degli intervalli I1, . . . , Ik

Diciamo che la curva è quasi regolare se è “regolare a tratti in un solo
tratto”, cioè se
• r ∈ C1(I,Rn),

• r ′(t) ̸= 0 per ogni t ∈ int(I).

Nota: talvolta, invece di “(γ, r) è una curva regolare (quasi regolare,
regolare a tratti)”, diremo “r è una parametrizzazione regolare (quasi
regolare, regolare a tratti) di γ”. 36



Esempi
Stabilire se le curve definite dalle seguenti parametrizzazioni sono regolari,
quasi regolari, oppure regolari a tratti, e descriverne il sostegno:

• r(t) = (|t − 1|, 1− |t − 1|), t ∈ [0, 2]

• r(t) = (t(t − 1), t(t − 1)(2t − 1)), t ∈ R

• r(t) = (cos3(t), sin3(t)), t ∈ [0, 2π] asteroide

• r(t) =

(2 t − t2, 0) t ∈ [0, 1)
(1, (t − 1)2) t ∈ [1, 2]

37



Esempio (curva grafico)
Dati I ⊆ R intervallo e f ∈ C1(I,R), consideriamo la curva grafico
associata a f , parametrizzata da r(t) =

(
t, f (t)

)
, t ∈ I.

Per ogni t ∈ I si ha r ′(t) =
(
1, f ′(t)

)
, quindi la curva grafico è regolare.

̸= (0, 0)

Fissato t0 ∈ I, la retta tangente alla curva grafico in t0 ha equazioni para-
metriche

x = t0 + s, y = f (t0) + s f ′(t0), s ∈ R;

eliminando il parametro s otteniamo l’equazione cartesiana

y = f (t0) + (x − t0) f ′(t0).

Dunque, com’era prevedibile: la retta tangente alla curva grafico in t0

coincide con la retta tangente al grafico di f in t0.

Nota: se f è di classe C1 a tratti, la curva grafico è regolare a tratti. 38



Attraverso la nozione di curva regolare (a tratti) definiamo una classe di
sottoinsiemi di R2. ↑ sta per “regolare o regolare a tratti”

Sia D ⊂ R2. Diciamo che D è un dominio regolare se

• D è la chiusura di un insieme aperto, limitato e connesso;

• la frontiera di D è unione disgiunta di un numero finito di insiemi
γ1, . . . ,γm, ciascuno dei quali è sostegno di una curva semplice,
chiusa e regolare (a tratti).

Gli insiemi γ1, . . . ,γm si chiamano componenti di ∂D.

Esempi . . .
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Sia D ⊂ R2 un dominio regolare. Sia γ una componente di ∂D con
parametrizzazione regolare r(t) =

(
x(t), y(t)

)
, t ∈ I. ovvie modifiche

se regolare a tratti

Per ogni t ∈ I definiamo il versore normale in t:

n(t) :=
( y ′(t)
∥r ′(t)∥Rn

, − x ′(t)
∥r ′(t)∥Rn

)
. ← uno dei due versori

ortogonali a T (t)

Le seguenti proprietà sono equivalenti:
• per ogni t ∈ I il versore normale n(t) punta verso l’esterno di D,
• percorrendo γ si lascia D a sinistra.

Vera l’una o l’altra, diciamo che r orienta positivamente γ.
Esempi . . .

Se ciascuna componente di ∂D è orientata positivamente, diciamo che
la frontiera di D è orientata positivamente e la denotiamo con ∂D+.
Esempi . . . 40



Richiamo: prodotto vettoriale in R3

Definiamo in R3 il prodotto vettoriale ponendo

a × b := (a2 b3 − a3 b2 , a3 b1 − a1 b3 , a1 b2 − a2 b1)

per ogni a, b ∈ R3. Notazione alternativa: a ∧ b

Nota
a × b si ottiene formalmente sviluppando rispetto alla prima riga
il determinante simbolico ∣∣∣∣∣∣∣∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣.

Esempio . . .
41



Alcune proprietà del prodotto vettoriale

• a × b = − (b × a)

• a × b = 0 se e solo se a e b sono l’uno multiplo dell’altro
(cioè linearmente dipendenti)

• (a × b) · a = (a × b) · b = 0 ← a × b è ortogonale sia a a che a b
e quindi . . .

• ∥a × b∥R3 = area del parallelogramma costruito sui vettori a e b

Fine del richiamo

42



Sia (Σ,σ) una superficie in R3 con insieme di parametri K .
Diciamo che la superficie è regolare se

• la restrizione di σ all’interiore di K è di classe C1;

• per ogni (u, v) ∈ int(K ) la matrice jacobiana Jσ(u, v) ha rango 2.
↓ ??

In tal caso per ogni (u0, v0) ∈ int(K ) possiamo considerare:

• il piano individuato dai vettori ∂σ

∂u (u0, v0) e ∂σ

∂v (u0, v0)
piano
tangente
in (u0, v0)↗linearmente indipendenti

• il vettore Nσ(u0, v0) := ∂σ

∂u (u0, v0)× ∂σ

∂v (u0, v0)
vettore
normale
in (u0, v0)↖ non nullo

• il versore nσ(u0, v0) := Nσ(u0, v0)
∥Nσ(u0, v0)∥

versore
normale
in (u0, v0)

43



Esempi
Sia r ∈ R∗

+.
Verificare che le seguenti superfici sono regolari e determinare i corrispon-
denti versori normali:
• la superficie cilindrica, con parametrizzazione σ : [0, 2π]× R→ R3

definita ponendo

σ(θ, z) = (r cos(θ), r sin(θ), z);

• la superficie sferica, con parametrizzazione σ : [0, π]× [0, 2π]→ R3

definita ponendo

σ(φ, θ) = (r sin(φ) cos(θ), r sin(φ) sin(θ), r cos(φ)).

44



Osservazione
Sia (Σ,σ) una superficie con insieme di parametri K .
Abbiamo convenuto di assumere tacitamente che σ soddisfi la condizione
(∗) presi due elementi distinti (u1, v1), (u2, v2) ∈ K , di cui almeno uno

interno a K , si ha σ(u1, v1) ̸= σ(u2, v2).
In particolare, la restrizione di σ all’interno di K è ingettiva.
Pertanto, posto Σ0 := σ

(
int(K )

)
, per ogni P ∈ Σ0 esiste un unico

elemento di int(K ) che σ trasforma in P; lo denotiamo con σ−1(P).

Supponiamo ora che (Σ,σ) sia regolare.
Definiamo il campo vettoriale normale n : Σ0 → R3 ponendo

n(P) := nσ(σ−1(P)) per ogni P ∈ Σ0.

Se il campo vettoriale normale n è prolungabile con continuità a Σ,
diciamo che la superficie è orientabile. 45



Osservazioni

• Se l’insieme dei parametri è aperto, la superficie è banalmente
orientabile.

• Il sostegno di una superficie orientabile ha due “facce”, quella da cui
“esce” e quella da cui “entra” il campo vettoriale normale.

Esempi

• La superficie cilindrica e la superficie sferica sono orientabili.

• Il nastro di Möbius non è una superficie orientabile.
↑ ???

46



Diciamo che (Σ,σ) è una superficie regolare con bordo se
• l’insieme dei parametri K è un dominio regolare;
• σ è ingettiva in K ;
• σ è di classe C1 in K e per ogni (u, v) ∈ K la matrice

jacobiana Jσ(u, v) ha rango 2.

}
in tutto K !

↙ ??

L’insieme σ(∂K ) =: ∂Σ si chiama bordo della superficie.
↑ da non confondere con la frontiera di Σ,

che coincide con Σ

Nota: ogni superficie regolare con bordo è anche una superficie regolare
(nel senso della definizione di pagina 43) ed è orientabile.

Osservazione
Se la frontiera di K è unione disgiunta di m sostegni di curve in R2 sem-
plici, chiuse e regolari (a tratti), allora il bordo di Σ è unione disgiunta
di m sostegni di curve in R3 semplici, chiuse e regolari (a tratti). 47



Osservazioni
Se rj parametrizza la j-esima componente di ∂K , allora σ◦rj parametrizza
la j-esima componente di ∂Σ.
Il verso di percorrenza scelto su ciascuna componente della frontiera di K
induce un verso di percorrenza sulla corrispondente componente del bordo
di Σ.

Esempio: “mezzo cilindro” . . .

Se la frontiera di K è orientata positivamente, diciamo che il bordo della
superficie è orientato positivamente e lo denotiamo con ∂Σ+.

Osservazione
Percorrendo ∂Σ+ si lascia a sinistra la faccia della superficie da cui “esce”
il versore normale. 48



Esempio (superficie grafico)
Sia K ⊂ R2 un insieme di parametri.
• Se K è un insieme aperto e f ∈ C1(K ,R), allora la superficie grafico

associata a f è una superficie regolare orientabile.

σ(u, v) =
(
u, v , f (u, v)

)
↑

• Se K è un dominio regolare e f ∈ C1(K ,R), allora la superficie grafico
associata a f è una superficie regolare con bordo.

Per ogni (u, v) ∈ K si ha

• Nσ(u, v) =
(
−∂f
∂u (u, v), −∂f

∂v (u, v), 1
)↓il vettore normale punta verso l’alto

• ∥Nσ(u, v)∥ =
√
∥∇f (u, v)∥2 + 1.

↑ in R3 ↑ in R2

Nota: il piano tangente
alla superficie coincide
con il piano tangente
al grafico.

Esempi: paraboloide, calotta sferica, semisfera
49



Sia (Σ,σ) una superficie in R3.
Diciamo che (Σ,σ) è regolare a pezzi se esistono (Σ1,σ1), . . . , (Σk ,σk)
superfici regolari con bordo tali che

• Σ = Σ1 ∪ . . . ∪Σk ,

• Σi ∩Σj = ∂Σi ∩ ∂Σj per ogni i ̸= j . ← che cosa significa?

Σ1, . . . ,Σk si chiamano facce della superficie (Σ,σ).

Chiamiamo bordo della superficie regolare a pezzi l’insieme

∂Σ :=
{
P ∈ Σ | ∃| i ∈ {1, . . . , k} t.c. P ∈ ∂Σi

}
.

Se ∂Σ = ∅, diciamo che la superficie è chiusa.

Esempi: cilindro, sfera, cubo
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Attraverso la nozione di superficie regolare a pezzi chiusa definiamo una
classe di sottoinsiemi di R3.

Sia T ⊂ R3. Diciamo che T è un dominio regolare se
• T è la chiusura di un insieme aperto, limitato e connesso;
• la frontiera di T è unione disgiunta di un numero finito di insiemi

Σ1, . . . ,Σm che sono sostegni di superfici regolari a pezzi chiuse.

Gli insiemi Σ1, . . . ,Σm si chiamano componenti di ∂T .

Esempi . . .

Se ciascuna delle componenti di ∂T è parametrizzata in modo che in ogni
punto il versore normale n sia diretto verso l’esterno di T , diciamo che la
frontiera di T è orientata positivamente e la denotiamo con ∂T +.

Esempi . . .
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A P P E N D I C E

(V E R I F I C H E, R I C H I A M I, . . . )
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Dimostrazione delle proprietà delle funzioni differenziabili

1 Per ipotesi, f è differenziabile in x̄ , quindi

lim
h→0

f (x̄ + h)− f (x̄)− dfx̄ (h)
∥h∥Rn

= 0,

che implica
lim
h→0

f (x̄ + h)− f (x̄)− dfx̄ (h) = 0.

Per ogni h ∈ Rn si ha

0 ≤ |dfx̄ (h)| = |∇f (x̄) · h|∥∇f (x̄)∥Rn ∥h∥Rn

↓
disuguaglianza di Cauchy-Schwarz

quindi, per TCO:
lim
h→0

dfx̄ (h) = 0.

Per la regola della somma:
lim
h→0

f (x̄ + h)− f (x̄) = 0,
53



ossia
lim
h→0

f (x̄ + h) = f (x̄),

che equivale a lim
x→x̄

f (x) = f (x̄). Quindi: f è continua in x̄ . □

2 Sia r ∈ R∗
+ tale che Br (x̄) ⊂ A.

Per h ∈ Br (0) \ {0} definisco il rapporto incrementale

R(h) := f (x̄ + h)− f (x̄)− dfx̄ (h)
∥h∥Rn

·

Per ipotesi: ∃ lim
h→0

R(h) = 0.

Fisso una direzione v e definisco V := {t v | t ∈ (−r , r)}
(
⊂ Br (0)

)
.

Ovviamente la restrizione di R a V tende a 0 per h→ 0.
In simboli: ∃ lim

h→0
R|V (h) = lim

t→0
R(t v) = 0.
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Esplicitando:

∃ lim
t→0

f (x̄ + t v)− f (x̄)− dfx̄ (t v)
∥t v∥Rn

= 0

che equivale a

(∗) ∃ lim
t→0

f (x̄ + t v)− f (x̄)− t dfx̄ (v)
|t| = 0.

↙ linearità di dfx̄

↖ ∥v∥Rn = 1

Osservo che

f (x̄ + t v)− f (x̄)− t dfx̄ (v)
|t| = sign(t) f (x̄ + t v)− f (x̄)− t dfx̄ (v)

t

pertanto (∗) equivale a

∃ lim
t→0

f (x̄ + t v)− f (x̄)− t dfx̄ (v)
t = 0
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che equivale a

∃ lim
t→0

f (x̄ + t v)− f (x̄)
t − dfx̄ (v) = 0

che equivale a

∃ lim
t→0

f (x̄ + t v)− f (x̄)
t = dfx̄ (v).

A norma di definizione, ciò equivale a dire che f è derivabile in x̄ nella
direzione v con derivata direzionale uguale a dfx̄ (v). □
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Differenziabilità e differenziale delle funzioni di una variabile

Sia f : A ⊆ R→ R e sia x̄ ∈ A.

f è derivabile in x̄
DEF
⇐⇒ esiste finito lim

h→0

f (x̄ + h)− f (x̄)
h =: f ′(x̄)

L’uguaglianza che definisce la derivata di f in x̄ equivale a

lim
h→0

f (x̄ + h)− f (x̄)
h − f ′(x̄) = 0

che equivale a

lim
h→0

f (x̄ + h)− f (x̄)− f ′(x̄) h
h = 0

che equivale a

lim
h→0

f (x̄ + h)− f (x̄)− f ′(x̄) h
|h| = 0

Dunque:
f è differenziabile in x̄ e dfx̄ (h) = f ′(x̄) h per ogni h ∈ R.
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Dimostrazione del teorema del differenziale totale

Per ogni a, b ∈ R denoto con Ia,b l’intervallo chiuso di estremi a e b.

Per ipotesi:
esiste r ∈ R∗

+ tale che Br (x̄ , ȳ) ⊂ A, le derivate parziali fx e fy sono
definite (almeno) in Br (x̄ , ȳ) e sono continue in (x̄ , ȳ).

Fisso (h, k) ∈ Br (0, 0) \ {(0, 0)}; osservo che (x̄ + h, ȳ + k) ∈ Br (x̄ , ȳ).
Definisco il rapporto incrementale:

R(h, k) := f (x̄ + h, ȳ + k)− f (x̄ , ȳ)− fx (x̄ , ȳ) h − fy (x̄ , ȳ) k√
h2 + k2

·

Definisco φ : Ix̄ ,x̄+h → R tale che

φ(t) = f (t, ȳ + k);

osservo che φ è derivabile in Ix̄ ,x̄+h con φ′(t) = fx (t, ȳ + k). 58



Per il teorema del valor medio (di AM I), esiste ξh ∈ Ix̄ ,x̄+h tale che

φ(x̄ + h)− φ(x̄) = φ′(ξh) h
cioè

f (x̄ + h, ȳ + k)− f (x̄ , ȳ + k) = fx (ξh, ȳ + k) h. (1)

Definisco ψ : Iȳ ,ȳ+k → R tale che

ψ(t) = f (x̄ , t);

osservo che ψ è derivabile in Iȳ ,ȳ+k con ψ′(t) = fy (x̄ , t).

Per il teorema del valor medio, esiste ηk ∈ Iȳ ,ȳ+k tale che

ψ(ȳ + k)− ψ(ȳ) = ψ′(ηh) k
cioè

f (x̄ , ȳ + k)− f (x̄ , ȳ) = fy (x̄ , ηk) k. (2)
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Sommando termine a termine (1) e (2) ottengo

f (x̄ + h, ȳ + k)− f (x̄ , ȳ) = fx (ξh, ȳ + k) h + fy (x̄ , ηk) k.

Posso riscrivere il rapporto incrementale:

R(h, k) = fx (ξh, ȳ + k) h + fy (x̄ , ηk) k − fx (x̄ , ȳ) h − fy (x̄ , ȳ) k√
h2 + k2

=
(
fx (ξh, ȳ + k)− fx (x̄ , ȳ)

)
h +

(
fy (x̄ , ηk)− fy (x̄ , ȳ)

)
k

√
h2 + k2

Quindi:

0 ≤ |R(h, k)| ≤
∣∣∣∣∣
(
fx (ξh, ȳ + k)− fx (x̄ , ȳ)

)
h

√
h2 + k2

∣∣∣∣∣ +
∣∣∣∣∣
(
fy (x̄ , ηk)− fy (x̄ , ȳ)

)
k

√
h2 + k2

∣∣∣∣∣
≤ |fx (ξh, ȳ + k)− fx (x̄ , ȳ)|+ |fy (x̄ , ηk)− fy (x̄ , ȳ)| .
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Ricapitolando:
per ogni (h, k) ∈ Br (0, 0) \ {(0, 0)} esistono ξh ∈ Ix̄ ,x̄+h e ηk ∈ Iȳ ,ȳ+k
tali che

0 ≤ |R(h, k)| ≤ |fx (ξh, ȳ + k)− fx (x̄ , ȳ)|+ |fy (x̄ , ηk)− fy (x̄ , ȳ)| . (3)

Per (h, k)→ (0, 0):

• x̄ + h tende a x̄ ; essendo compreso tra x̄ e x̄ + h, anche ξh tende a x̄ ;
• ȳ + k tende a ȳ .

Dunque (ξh, ȳ + k) tende a (x̄ , ȳ) e quindi fx (ξh, ȳ + k) tende a fx (x̄ , ȳ).
↓ fx continua in (x̄ , ȳ)

Pertanto: il primo addendo in (3) tende a 0.
Analogamente si deduce che anche il secondo addendo in (3) tende a 0.

Per il teorema di convergenza obbligata:

R(h, k)→ 0 per (h, k)→ (0, 0). □ 61



Derivata direzionale di una funzione vettoriale

Definizione per una funzione scalare
Sia f : A ⊆ Rn → R. Sia x̄ ∈ int(A). Sia v ∈ Rn tale che ∥v∥Rn = 1.
Diciamo che f è derivabile in x̄ nella direzione v se esiste finito

lim
t→0

f (x̄ + t v)− f (x̄)
t =: ∂f

∂v (x̄) derivata di f in x̄
nella direzione v

Definizione per una funzione vettoriale
Sia f : A ⊆ Rn → Rm, m ≥ 2. Sia x̄ ∈ int(A). Sia v ∈ Rn t.c. ∥v∥Rn = 1.
Diciamo che f è derivabile in x̄ nella direzione v se esiste finito

lim
t→0

f (x̄ + t v)− f (x̄)
t =: ∂f

∂v (x̄) derivata di f in x̄
nella direzione v

↑ ↑
funzione vettoriale ∈ Rm

X
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Dimostrazione del teorema del valor medio di Lagrange

Considero la parametrizzazione standard del segmento [x , y ]:

r : [0, 1]→ Rn tale che r(t) = x + t(y − x) per ogni t ∈ [0, 1].

Osservo che r è di classe C1 e r ′(t) = y − x per ogni t ∈ [0, 1].

Per ipotesi il segmento [x , y ] è contenuto nell’interiore di A, quindi in A;
pertanto posso definire la funzione composta g := f ◦ r .

Esplicitando: definisco g : [0, 1]→ R tale che

g(t) = f (r(t)) = f (x + t(y − x)) per ogni t ∈ [0, 1].

g è composta di funzioni differenziabili, pertanto è differenziabile (che
equivale a derivabile) e per ogni t ∈ [0, 1]:

g ′(t) = ∇f (r(t)) · r ′(t) = ∇f (r(t)) · (y − x).
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Applicando a g il teorema del valor medio per funzioni di una variabile,
deduco che esiste t0 ∈ (0, 1) tale che

g(1)− g(0) = g ′(t0) (1− 0),

che equivale a

f (y)− f (x) = ∇f (r(t0)) · (y − x).

Posto z := r(t0), la precedente uguaglianza diventa

f (y)− f (x) = ∇f (z) · (y − x);

per concludere basta osservare che ovviamente z appartiene al segmento
[x , y ] e che è diverso da x e y perché t0 è diverso da 0 e 1. □
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Dimostrazione della caratterizzazione delle funzioni a gradiente nullo

Fisso x , y ∈ A, con x ̸= y .

Essendo aperto e connesso, l’insieme A è anche connesso per poligonali,
quindi esiste una poligonale di estremi x e y contenuta in A.
Denoto con x1, x2, . . . xk (nell’ordine) i vertici di tale poligonale.

Per ipotesi f è derivabile parzialmente in A con derivate parziali identica-
mente nulle, e quindi continue, in A; dunque f è di classe C1 In
particolare, f è differenziabile su tutti i lati della poligonale, su ciascuno
dei quali posso quindi applicare il teorema del valor medio.

Inizio dal segmento [x1, x2]: esiste z1 ∈ [x1, x2] \ {x1, x2} tale che
f (x2)− f (x1) = ∇f (z1) · (x2 − x1).

Ovviamente z1 ∈ A e quindi, per ipotesi, ∇f (z1) = 0; dall’uguaglianza
segue allora f (x2)− f (x1) = 0, cioè f (x1) = f (x2).
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Ripetendo il medesimo ragionamento sul segmento [x2, x3], ottengo
f (x2) = f (x3) e, per transitività, f (x1) = f (x3).

Iterando su tutti i segmenti che compongono la poligonale, ottengo
f (x1) = f (xk);

ricordando che gli estremi della poligonale sono proprio x e y , ottengo
f (x) = f (y).

Data l’arbitrarietà di x e y , l’uguaglianza precedente mostra che la
funzione f è costante. □
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Funzioni di classe C 1 in un dominio
↑ chiusura di un insieme aperto

Sia Ω ⊂ Rn un insieme aperto e sia f ∈ C(Ω,R).

Diciamo che f è una funzione di classe C1 in Ω se esistono

• un insieme aperto A ⊆ Rn tale che Ω ⊂ A,

• una funzione g ∈ C1(A,R) tale che g|Ω = f .

In tal caso, per ogni x ∈ ∂Ω e i ∈ {1, . . . , n} poniamo ∂f
∂xi

(x) := ∂g
∂xi

(x).

Osservazione
I valori delle derivate parziali di f nei punti di ∂Ω non dipendono dal
prolungamento g considerato. Motivazione . . .
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