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Funzioni tra spazi euclidei: calcolo differenziale

Avvertenza
Al termine della lezione queste pagine verranno rese disponibili online;
non & quindi necessario copiarne il contenuto.



Derivate direzionali
versore, direzione

Siaf:ACR" =R (n>2). i}
Sia X un punto interno di A. Sia v € R” tale che ||v||g» = 1.

Diciamo che f & derivabile in X nella direzione v se esiste finito

m f(x+tv)—f(x) . ?()_() derivata di f in X
v

t—0 t

nella direzione v

Osservazione

Dato che X & interno ad A, esiste r € R tale che B.(X) C A.

Per ogni t € (—r, r) & lecito valutare f nel punto X + t v, che appartiene
a B,(x). Pertanto, la funzione rapporto incrementale

f(x+tv)—f(x)
() t— "

é definita in (—r,r) \ {0} e ha senso considerarne il limite per t — 0.
"\ non & detto che esista o che sia finito

1



Osservazione
Con le notazioni gia introdotte, definiamo la funzione g : (—r,r) - R
ponendo

g(t) = f(% + tv).

Notiamo che g & una funzione reale di una variabile reale; & la restrizione
di f a un segmento, “centrato” in x, giacente sulla retta passante per X
individuata dalla direzione v.

Possiamo riscrivere la funzione rapporto incrementale () in termini di g:

te(—r,r)\ {0} — f(x+1tv)—f(x) _ g(t)—g(0)

t t

Deduciamo immediatamente:

e f & derivabile in X nella direzione v se e solo se g & derivabile in t = 0;

« Tx)=g0)



Esempi

Stabilire se le seguenti funzioni sono derivabili nei punti e nelle direzioni

assegnate:

X12 2
f(x1,x) = ey + X3

f(Xl,Xz) = ‘Xl — 1|(X1 + X2)



Derivate parziali

Per i € {1,...,n} denotiamo con ¢; I'elemento di R" avente la i-esima
componente uguale a 1 e tutte le altre uguali a 0.

Evidentemente | j||gn = 1, ossia e; & una direzione.

Nota: {ej,...,e,} & la base canonica di R"; ogni x € R" si rappresenta come

X=X1€1+ ... +X,6€p.

Sia f : ACR"” — R e sia x € int(A).

Se f & derivabile in x nella direzione ¢;, si dice che f & derivabile parzial-
mente in X rispetto alla i-esima variabile; la derivata di f in X nella dire-
zione €; si chiama derivata parziale in X rispetto alla i-esima variabile e

si denota con uno dei simboli

of ,_ _ _ . . Of _
O—XI(X) Dif(x), fq(x) invece di a—e[(x)



Esplicitando:

of _ . f(x+te)—f(x) _
8X,'(X) - tl'LrH) t - €i *(07 '7071707'-'70)
i )‘_(Xl7 ,Xi—1, Xj +t, )_(;+1, --7)_<n)_ f()_(l,...,)_(,'_l, Xis )_(,'_;,_1,...,)_(,-,)
_tl—% t

percio: la derivata parziale rispetto alla variabile x; si ottiene considerando

come fissate tutte le altre variabili e derivando rispetto a x;.

Esempi

Calcolare (dove possibile) le derivate parziali delle seguenti funzioni:

o f(x,y) =8xy+5x*y?—y3
o f(x,y,2) =In(x>+y? - 2)

o f(x,y)=Vx>+y>



Siaf:ACR" > R.
Sia X un punto interno di A in cui f & derivabile parzialmente rispetto a

tutte le variabili.  Per brevita diremo: “derivabile parzialmente”

Il vettore di R” le cui componenti sono, nell’ordine, le derivate parziali
di f in X rispetto alle variabili x1, ..., x, si chiama gradiente di f in X
e si denota con il simbolo Vf(x), o anche con gradf(x), Df(x).

Esplicitando:
. [Of _ of ,_
VAR) = (5o e ()

Esempio
Scrivere il gradiente di f(x,y,z) = In(x?> + y? — z) in (1,1, -1).

J ciog in tutti i punti di B
Se B Cint(A) e f & derivabile parzialmente in B, chiamiamo funzione
gradiente di f la funzione vettoriale che a ogni x € B associa il gradiente
di f in x.



Esempio (importante)

Verificare che la funzione f : R — R definita ponendo

x2y
F(x,y) = m (x,y) # (0,0)
0 (x,y) =(0,0).

é derivabile in qualsiasi direzione nel punto (0, 0).

Nota: f non & continua in (0,0)

Osservazione

L'esempio precedente mostra che per le funzioni di piu variabili reali
la derivabilita parziale o direzionale in un punto non implica la continuita.

Differenza con le funzioni di una variabile!

E possibile introdurre una nozione “piu forte” di derivabilita, che implichi
la continuita come nel caso delle funzioni di una variabile?



Differenziabilita e differenziale

Siano f : ACR" — R e X un punto interno di A.

Diciamo che f & differenziabile in x se

@ 1 é derivabile parzialmente in x

® lim f(x+h)—f(x)—VFi(x)-h

=0.
h—0 || h||rn

Esempi
Verificare se le seguenti funzioni sono differenziabili in (0,0):

X2 y3

f(x,y) = /x2+y? flx,y) = X2+ y2 (x,y) # (0,0)
0 (x,y) = (0,0)
x4 y2

f(x,y) =[xyl Flx,y) = { (X +y2)? (x,y) # (0,0)

0 (x,y) = (0,0)



Siano f : ACR" — R e X € int(A) con f differenziabile in x.

Chiamiamo differenziale di f in x I'applicazione lineare df; : R" — R
definita ponendo T perché?

dfz(h) := VFf(x)-h per ogni h € R".

Nota: dfy € un omomorfismo tra gli spazi vettoriali R"” e R.

Esempi
e Se f:R" — R & costante, allora f & differenziabile in ogni x € R”
con differenziale uguale all'applicazione costante di valore 0.

e Se f :R" — R & lineare, allora f & differenziabile in ogni x € R”
con differenziale uguale a f.

e La funzione definita ponendo f(x,y) = x2 + y? per ogni (x,y) € R2
e differenziabile ovunque.



Proposizione (proprieta delle funzioni differenziabili)
Siano f : ACR"” — R e X € int(A) con f differenziabile in x. Allora:
® f & continua in Xx;

® f ¢ derivabile in x in qualsiasi direzione v e
of ,_ -
5, (%) = df(v) (= vF(R)-v)

Dimostrazione ... ©

identica a quella che vale per le funzioni derivabili
Osservazione di una variabile... E un caso? No! @
Per il punto @ della proposizione, la continuita in un punto & condizione
necessaria per la differenziabilita; tale condizione non & sufficiente.

Esempio ...
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Nota

of
L'uguaglianza a—()?) = Vf(X) - v viene chiamata formula del gradiente.
v

Affinché la formula del gradiente abbia senso & sufficiente che in X la

funzione f sia derivabile parzialmente e nella direzione v; tuttavia, se f

non ¢& differenziabile in X, non & detto che I'uguaglianza sia soddisfatta.

Esempi

f(Xay):

X2
aiy e #00)
0 () =(00)
x4 2
(X4+y2)2 (va)#(()?O)
0 (xy)=(0.0)

non differenziabile in (0, 0)

V£(0,0)-v =0 perogniv

g(o,o) #0 sevé{e,e}

non differenziabile in (0, 0)

V£(0,0)-v =0 perogniv
of

—(0,0) =0 per ogni v
8v( ) 11



Osservazione
Siano f : ACR"” — R e X € int(A), con f differenziabile in X.

Supponiamo Vf(x) # 0.
disug. di Cauchy-Schwarz
Allora: 1

f'
e per ogni direzione v : ‘gv()_()’ = |VI(x)-v| <||VF(X)||rn

: o _Vi(x)
o |'uguaglianza & verificata per v = —
IIVf(X)H
Dunque:

il vettore gradiente V£ (X) individua la direzione di massima pendenza.
1" interpretazione geometrica
del gradiente

12



Teorema (del differenziale totale) < condiz. sufficiente per differenziabilita

Siano f : ACR"” — R e X € int(A). Supponiamo che:
e f sia derivabile parzialmente in un intorno di X,

e le derivate parziali di f siano continue in X.

Allora: f é differenziabile in X.

Dimostrazione pern =2 ... @

Sia A C R” un insieme aperto.
Se f & derivabile parzialmente in A con derivate parziali continue in A,
diciamo che f & di classe C' in A e scriviamo f € C(A,R).

Corollario
Ogni funzione di classe C' in un insieme aperto & differenziabile in tale
insieme (cioé in ogni punto di tale insieme).
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Esempi

e Le funzioni polinomiali e le funzioni razionali sono differenziabili nei
rispettivi domini.

e Studiare la differenziabilita delle funzioni negli esempi di pagina 8.
e Sia f la funzione reale definita in R? ponendo
f(x,y) =y*+3x3y — y? cos(x)
esiav=(1/V5, 2/V5).

Stabilire se & lecito utilizzare la formula del gradiente per calcolare la

derivata di f in (0,1) nella direzione v; in caso affermativo, calcolarla.

14



Linearizzazione e piano tangente

Siano f : ACR" — R e x € int(A), con f differenziabile in X.
Per definizione:
lim f(x+ h) — f(x) — dfzx(h)

=0
h—0 || h||rn

che equivale a
f(x + h) — f(x) — dfx(h) = o(||h||gn) per h— 0
e si puo riscrivere come

F(% + h) = F(%) + dfi(h) + o(||hllr») per h — 0.

Con h = x — X, questo equivale a

(%) f(x) = f(x) + dfs(x — X) + o(||]x — X||gn)  per x — X.

15



Chiamiamo linearizzazione di f in X la funzione 5 : R" — R definita

ponendo
px(x) = f(X) + dfzx(x — X).

Nota: ¢ si ottiene sommando la costante f(x) — dfy(x) all'applicazione
lineare dfy, pertanto in genere non & lineare.  (E “affine”)

Rileggiamo (x):
in prossimita di X la linearizzazione 5 approssima f a meno di infinite-
simi di ordine superiore rispetto a ||x — X||grn.

Dunque: il grafico di 5 approssima “bene” il grafico di f.

Il grafico di (5 si chiama piano tangente in X al grafico di f; I'equazione
del piano tangente &
sni1 = F(R) + dfi(x =) (= F(%) + VF(R) - (x = %))

“Piano” tangente?

16



Esempi
e Determinare I'equazione del piano tangente nel punto (1, 1) al grafico
della funzione definita ponendo

f(x,y):4—x2—y2.

e Determinare I'equazione del piano tangente nel punto (1,—1,1)
al grafico della funzione definita ponendo

f(x,y,z) = et 22 + 1.

Nota
Il piano tangente in x al grafico di f contiene le rette tangenti in X ai
grafici di tutte le “restrizioni direzionali” di f.

17



Derivate e differenziale di funzioni vettoriali
Siaf:ACR" - R™ m>2;siano f,..., fy, nell'ordine, le componenti
di f. Sia x € int(A).

La definizione di derivata direzionale di f in X (e quindi anche quella di
derivata parziale di f in x) & formalmente identica alla definizione data

per una funzione scalare.
E immediato riconoscere che f & derivabile in X nella direzione v se e solo
se lo sono tutte le sue componenti; inoltre:

orf ,_ of Ofm ,_

5= (5o, 5.
Analogamente, f & derivabile parzialmente in X rispetto alla j-esima varia-
bile se e solo se lo sono tutte le sue componenti; inoltre:

g;(z) <23( ) ,gf:(g)).

18



Con le notazioni della pagina precedente, supponiamo f derivabile parzial-
mente in X.

Chiamiamo matrice jacobiana (o jacobiano) di f in X la matrice reale con
m righe e n colonne la cui riga i-esima contiene gli elementi del gradiente

di fi in X. In simboli: piccolo abuso
® e grw) o
Je(x) == : : _ :
gf:(;() gi:()—() V fm(X)
Esempi

Scrivere la matrice jacobiana delle funzioni
o f:R? — R3 tale che f(x,y) = (xy?, 3V X2 +y*)

o f:R3— R2tale che f(x,y,z) = (xy?+ 22, 5x2 + &7Y7). 19



Siaf:ACR" - R™ m>2;siano fi,..., fy, nell'ordine, le componenti
di f. Sia x € int(A).

Diciamo che f ¢ differenziabile in X se tutte le componenti fi, ..., f;, sono
differenziabili in x; chiamiamo differenziale di f in X la funzione vettoriale
dfy di componenti dfi(x),. .., dfn(x), nell'ordine.

Evidentemente, dfyx & un omomorfismo tra R” e R™; per ogni h € R":

dfi (%)(h) VA(R) - h
(=1 o ]=|
dfm(%)(h) Vim(X) - h
prodotto “righe
of, of, _ per colonne”
T KV It o 5= (%) "
_ = Jf()_() h.
Of Ofm ,_ a
67)(1(X) hy +...+ %, (%) hn vedi Geometria
v

quindi: la matrice jacobiana J¢(X) & la matrice m X n associata a dfy. 20



Osservazioni

e Con le ovvie modifiche, alle funzioni vettoriali si estendono le condizioni

necessarie e le condizioni sufficienti per la differenziabilita.  Ciog?
e Se f e differenziabile in x vale I'uguaglianza
f(x) = f(x) + dfs(x — x) + o(||x — X||rn) per X — X
equivalente a
F(x) = (%) + Jr (%) (x = %) + o(lx = X[|len) ~ per x = X

e si puo parlare di linearizzazione di f in X.

Esercizio
Stabilire se la funzione vettoriale f(x,y) = (x y?, X X2 4 %)

e differenziabile in (0,0); in caso affermativo, scriverne la linearizzazione.
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Regole di calcolo per le derivate parziali (per gradienti, per differenziali)

Siano ACR", f,g: A= R", ¢: A—=R, A€ R. Sia x € int(A).

Supponiamo f, g, ¢ derivabili parzialmente rispetto a x; in x.
Allora:
f+g, M, pf, f-g sono derivabili parzialmente rispetto a x; in x e

o(f +g) of og
i o Ol e R O

A\ F) | of

* Tox (x) = ax,( x)
d(ef) Op of
e D000 = 5200 £ + 93 5 ()
. 8(;)'(ig)(x) = g):(x) - g(x)+ f(x) - gf’(x)

22



Differenziale e composizione funzionale

Teorema

Siano n,m,p € N* (n+m+p > 4). <« altrimenti il risultato & noto
Sianof : ACR" - R™e g: BCR™ — RP; supponiamo f(A) C B.
Sia x € int(A); supponiamo f(x) € int(B).

Se f ¢ differenziabile in x e g & differenziabile in f(x), allora:

@® gof é differenziabile in x
® d(gof)x = dgf'(x) o dfy
© Jgor(x) = Jg(f(x)) Jr(x)

Esempio
Verificare la validita di @ per le funzioni

Fo,y)=(x+y, xy, xy?),  glu,v,w)=uviw.



Con le notazioni del teorema, esplicitiamo @ in modo da ricavare le

derivate parziali della funzione composta:

Jgor(x) = Jg(f(x)) Jr(x)

981 Og1 of ofy
3y, FC) 5 (F)) 8X1( X) g ™)
08p 08gp (9fm Ofm
2y PO GO ) \ G X 55, )
> BN G ) Z%( () 25
agp agp

Z: Byj 8x1 Z: ay; (F(x 8x,,

Vke{l,...,p} = O(gof)u, , % of;

= Vie{l,...,n} Ox; _1231 V;j 3X,(X) 24



Caso particolare: n=p=1

A1)
o= (520 - JE ()|
a8
=3 FE(00) 1) = () - (0
=19

Esempio

Verificare la validita della formula qui sopra per le funzioni

f(x) = (x+2, x2+ x), glu,v) =u?—2v3

25



Derivate parziali successive

Siano f : ACR"” — R e X € int(A). Fissiamo i,j € {1,...,n}.
Supponiamo che f sia derivabile parzialmente rispetto a x; in un intorno

U di x. Se la funzione

of orf
—=xelUr— —
Ox; ax )
e derivabile parzialmente in X rispetto alla variabile x;, diciamo che

f & derivabile parzialmente due volte in X rispetto a x; e X;.

La derivata parziale in X rispetto alla variabile x; della funzione
Xi

si chiama derivata parziale seconda di f in X rispetto a x; e x;;
2
si denota con uno dei simboli ————(x), Djf(X), fox(X).
GOXi
Per j # i la derivata parziale seconda si dice mista; per j = i si dice pura
2
e il primo simbolo si scrive ——(x).
ox:

26



Siano f : ACR"” — R e X € int(A).
Supponiamo che f sia derivabile parzialmente due volte in x

(cioé derivabile parzialmente rispetto a x; e x;, per ogni i,j € {1,...

La matrice
Pfo P Pr
Ox? X Ox20x1 x 0x,0x1 x
" o i CALIEY
He(x) := | Ox10x2 0x3 O0Xn0x>
0*f _ 0*f 0*f ,_
O0x10xn (%) O0x20xn X) Bix,?(x)

si chiama matrice hessiana di f in X.

Nota: Hf()_() = Jvf()_()
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Osservazione
In generale, le derivate parziali seconde miste dipendono dall’ordine in cui
si esegue la derivazione. Esempio:

0*f
fey) y?arctan (;) (x,y) e R x R* 8y8x(0’ 0)=1
X, y) = )
0 (x.y) € R x {0} T 0,0) =
8X8y(0’0) 0

Se la funzione & sufficientemente regolare, |'ordine di derivazione non &
rilevante:

Teorema (di Schwarz)
Siano f : ACR" — R e X € int(A). Siano i,j € {1,...,n} con i # j.
2F oPf
0x;0x; ¢ 0x;0x;

Se le derivate parziali seconde esistono in un intorno di x

e sono continue in X, allora

Pf 0 f

Ox;0x; X) = OxiOx; %)- 8




Sia A C R" un insieme aperto.
Diciamo che f & di classe C? in A (e scriviamo f € C?(A,R)) se f &
derivabile parzialmente in A con derivate parziali seconde continue in A.

Osservazione

Come corollario del teorema di Schwarz, per ogni funzione di classe C?:

e le derivate parziali seconde miste non dipendono dall'ordine in cui si
esegue la derivazione;

e |la matrice hessiana € simmetrica. <+ 77

Esempio
Scrivere la matrice hessiana della funzione definita in R3 ponendo

f(x,y,z) = x>+ y*z% - 3x 22

Nota N

o°f
Data f € C?(A,R), la funzione Af := Z—z si chiama laplaciano di f.
. . . — Ox:
traccia della matrice hessiana /" =1 =7 29



“Esercizio teorico” Cioé: pensateci se ne avete voglia . ..

e Come si possono introdurre le nozioni di derivabilita parziale e di
derivate parziali di ordine k > 37
Cosa vuole dire che una funzione & di classe Ck?

e Come si generalizza il teorema di Schwarz?

e Come si definisce la derivabilita parziale di ordine k > 2 per funzioni

vettoriali?

30



Alcune applicazioni del calcolo differenziale

Teorema (del valor medio di Lagrange)
Siaf: ACR" — R e siano x,y € A. Supponiamo che:
e il segmento [x, y] sia contenuto nell'interiore di A;

e f sia differenziabile nei punti di [x, y].

Allora: esiste z € [x, y] \ {x, y} tale che
fly) = F(x) = VF(2) - (y = x) (= dhly —x)).

Dimostrazione ... & Si estende a funzioni vettoriali? No!

2?
Corollario (caratterizzazione delle funzioni a gradiente nullo)

Siaf: ACR" — R, con A insieme aperto e connesso.
Supponiamo che f sia derivabile parzialmente in A e che Vf(x) = 0 per
ogni x € A. Allora: f & costante in A.

Dimostrazione ... © Si estende a funzioni vettoriali? Sil 31



Teorema (formula di Taylor di ordine 2, con il resto di Peano)
Siano f : ACR" — R e X € int(A).
Supponiamo che f sia di classe C? in un intorno di X.

Posto
Teax) = F(3) + VF(R) - (x — ) + 5 He(®) (x ~ %)+ (x %)

si ha
f(x)— Tx
i £ = Tl
x=%[[x = X||ga

=0
e quindi

F(x) = Tra(x) + of|lx — x[1?).
Motivazione . ..

La funzione polinomiale T si chiama polinomio di Taylor di f di centro

X e ordine 2. 32



Esempi
Scrivere la formula di Taylor con il resto di Peano di centro (0,0)
e ordine 2 delle funzioni

COS( X m™ T
. ) = 2 (y) e B x (-2.7)
X2_y2
° f(X’y):m (X,y)ERz

33



Calcolo differenziale per curve e superfici

Sia (, r) una curva in R", con intervallo dei parametri I.
Diciamo che la curva é regolare se

e re CHI,R™);

e se la curva & chiusa, r/(minI) = r/(maxI);

o r'(t) #0 perognitel

In tal caso, per ogni ty € I possiamo considerare

e la retta parametrizzata da

se R~ r(tg) +sr'(to) retta tangente in to
r'(t
e il versore T(tp) := # versore tangente in to
I (t0)|er
Motivazione . .. Interpretazione cinematica ...

34



Esempi
Verificare se le curve di parametrizzazione

e tc[0,1]]—x+t(y—x) (x,y €R" con x #y)
o t €[0,27] > (cos(t), sin(t))
o te[-1,1] = (23, t?)

elica

o t c R (acos(t), bsin(t), ct) (a,be R, ceR*) Gilindrica

sono regolari; in caso affermativo, determinarne il versore tangente in ogni
punto.

35



Diciamo che la curva & regolare a tratti se I'intervallo dei parametri I
si puo suddividere in un numero finito di intervalli Iy,..., I, tali che

o la restrizione di r a ciascun intervallo & di classe C1,
o r'(t) #0 perogniteint(ly)U...Uint(I).

I'esistenza del versore tangente non & garantita
negli estremi degli intervalli I, ... I

N

Diciamo che la curva & quasi regolare se & “regolare a tratti in un solo
tratto”, cioé se

e re CYI,RM),

o r'(t) #0 perognit € int(I).

Nota: talvolta, invece di “(-, r) & una curva regolare (quasi regolare,
regolare a tratti)”, diremo "r & una parametrizzazione regolare (quasi

regolare, regolare a tratti) di v".

36



Esempi
Stabilire se le curve definite dalle seguenti parametrizzazioni sono regolari,
quasi regolari, oppure regolari a tratti, e descriverne il sostegno:

o r(t)=(t—1|, 1—[t—1]), t€][0,2]

° r(t)

e r(t) = (cos3(t), sin3(t)), t€[0,2n] asteroide

(t(t—1), t(t—1)(2t—1)), teR

(1) = (2t—t2,0) te][0,1)
@ t-1?) tefi,2
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Esempio (curva grafico)
Dati I C R intervallo e f € C1(I,R), consideriamo la curva grafico
associata a f, parametrizzata da r(t) = (t, f(t)), te€ L

Per ogni t € I'si ha r'(t) = (1,f'(t)), quindi la curva grafico & regolare.
# (0,0)

Fissato tg € I, la retta tangente alla curva grafico in ty ha equazioni para-
metriche
X =ty + s, y:f(to)-i-sf/(to), seR;

eliminando il parametro s otteniamo |'equazione cartesiana
y = f(to) + (x — to) f'(to).
Dunque, com’era prevedibile: la retta tangente alla curva grafico in tg

coincide con la retta tangente al grafico di f in tp.

Nota: se f & di classe C! a tratti, la curva grafico & regolare a tratti. 38



Attraverso la nozione di curva regolare (a tratti) definiamo una classe di

sottoinsiemi di R?. 1 sta per “regolare o regolare a tratti”

Sia D C R?. Diciamo che D & un dominio regolare se
e D ¢ la chiusura di un insieme aperto, limitato e connesso;

e la frontiera di D & unione disgiunta di un numero finito di insiemi
Y1, ---,Ym, ciascuno dei quali & sostegno di una curva semplice,

chiusa e regolare (a tratti).
Gli insiemi ~1,...,7¥m si chiamano componenti di dD.

Esempi ...
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Sia D C R? un dominio regolare. Sia 4 una componente di 9D con

parametrizzazione regolare r(t) = (x(t), y(t)), t €l  ovvie modifiche
se regolare a tratti

Per ogni t € I definiamo il versore normale in t:

n(t) _:( y'(t) _ x'(t) > . uno dei due versori
O~ T7@®le ) ortogonalia T(z)

Le seguenti proprieta sono equivalenti:

e per ogni t € I il versore normale n(t) punta verso I'esterno di D,

e percorrendo = si lascia D a sinistra.

Vera I'una o I'altra, diciamo che r orienta positivamente ~.

Esempi . ..

Se ciascuna componente di 9D & orientata positivamente, diciamo che
la frontiera di D & orientata positivamente e la denotiamo con 9D .

Esempi . .. 40



Richiamo: prodotto vettoriale in R3

Definiamo in R3 il prodotto vettoriale ponendo
aX b:= (32b3—33b2, a3b1—31b3, albz—azbl)

per ogni a, b € R3. Notazione alternativa: a A b

Nota
a X b si ottiene formalmente sviluppando rispetto alla prima riga
il determinante simbolico

€1 € €3
dy dp as|.
b1 by b3

Esempio ...
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Alcune proprieta del prodotto vettoriale

oaXb:—(bXa)

e aX b=0 seesoloseaebsonol'uno multiplo dell’altro

(cioé linearmente dipendenti)

e (axb)-a=(axb)-b=0 <« axbeortogonalesiaaacheab
e quindi ...

e ||a X b||grs = area del parallelogramma costruito sui vettori a € b

Fine del richiamo
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Sia (X, o) una superficie in R3 con insieme di parametri K.

Diciamo che la superficie & regolare se
o la restrizione di o all'interiore di K & di classe C!;

177

e per ogni (u, v) € int(K) la matrice jacobiana J,(u, v) ha rango 2.

In tal caso per ogni (up, vp) € int(K) possiamo considerare:

G : . Oo do piano
e il piano individuato dai vettori 8—(uo, w) e a—(uo, Vo) tangente
u v :
linearmente indipendenti 7 in (w0, vo)
. o do vettore
o il vettore N, (up, vp) 1= %(uo, Vo) X W(uo, Vo) normale
AN non nullo in (o, vo)
) NJ(UO, VO) VEersore
e il versore n,(ug, vp) i= ——F——— normale
[ Nor (uo, vo) | in (uo, vo)
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Esempi
H *
Siar e R7.
Verificare che le seguenti superfici sono regolari e determinare i corrispon-

denti versori normali:

e la superficie cilindrica, con parametrizzazione o : [0,27] x R — R3
definita ponendo

o(0,z) = (r cos(0), rsin(8), z);

e la superficie sferica, con parametrizzazione o : [0, 7] x [0,27] — R3

definita ponendo

o(p,0) = (r sin(p) cos(f), r sin(¢)sin(f), r cos(p)).
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Osservazione

Sia (X, o) una superficie con insieme di parametri K.

Abbiamo convenuto di assumere tacitamente che o soddisfi la condizione

() presi due elementi distinti (u1, v1), (u2, v2) € K, di cui almeno uno
interno a K, si ha o(u1, vi) # o(u2, v2).

In particolare, la restrizione di o all'interno di K & ingettiva.

Pertanto, posto ¥ := a(int(K)), per ogni P € 3 esiste un unico

elemento di int(K) che o trasforma in P; lo denotiamo con o~1(P).

Supponiamo ora che (X, o) sia regolare.

Definiamo il campo vettoriale normale n: g — R ponendo

n(P) := ny(c~1(P)) per ogni P € .

Se il campo vettoriale normale n & prolungabile con continuita a X,
diciamo che la superficie & orientabile. 45



Osservazioni

e Se l'insieme dei parametri & aperto, la superficie &€ banalmente
orientabile.

o Il sostegno di una superficie orientabile ha due “facce”, quella da cui
" ” M "o .
esce” e quella da cui “entra” il campo vettoriale normale.

Esempi
e La superficie cilindrica e la superficie sferica sono orientabili.

e Il nastro di Mobius non & una superficie orientabile.
1777

46



Diciamo che (X, o) ¢ una superficie regolare con bordo se

e |'insieme dei parametri K & un dominio regolare;

e o & ingettiva in K; 7?7 ©

e o &diclasse C!in K e per ogni (u,v) € K la matrice } in tutto K!
jacobiana J(u, v) ha rango 2.

L'insieme o(0K) =: 03 si chiama bordo della superficie.

1 da non confondere con la frontiera di X,
che coincide con X

Nota: ogni superficie regolare con bordo & anche una superficie regolare
(nel senso della definizione di pagina 43) ed & orientabile.

Osservazione

Se la frontiera di K & unione disgiunta di m sostegni di curve in R? sem-
plici, chiuse e regolari (a tratti), allora il bordo di 3 & unione disgiunta

di m sostegni di curve in R? semplici, chiuse e regolari (a tratti). 47



Osservazioni

Se rj parametrizza la j-esima componente di JK, allora oor; parametrizza
la j-esima componente di 03.

Il verso di percorrenza scelto su ciascuna componente della frontiera di K

induce un verso di percorrenza sulla corrispondente componente del bordo
di X.

Esempio: “mezzo cilindro” ...

Se la frontiera di K & orientata positivamente, diciamo che il bordo della
superficie & orientato positivamente e lo denotiamo con 0%+,

Osservazione
Percorrendo X si lascia a sinistra la faccia della superficie da cui “esce”
il versore normale. 48



Esempio (superficie grafico)

Sia K C R? un insieme di parametri. o(uv) = (v, v,Tf(u, V)

e Se K & un insieme aperto e f € C}(K,R), allora la superficie grafico
associata a f & una superficie regolare orientabile.

e Se K & un dominio regolare e f € C}(K,R), allora la superficie grafico

associata a f € una superficie regolare con bordo.

Per ogni (u,v) € K si ha il vettore normale punta verso I'alto
i
f f
o Ny(u,v)= (—Zu(u, v), —gv(u7 v), 1 )

Nota: il pi
o INo(u, )| = IV F( V)P + 1. ot 1l plano tangente
B - R? alla superficie coincide
Tin R Tin con il piano tangente
al grafico.

Esempi: paraboloide, calotta sferica, semisfera
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Sia (2, o) una superficie in R3.

Diciamo che (X, o) & regolare a pezzi se esistono (X1, 071),. .., (Zk, 0k)
superfici regolari con bordo tali che

e X =3 U...UX,
e X;N3X;=0%;N0%; perognii#j. < che cosa significa?

34,..., X si chiamano facce della superficie (X, o).

Chiamiamo bordo della superficie regolare a pezzi I'insieme

ox :={Pex|3ic{l,... .k} tc. Ped%;}

Se 9% = (), diciamo che la superficie & chiusa.

Esempi: cilindro, sfera, cubo
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Attraverso la nozione di superficie regolare a pezzi chiusa definiamo una
classe di sottoinsiemi di R3.

Sia T C R3. Diciamo che T & un dominio regolare se
e T & la chiusura di un insieme aperto, limitato e connesso;

e la frontiera di T & unione disgiunta di un numero finito di insiemi

31,...,2, che sono sostegni di superfici regolari a pezzi chiuse.
Gli insiemi X1, ..., 3, si chiamano componenti di OT.
Esempi . ..

Se ciascuna delle componenti di T & parametrizzata in modo che in ogni
punto il versore normale n sia diretto verso |'esterno di T, diciamo che la
frontiera di T & orientata positivamente e la denotiamo con 97 .

Esempi ...
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Dimostrazione delle proprieta delle funzioni differenziabili

@ Per ipotesi, f & differenziabile in x, quindi

f(x+ h) — f(x) — dfx(h)

lim =0,
h—0 ||| rn
che implica
lim f(x + h) — f(x) — dfx(h) = 0.
h—0
Per ogni h € R" si ha disuguaglianza di Cauchy-Schwarz

!
0 < [dik(h)| = [V£(x) - hl[[VF(X)[[rn [|h]|rn

quindi, per TCO:

lim dfs (h) = 0.

Per la regola della somma:

lim f(x + h) — f(x) =
hino (X +h) (x)=0, 53



ossia
lim f(x + h) = (%),
h—0

che equivale a lim f(x) = f(X). Quindi: f & continua in x. [
X—X

@® Sia r € R} tale che B,(x) C A.
Per h € B,(0) \ {0} definisco il rapporto incrementale
f(x + h) — f(x) — dfz(h)

Rih) = Al

Per ipotesi: 3 lim R(h) = 0.
h—0

Fisso una direzione v e definisco V :={tv |t € (—r,r)} (C B,(O)).

Ovviamente la restrizione di R a V tende a 0 per h — 0.

In simboli: 3 II1T>10 Rv(h) = tll_% R(tv) =0.
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Esplicitando:
f(x+tv)—f(X)— dfz(tv)

3 lim =0
t—0 ||tV||Rn
che equivale a / linearita di dfy
f(x — f(X) — tdfx
(%) 3 Iim (x+tv) (x) — tdfx(v) _0
t—0 |t]
N vllpr = 1

Osservo che

f(x+tv)— |ft(>'<) — tdfz(v) ~ sign(t) f(x+tv)— ft(>'<) — tdfz(v)

pertanto (x) equivale a

3 lim f(x+tv)—f(x)—tdfz(v)

t—0 t

=0
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che equivale a
f(x+tv)—f(x)

3 lim —dfz(v) =0
t—0 t
che equivale a
f(x — f(x
3 jim TEHEV ZFR) ey
t—0 t

A norma di definizione, cio equivale a dire che f & derivabile in X nella
direzione v con derivata direzionale uguale a dfz(v). o
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Differenziabilita e differenziale delle funzioni di una variabile

Siaf:ACR - ResiaxcA.

DEF - s
f & derivabile in X <= esiste finito ’limo fx+h) - (%)
N

=: f'(x)

L'uguaglianza che definisce la derivata di f in X equivale a

o fFAh) — (%)

— (% —
h—0 h Fi(x)=0

che equivale a
f(x+h)—f(x)—f'(x)h

li =
hlno h 0
che equivale a
- Cfloy (s
i f(x+ h) —f(x) f(x)h:O
h—0 \h|

Dunque:

f & differenziabile in X e dfgx(h) = f'(X)h per ogni he R. & .



Dimostrazione del teorema del differenziale totale

Per ogni a, b € R denoto con I, l'intervallo chiuso di estremi a e b.

Per ipotesi:
esiste r € R’ tale che B/(X,y) C A, le derivate parziali f, e f, sono

definite (almeno) in B,(x,¥) e sono continue in (X, ¥).

Fisso (h, k) € B;(0,0) \ {(0,0)}; osservo che (x + h,y + k) € B,(x,¥).

Definisco il rapporto incrementale:

F(%+ by + k) = F(%.7) = (%, 7) h— (.7) k_
N

R(h, k) :=

Definisco ¢ : Iz x+n — R tale che
p(t) = f(t,y + k);

osservo che ¢ & derivabile in Iz 54 con ¢/(t) = fi(t, ¥ + k).
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Per il teorema del valor medio (di AM 1), esiste &, € Ix 314 tale che
p(x +h) —o(x) = ¢'(&n) h
ciogé

F(%+ b7+ k) — (%, 7 + k) = £u(&n 7 + K) b

Definisco v : Iy 51« — R tale che
b(t) = (X, t);
osservo che ¢ & derivabile in Iy« con ¢/(t) = f,(x,t).
Per il teorema del valor medio, esiste nx € Ij y 4« tale che
(¥ + k) = (y) = ¢'(nn) k
cioe

f(x,y+k)—f(x,y) = f,(x,n4) k.
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Sommando termine a termine (1) e (2) ottengo

Posso riscrivere il rapporto incrementale:

fx(§h7y+ k)h+ 6/()_(/77/()/( - fx()_(a)_/)h_ fy()?v)_/)k

Rk k) = N

(fx(fhv)_/_" k) - &()_(7)7)) h+ (f}/()_(ank) - f}/()_(v)_/)) k
VTR

Quindi:

(£ y + k) — (%, 7)) h
V2 + k2

0 < |R(h,K)| < (£, (X, mk) — £, (X, ¥)) k

< In T+ 0 = KE DN+ f(Em) — &I



Ricapitolando:
per ogni (h, k) € B,(0,0) \ {(0,0)} esistono &4 € Iz z4n € Mk € Iy ik
tali che

0 < [R(h, k)| < [£(&n ¥ + k) = £ )+ 16, (5 me) = (7)1 (3)

Per (h, k) — (0,0):

e X + h tende a X; essendo compreso tra X e X + h, anche &, tende a X;
e y+hktendeay. ! fy continua in (X,y)

Dunque (&p, ¥ + k) tende a (X, y) e quindi £(&p, ¥ + k) tende a fi(x,¥).
Pertanto: il primo addendo in (3) tende a 0.

Analogamente si deduce che anche il secondo addendo in (3) tende a 0.

Per il teorema di convergenza obbligata:

R(h, k) — 0 per (h,k) — (0,0). o 61



Derivata direzionale di una funzione vettoriale ‘

Definizione per una funzione scalare
Sia f : ACR"” — R. Sia X € int(A). Sia v € R" tale che ||v|g» = 1.
Diciamo che f & derivabile in X nella direzione v se esiste finito

. f(x+tv)—f(x) Of _ derivata di f in X
lim = —(X) o
t—0 t ov nella direzione v

Definizione per una funzione vettoriale
Siaf : ACR"” - R™, m>2. Sia x € int(A). Siav € R" t.c. ||v||rn = 1.
Diciamo che f & derivabile in X nella direzione v se esiste fidto

. f(x+tv)—f(x) Of _ derivata di f in X
lim = —(X) o
t—0 t ov nella direzione v

T T

funzione vettoriale e R™ 62




Dimostrazione del teorema del valor medio di Lagrange

Considero la parametrizzazione standard del segmento [x, y]:
r:[0,1] — R" tale che r(t) =x+ t(y —x) per ogni t € [0,1].
Osservo che r & di classe C1 e r'(t) = y — x per ogni t € [0, 1].
Per ipotesi il segmento [x, y| & contenuto nell'interiore di A, quindi in A;
pertanto posso definire la funzione composta g :=f or.
Esplicitando: definisco g : [0,1] — R tale che
g(t) =1f(r(t)) = f(x+t(y —x)) perognite][0,1].
g & composta di funzioni differenziabili, pertanto ¢ differenziabile (che
equivale a derivabile) e per ogni t € [0, 1]:
g'(t) = VF(r(t)) - r'(t) = VF(r(t)) - (v — x).
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Applicando a g il teorema del valor medio per funzioni di una variabile,
deduco che esiste ty € (0, 1) tale che

g(1) — g(0) = &'(0) (1 - 0),

che equivale a
f(y) = f(x) = VF(r(to)) - (v — x).
Posto z := r(tp), la precedente uguaglianza diventa

fly) = f(x) = VE(z) - (y — x);

per concludere basta osservare che ovviamente z appartiene al segmento
[x,y] e che & diverso da x e y perché t; & diverso da 0 e 1. o
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Dimostrazione della caratterizzazione delle funzioni a gradiente nullo

Fisso x,y € A, con x # y.

Essendo aperto e connesso, I'insieme A & anche connesso per poligonali,
quindi esiste una poligonale di estremi x e y contenuta in A.
Denoto con x1, X2, . .. xx (nell’ordine) i vertici di tale poligonale.

Per ipotesi f & derivabile parzialmente in A con derivate parziali identica-
mente nulle, e quindi continue, in A; dunque f & di classe C! In
particolare, f & differenziabile su tutti i lati della poligonale, su ciascuno
dei quali posso quindi applicare il teorema del valor medio.

Inizio dal segmento [x1, x2]: esiste z1 € [x1, x2] \ {x1,x2} tale che
fx) = f(x1) = Vi(z1) - 2 — x1).

Ovviamente z; € A e quindi, per ipotesi, Vf(z;) = 0; dall'uguaglianza
segue allora f(x2) — f(x1) = 0, cioé f(x1) = f(x2).
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Ripetendo il medesimo ragionamento sul segmento [x2, x3], ottengo
f(x2) = f(x3) e, per transitivita, f(x1) = f(x3).

Iterando su tutti i segmenti che compongono la poligonale, ottengo
f(Xl) = f(Xk);
ricordando che gli estremi della poligonale sono proprio x e y, ottengo

F(x) = f(y).

Data I'arbitrarieta di x e y, I'uguaglianza precedente mostra che la
funzione f & costante. o
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Funzioni di classe C! in un dominio
1 chiusura di un insieme aperto
Sia Q C R” un insieme aperto e sia f € C(Q, R).
Diciamo che f & una funzione di classe C! in Q se esistono
e un insieme aperto A C R” tale che Q C A,
e una funzione g € C}(A,R) tale che 8o ="

f _ Og
axi (X) = 87)(1

In tal caso, per ogni x € 9Q e i € {1,...,n} poniamo

Osservazione

| valori delle derivate parziali di f nei punti di 9Q non dipendono dal
prolungamento g considerato. Motivazione ... ‘

(x).
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