
a.a. 2024/2025

Laurea triennale in Fisica

Corso di Analisi Matematica II

Funzioni tra spazi euclidei: limiti e continuità
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Funzioni tra spazi euclidei

Da ora in poi consideriamo funzioni che hanno dominio contenuto in Rn

e codominio contenuto in Rm, con n, m ∈ N∗.

Per m = 1 parliamo di funzioni reali (o scalari) di una o più variabili reali.
Per m ≥ 2 parliamo di funzioni vettoriali di una o più variabili reali;
se n = m parliamo di campi vettoriali.

Esempio
Sia n ≥ 2 e sia i ∈ {1, . . . , n}.
La funzione πi : Rn → R che a ogni x = (x1, . . . , xn) ∈ Rn associa
la i-esima coordinata xi è una funzione reale di n variabili reali,
che si chiama proiezione sull’asse i-esimo oppure i-esima proiezione.

Notazione: in R2 e R3 denoteremo le proiezioni con πx , πy e πz .
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Osservazione
Assegnare una funzione vettoriale f : A ⊆ Rn → Rm equivale ad assegnare
una m-upla ordinata di funzioni reali definite in A.
Infatti, data f : A ⊆ Rn → Rm possiamo comporre f con le proiezioni
sugli assi, ottenendo m funzioni reali definite in A:

f1 := π1 ◦ f , . . . , fm := πm ◦ f .
Per ogni x ∈ A il numero reale fi(x) è la i-esima componente del vettore
f (x); pertanto:
(∗) f (x) =

(
f1(x), . . . , fm(x)

)
per ogni x ∈ A.

Viceversa, data una m-upla ordinata (f1, . . . , fm) di funzioni reali definite
in A, possiamo definire tramite (∗) la funzione vettoriale f : A→ Rm che
a ogni x ∈ A associa il vettore di componenti f1(x), . . . , fm(x).

Le funzioni f1, . . . , fm che soddisfano (∗) si chiamano funzioni componenti
di f . 2



Esempi
• La funzione f : R→ R2 tale che

f (t) =
(
cos(t), sin(t)

)
è una funzione vettoriale di una variabile reale le cui componenti sono,
nell’ordine, la funzione coseno e la funzione seno.

• La funzione f : R3 → R3 tale che

f (x , y , z) = (x + y , x z2, y + z3)

è un campo vettoriale in R3 le cui componenti sono, nell’ordine,
le funzioni definite ponendo

f1(x , y , z) = x + y , f2(x , y , z) = x z2 , f3(x , y , z) = y + z3.
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Osservazione (operazioni algebriche con funzioni vettoriali)
Sia A ⊆ Rn. Siano f , g : A→ Rm, φ : A→ R e sia λ ∈ R.
Si definiscono le seguenti funzioni:

• f + g := x ∈ A 7→ f (x) + g(x) somma

• f − g := x ∈ A 7→ f (x)− g(x) differenza

• λ f := x ∈ A 7→ λ f (x) multiplo

• φ f := x ∈ A 7→ φ(x) f (x) prodotto per funzione reale

• f · g := x ∈ A 7→ f (x) · g(x) prodotto scalare

Nota
Per m = 1 si possono definire in modo naturale le funzioni rapporto f

g
e prodotto f g (che coincide con la funzione prodotto scalare).
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Limiti per funzioni tra spazi euclidei

Ricordiamo la definizione di limite per funzioni reali di una variabile reale:

Sia f : A ⊆ R→ R.
Sia x̄ ∈ R un punto di accumulazione di A e sia ℓ ∈ R.

↓ R ∪ {−∞, +∞}

Diciamo che esiste il limite di f (x) per x che tende a x̄ ed è uguale a ℓ

se vale una delle seguenti proprietà, tra loro equivalenti:

(a) per ogni successione (xk) di elementi di A \ {x̄} che ha limite x̄ ,
la successione trasformata (f (xk)) ha limite ℓ;

(b) per ogni Wℓ intorno di ℓ esiste Vx̄ intorno di x̄ tale che per ogni
x ∈ A ∩ Vx̄ \ {x̄} risulta f (x) ∈Wℓ.

In tal caso scriviamo lim
x→x̄

f (x) = ℓ, oppure f (x)→ ℓ per x → x̄ .

“Ingredienti”:
• punto di accumulazione del dominio,
• successione avente limite in R / intorno di un elemento di R. 5



Consideriamo una funzione f : A ⊆ Rn → Rm, con n, m ∈ N∗, n + m ≥ 3.
altrimenti siamo nel caso già considerato ↑

Negli spazi euclidei, in quanto spazi metrici, sono disponibili le nozioni
di punto di accumulazione, intorno di un punto e successione convergente;
possiamo dunque estendere parola per parola la definizione di limite nel
caso x̄ ∈ Rn e ℓ ∈ Rm. In sospeso: limite “all’infinito”

limite “infinito”

Sia x̄ ∈ Rn un punto di accumulazione di A e sia ℓ ∈ Rm.

lim
x→x̄

f (x) = ℓ
DEF
⇐⇒
succ.

per ogni successione (xk) ⊂ A \ {x̄} che converge a x̄

la successione trasformata (f (xk)) converge a ℓ

DEF
⇐⇒
intorni

∀ε ∈ R∗
+ ∃ δ ∈ R∗

+ t.c.

∀ x ∈ A t.c. 0 < ∥x − x̄∥Rn < δ : ∥f (x)− ℓ∥Rm < ε
6



Osservazione
Dalla “banalità del limite delle successioni vettoriali” segue immediata-
mente la “banalità del limite delle funzioni vettoriali”.

Sia f : A ⊆ Rn → Rm, con m ≥ 2.
Siano x̄ ∈ Rn un punto di accumulazione di A e ℓ ∈ Rm.
Per ogni i ∈ {1, . . . , m}, denotiamo con fi e ℓi , rispettivamente, la i-esima
componente di f e di ℓ.
Allora:

lim
x→x̄

f (x) = ℓ ⇐⇒ lim
x→x̄

fi(x) = ℓi per ogni i ∈ {1, . . . , m}.

Conseguenza:
possiamo concentrare la nostra attenzione sul calcolo dei limiti di funzioni
reali di più variabili reali.
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Esempi
Verificare i seguenti limiti attraverso la definizione:

• lim
(x ,y)→(0,0)

(x2 + y2) sin
( 1

x + y

)
= 0

• lim
(x ,y)→(0,0)

3 x3 + 2 x2 + 2 y2

x2 + y2 = 2

• lim
(x ,y)→(1,1)

(y − 1)4

x2 + y2 + 2(1− x − y) = 0

• lim
(x ,y)→(0,0)

x3 y
x4 + y2 = 0 ←

tenere presente che
per ogni a, b ∈ R: |a b| ≤ a2 + b2

2

• lim
(x ,y ,z)→(0,0,0)

(x + y) z4

x4 + y2 + z4 = 0
8



Per parlare di funzione convergente “all’infinito”, supponiamo che f sia
definita in un insieme illimitato A.

Formuliamo la definizione mediante le successioni. ← per esercizio:
con gli intorni

Sia ℓ ∈ Rm.

lim
∥x∥Rn →+∞

f (x) = ℓ
DEF
⇐⇒
succ.

per ogni succ. (xk) ⊂ A t.c. ∥xk∥Rn → +∞

la succ. trasformata (f (xk)) converge a ℓ

Osservazioni
• L’esistenza di almeno una successione (xk) ⊂ A tale che ∥xk∥Rn → +∞

è garantita dal fatto che A è un insieme illimitato. Giustificare . . .

• Condizione sufficiente affinché una successione diverga in norma è che
almeno una delle sue componenti diverga in valore assoluto.
È anche necessaria? No! Esempio . . .

9



Nota
Per n = 1, oltre al limite per |x | → +∞, ha senso considerare anche
il limite per x che tende a +∞ oppure a −∞, a seconda che A sia
illimitato superiormente oppure inferiormente. Formulare la definizione . . .

Ovviamente, anche per i limiti all’infinito possiamo concentrarci sul
calcolo del limite di funzioni reali.

Esempio
Verificare attraverso la definizione: lim

∥(x ,y)∥→+∞

x2 + y2

x4 + y4 = 0

Notazione: dove non c’è possibilità di equivoco, scriviamo ∥ · ∥ invece di ∥ · ∥R2

oppure ∥ · ∥R3 .
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Concludiamo con la definizione di “limite infinito”, o meglio di funzione
divergente in norma. Formuliamo le definizioni mediante le successioni.

↑
per esercizio:
con gli intorniSe x̄ ∈ Rn è un punto di accumulazione di A:

lim
x→x̄
∥f (x)∥Rm = +∞

DEF
⇐⇒
succ.

per ogni succ. (xk) ⊂ A \ {x̄} che converge a x̄

si ha ∥f (xk)∥Rm → +∞

Se A è un insieme illimitato:

lim
∥x∥Rn →+∞

∥f (x)∥Rm = +∞
DEF
⇐⇒
succ.

∀ (xk) ⊂ A t.c. ∥xk∥Rn → +∞ :

∥f (xk)∥Rm → +∞
Nota
Per m = 1, oltre che di funzione divergente in norma (cioè in valore
assoluto) ha senso parlare di funzione divergente positivamente oppure
divergente negativamente. Formulare le definizioni . . . 11



Esempi
Verificare i seguenti limiti attraverso la definizione:

• lim
(x ,y)→(0,0)

1
x2 + y4 = +∞

• lim
∥(x ,y)∥→+∞

x4 + y4

x2 + y2 = +∞

• lim
(x ,y ,z)→(0,0,0)

∥∥∥∥( 1
x2 , 3 + y z3, x2 y

)∥∥∥∥ = +∞
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Estensione di risultati noti dal corso di AM I

Proposizione
Siano (ak), (bk) ⊂ Rn, (ck) ⊂ R. Siano a, b ∈ Rn, c ∈ R. Sia λ ∈ R.
Se ak → a, bk → b e ck → c, allora:

• ak + bk −→ a + b regola della somma

• ak − bk −→ a − b regola della differenza

• λ ak −→ λ a regola del multiplo

• ck ak −→ c a regola del prodotto

• ak · bk −→ a · b regola del prodotto scalare

Dimostrazione: basta tenere presente la “banalità del limite delle successioni
vettoriali” e applicare alle singole componenti le regole dei limiti di successioni
di numeri reali. 13



Avendo definito i limiti di funzioni tra spazi vettoriali euclidei mediante
successioni, si giustificano facilmente le seguenti affermazioni.

• Le regole algebriche sui limiti di successioni si estendono banalmente
alle funzioni convergenti.
Per funzioni a valori in R, che possono divergere positivamente o
negativamente, le regole algebriche si generalizzano con le medesime
precauzioni adottate per le funzioni reali di una variabile reale.

↑ forme di indecisione . . .

• I teoremi di permanenza del segno e delle disuguaglianze e i teoremi
di convergenza e divergenza obbligata si estendono alle funzioni reali
di più variabili reali.

• Il teorema sul limite della funzione composta si estende senza eccezioni.
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Funzioni continue tra spazi euclidei

Siano A ⊆ Rn e f : A→ Rm. Sia x̄ ∈ A.
Ricordiamo la formulazione della continuità mediante successioni:

f è continua in x̄ se e solo se per ogni successione (xk) ⊂ A che converge
a x̄ , la successione trasformata (f (xk)) converge a f (x̄).

Esempi
• La funzione definita in R2 ponendo

f (x , y) =


x y

x2 + y2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0)

non è continua in (0, 0).
• Le funzioni costanti sono continue.
• Le funzioni proiezioni sugli assi sono funzioni continue. E la norma

euclidea? 15



In aggiunta alla proprietà su “continuità e composizione funzionale”,
valida per funzioni continue tra spazi metrici arbitrari, per funzioni
tra spazi euclidei valgono le seguenti proprietà:

1 Banalità della continuità delle funzioni vettoriali
Una funzione vettoriale è continua (in un punto, in un insieme)
se e solo se lo sono tutte le sue componenti.

2 Continuità e operazioni algebriche
Con le notazioni dell’osservazione di pagina 4, se f , g e φ sono
continue (in un punto, in un insieme), lo sono anche tutte le funzioni
ottenute attraverso le operazioni algebriche.

Esempio
Stabilire se le funzioni a pagina 3 sono continue nei rispettivi domini.
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Osservazione
Le funzioni polinomiali e le funzioni razionali sono continue nei rispettivi
domini. ↑ ↑

funzioni reali di più variabili reali rapporti di funzioni polinomiali
ottenute sommando un numero
finito di multipli di prodotti
di proiezioni sugli assi

17



Osservazione (caratterizzazione della continuità mediante i limiti)
Sia f : A ⊆ Rn → Rm e sia x̄ ∈ A.
È facile riconoscere che:
• se x̄ è un punto isolato di A, allora f è continua in x̄ ;
• se x̄ è un punto di accumulazione di A, allora:

f è continua in x̄ se e solo se lim
x→x̄

f (x) = f (x̄).

Pertanto, per una funzione continua gli unici limiti “significativi” sono
• i limiti per x che tende a x̄ ∈ Rn, con x̄ punto di accumulazione del

dominio non appartenente al dominio;
• i limiti all’infinito (se il dominio è illimitato).

Esempio
Individuare i limiti significativi della funzione f (x , y) = arctan

( x
x2 + y2

)
.
18



Come calcolare i limiti per funzioni reali di più variabili
↑ non restrittivo (banalità del limite)

Osservazione preliminare
Sia f : A ⊆ Rn → R e sia x̄ un punto di accumulazione di A.
Se esiste lim

x→x̄
f (x) =: ℓ ∈ R, allora: ogni restrizione di f per la quale

abbia senso calcolare il limite per x → x̄ ha lo stesso limite.

In simboli: per ogni B ⊂ A tale che x̄ ∈ Dr(B) risulta lim
x→x̄

f|B(x) = ℓ.

Strategia conseguente:
• se riesco a individuare una restrizione di f che non ha limite per

x → x̄ , oppure due restrizioni di f che hanno limiti diversi per x → x̄ ,
allora deduco che f non ha limite per x → x̄ ;

• se, per x che tende a x̄ , una o più restrizioni producono il limite ℓ,
allora congetturo che f abbia limite ℓ e lo verifico tramite la definizione
di limite. ↑

come negli esempi 19



Nota: per i limiti all’infinito valgono analoghe considerazioni.

Esempi
Individuare e calcolare (se esistono) i limiti significativi delle seguenti
funzioni:

• f (x , y) = arctan
( x

x2 + y2

)
• f (x , y) = x2 y

x4 + y2

• f (x , y) = x y
x2 + y2 • f (x , y) = x2 y

x2 − y2

• f (x , y) = x3 y2

4 x2 + y2 • f (x , y) = ln(1 + x y)
x2 + y2

Nota
Per calcolare i limiti di funzioni reali di due variabili può essere utile
ricorrere alle coordinate polari. Esempi . . . 20



Esempi
• Studiare la continuità della funzione definita ponendo

f (x , y) =


x y (x2 − y2)

x2 + y2 (x , y) ̸= (0, 0)

0 (x , y) = (0, 0)

• Stabilire se la funzione definita ponendo

f (x , y) =


1−

√
1− x2 − y2

x2 + y2 (x , y) ̸= (0, 0)

1
2 (x , y) = (0, 0)

ammette estremi globali nel proprio dominio.
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Due classi speciali di funzioni continue

1 Curve in Rn

Siano I ⊆ R un intervallo, r : I→ Rn una funzione continua, γ := r(I).
La coppia (γ, r) si chiama curva in Rn.
L’insieme γ si chiama sostegno della curva; la funzione r si chiama
parametrizzazione di γ. Diremo anche: parametrizzazione della curva

L’intervallo I si chiama intervallo dei parametri.

Esempio
Siano x , y ∈ Rn, con x ̸= y . La funzione t ∈ R 7→ x + t (y − x)
definisce una curva avente come sostegno la retta passante per x e y .

Nota
Il sostegno di una curva è sempre un insieme connesso; se l’intervallo dei
parametri è compatto, il sostegno è anche compatto. Perché? 22



Esempi
• Con le notazioni dell’esempio precedente, le funzioni

t ∈ [0, +∞) 7→ x + t (y − x) t ∈ [0, 1] 7→ x + t (y − x)

definiscono due curve aventi come sostegno, rispettivamente, la semi-
retta uscente da x e passante per y e il segmento congiungente x e y .

• Le funzioni
t ∈ [0, 2 π] 7→ (cos(t), sin(t))

t ∈ [0, 3 π] 7→ (cos(t), sin(t))
t ∈ R 7→ (cos(t), sin(t))

t ∈ [0, 2 π] 7→ (sin(t), cos(t))

sono tutte parametrizzazioni dell’insieme{
(x , y) ∈ R2 | x2 + y2 = 1

}
=: S1 circonferenza unitaria in R2

• La funzione t ∈ [0, π] 7→ (cos(t), sin(t)) è una parametrizzazione
dell’insieme S1 ∩

{
(x , y) ∈ R2 | y ≥ 0

} metà superiore della
circonferenza unitaria

23



Osservazione
Assegnare il sostegno γ non determina univocamente una curva; tuttavia,
se sottintendiamo una parametrizzazione “naturale”, possiamo parlare di
“curva γ”. Esempi . . .
Viceversa, una curva è univocamente individuata quando se ne assegna la
parametrizzazione r . Ciò equivale ad assegnare le equazioni parametriche

x1 = r1(t) , . . . , xn = rn(t), t ∈ I

dove r1, . . . , rn sono le componenti di r .

Nota
Il sostegno di una curva ne racchiude le informazioni geometriche; si può
interpretare come la traiettoria descritta da una particella che si muove
nello spazio.
La parametrizzazione racchiude le informazioni cinematiche della curva;
si può interpretare come la legge oraria del moto. 24



Osservazione
Essendo un sottoinsieme di R, l’intervallo dei parametri è orientato; la sua
orientazione induce una orientazione (o verso di percorrenza) sul sostegno
della curva.

Esempio
Le funzioni r1 := t ∈ [0, 2π] 7→ (cos(t), sin(t))

r2 := t ∈ [0, 2π] 7→ (cos(2π−t), sin(2π−t))

sono parametrizzazioni della circonferenza unitaria S1 su cui inducono
orientazioni opposte.

25



Sia (γ, r) una curva in Rn con intervallo dei parametri I.

• Se I ha minimo oppure massimo, r(min I) e r(max I) si chiamano
estremi della curva.

• Diciamo che la curva è chiusa se I = [a, b] e r(a) = r(b).
Significato?

• Diciamo che la curva è semplice se, presi due elementi distinti t1, t2 ∈ I,
di cui almeno uno interno a I, si ha r(t1) ̸= r(t2).
Significato?

• Se il sostegno γ è contenuto in un piano, diciamo che la curva è piana.

Esempi
Individuare gli estremi delle curve considerate a pagina 22 e 23; stabilire
se sono chiuse, semplici, piane.
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Nota
Una curva piana chiusa e semplice si chiama curva di Jordan.
Il sostegno di una curva di Jordan è frontiera di due sottoinsiemi connessi
di R2, dei quali uno è limitato (interno della curva) e l’altro è illimitato
(esterno della curva). Risultato intuitivo, ma dimostrazione non banale!

Esempio
Si stabilisca se la curva di parametrizzazione

r(t) =
(
(t + 1)2, t2(t + 2)

)
, t ∈ [−2, 1]

è chiusa e se è semplice e se ne disegni approssimativamente il sostegno.

27



Osservazione (curva grafico)
Sia I ⊆ R intervallo e sia f : I→ R una funzione continua.
La funzione vettoriale

r := t ∈ I 7→
(
t, f (t)

)
∈ R2

è continua e la sua immagine coincide con il grafico di f ; dunque r è una
parametrizzazione del grafico di f .
La curva piana corrispondente si chiama curva grafico o curva cartesiana;
è una curva semplice non chiusa.

Esempi . . .

28



2 Superfici in R3 In generale (ma non in questo corso): ipersuperfici in Rn

Sia K ⊆ R2.
Diciamo che K è un insieme di parametri se esiste un insieme A ⊆ R2

aperto e connesso tale che A ⊆ K ⊆ A.
Esempi . . .

Siano K ⊆ R2 un insieme di parametri, σ : K → R3 una funzione
continua e Σ := σ(K ).
La coppia (Σ, σ) si chiama superficie in R3.
L’insieme Σ si chiama sostegno della superficie; la funzione σ si chiama
parametrizzazione di Σ.

Confronto con la nozione di curva . . .
Proprietà topologiche del sostegno . . .

29



Avvertenza: parlando di superfici, assumeremo tacitamente che la para-
metrizzazione σ soddisfi la seguente condizione, formalmente identica a
quella che appare nella definizione di curva semplice:

(∗) presi due elementi distinti (u1, v1), (u2, v2) ∈ K , di cui almeno uno
interno a K , si ha σ(u1, v1) ̸= σ(u2, v2). Significato?

Formulazione alternativa?

Osservazione (analoga a quella per le curve)
Assegnare il sostegno Σ non determina univocamente una superficie.
Tuttavia, se sottintendiamo una parametrizzazione “naturale”, possiamo
parlare di “superficie Σ”.
In genere, definiremo una superficie assegnando la parametrizzazione σ

oppure, equivalentemente, assegnando le equazioni parametriche

x = σ1(u.v) , y = σ2(u, v) , z = σ3(u, v), (u, v) ∈ K

dove σ1, σ2, σ3 sono le componenti di σ.
30



Osservazione (superficie grafico)
Siano K ⊂ R2 insieme di parametri e f : K → R funzione continua.
La funzione vettoriale

σ := (u, v) ∈ K 7→
(
u, v , f (u, v)

)
∈ R3

è continua e la sua immagine coincide con il grafico di f ; dunque σ è una
parametrizzazione del grafico di f .
Evidentemente σ soddisfa la condizione (∗) di pagina 30.
La superficie corrispondente si chiama superficie grafico oppure superficie
cartesiana.

31



Esempi
Parametrizzare e rappresentare graficamente le superfici corrispondenti
alle seguenti funzioni:

• f (x , y) = x2 + y2 (x , y) ∈ B2(0, 0)

• f (x , y) =
√

x2 + y2 (x , y) ∈ R2

• f (x , y) = x2 − y2 (x , y) ∈ R2

• f (x , y) =
√

r2 − x2 − y2 (x , y) ∈ Br (0, 0) semi-superficie sferica

• f (x , y) = 1− x − y (x , y) ∈ R2 piano

32



Esempi Richiamo: coordinate cilindriche, sferiche

• Sia r ∈ R∗
+. La funzione σ : [0, 2π]× R→ R3 definita ponendo

σ(θ, z) = (r cos(θ), r sin(θ), z)

definisce la superficie cilindrica, che ha come sostegno la “superficie
laterale” di un cilindro avente come direttrice la circonferenza di centro
l’origine e raggio r contenuta nel piano xy e generatrici parallele
all’asse z .

Cosa si ottiene restringendo σ a [0, 2π]× [0, h] con h ∈ (0, +∞)?

• Sia r ∈ R∗
+. La funzione σ : [0, π]× [0, 2π]→ R3 definita ponendo

σ(φ, θ) = (r sin(φ) cos(θ), r sin(φ) sin(θ), r cos(φ))

definisce la superficie sferica, che ha come sostegno la sfera di centro
l’origine e raggio r .

Cosa si ottiene restringendo σ a [0, π/2]× [0, 2π]? 33
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Limiti di funzioni di due variabili mediante coordinate polari

Sia f : Br (x̄ , ȳ) \ {(x̄ , ȳ)} → R e sia ℓ ∈ R.

Introduciamo coordinate polari di centro (x̄ , ȳ):

x = x̄ + ρ cos θ, y = ȳ + ρ sin θ

e definiamo
g(ρ, θ) := f (x̄ + ρ cos θ, ȳ + ρ sin θ)

con ρ ∈ (0, r) e θ ∈ [0, 2π].

lim
(x ,y)→(x̄ ,ȳ)

f (x , y) = ℓ
DEF
⇐⇒
intorni

∀ ε > 0 ∃ δ > 0 t.c. 0 < ∥(x , y)− (x̄ , ȳ)∥ < δ =⇒ |f (x , y)− ℓ| < ε

Equivalentemente:

∀ ε > 0 ∃ δ > 0 t.c. 0 < ∥((ρ cos θ, ρ sin θ)∥ < δ =⇒ |g(ρ, θ)− ℓ| < ε
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Equivalentemente:

∀ ε > 0 ∃ δ > 0 t.c. 0 < ρ < δ, θ ∈ [0, 2π] =⇒ |g(ρ, θ)− ℓ| < ε

Equivalentemente:

∀ ε > 0 ∃ δ > 0 t.c. 0 < ρ < δ =⇒ sup
θ∈[0,2π]

|g(ρ, θ)− ℓ| < ε

In conclusione:

lim
(x ,y)→(x̄ ,ȳ)

f (x , y) = ℓ ⇐⇒ lim
ρ→0

sup
θ∈[0,2π]

|g(ρ, θ)− ℓ| = 0.
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