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Avvertenza
Al termine della lezione queste pagine verranno rese disponibili online;
non & quindi necessario copiarne il contenuto.



Funzioni tra spazi euclidei

Da ora in poi consideriamo funzioni che hanno dominio contenuto in R”
e codominio contenuto in R™, con n,m € N*.

Per m = 1 parliamo di funzioni reali (o scalari) di una o piu variabili reali.

Per m > 2 parliamo di funzioni vettoriali di una o piu variabili reali;

se n = m parliamo di campi vettoriali.

Esempio
Sian>2esiaie{l,...,n}.
La funzione 7; : R” — R che a ogni x = (x1,...,x,) € R"” associa

la i-esima coordinata x; € una funzione reale di n variabili reali,
che si chiama proiezione sull'asse i-esimo oppure i-esima proiezione.

Notazione: in R? e R3 denoteremo le proiezioni con Tx, Ty € Tz.



Osservazione
Assegnare una funzione vettoriale f : A C R” — R™ equivale ad assegnare
una m-upla ordinata di funzioni reali definite in A.

Infatti, data f : A C R" — R™ possiamo comporre f con le proiezioni
sugli assi, ottenendo m funzioni reali definite in A:

fii=mof, ..., fn:=mmof.
Per ogni x € A il numero reale fi(x) & la i-esima componente del vettore
f(x); pertanto:
(%) f(x) = (fA(x), ..., fm(x)) per ogni x € A.

Viceversa, data una m-upla ordinata (fi, ..., ) di funzioni reali definite
in A, possiamo definire tramite (x) la funzione vettoriale f : A — R™ che
a ogni x € A associa il vettore di componenti fi(x),..., fm(x).

Le funzioni fi,. .., f, che soddisfano () si chiamano funzioni componenti
di f.



Esempi @&
e La funzione f : R — R? tale che
f(t) = (cos(t), sin(t))
& una funzione vettoriale di una variabile reale le cui componenti sono,
nell'ordine, la funzione coseno e la funzione seno.
e La funzione f : R3 — R3 tale che
f(x,y,2) = (x +y, x2%, y +2%)

& un campo vettoriale in R3 le cui componenti sono, nell'ordine,
le funzioni definite ponendo

A(x.y,z) =x+y, hxyz)=x22, f(xy,z)=y+2°.



Osservazione (operazioni algebriche con funzioni vettoriali)
Sia ACR" Siano f,g:A—=R™ p: A— Resia XA eR.

Si definiscono le seguenti funzioni:

o f+g:=x€A— f(x)+g(x) somma
o f—gi=x€e€A~ f(x)—g(x) differenza
o \fi=x€ A \f(x) multiplo
o pof i=x¢€ A~ p(x)f(x) prodotto per funzione reale
o f.gi=xeA—f(x)-g(x) prodotto scalare
Nota

Per m = 1 si possono definire in modo naturale le funzioni rapporto —

e prodotto f g (che coincide con la funzione prodotto scalare).



Limiti per funzioni tra spazi euclidei

Ricordiamo la definizione di limite per funzioni reali di una variabile reale:
Siaf :ACR—=R. J RU{—o0,+o0}
Sia X € R un punto di accumulazione di A e sia { € R.
Diciamo che esiste il limite di f(x) per x che tende a X ed é uguale a ¢
se vale una delle seguenti proprieta, tra loro equivalenti:
(a) per ogni successione (xx) di elementi di A\ {x} che ha limite X,
la successione trasformata (f(xx)) ha limite ¢;
(b) per ogni Wy intorno di ¢ esiste Vi intorno di X tale che per ogni
x € AN Vi \ {x} risulta f(x) € W,.

In tal caso scriviamo lim f(x) = ¢, oppure f(x) — { per x — X.
X—rX

“Ingredienti":
e punto di accumulazione del dominio,
e successione avente limite in R / intorno di un elemento di R.



Consideriamo una funzione f : ACR" — R™, con n,m € N*, n+ m > 3.
altrimenti siamo nel caso gia considerato 1

Negli spazi euclidei, in quanto spazi metrici, sono disponibili le nozioni
di punto di accumulazione, intorno di un punto e successione convergente;
possiamo dunque estendere parola per parola la definizione di limite nel

caso x e R"e l € R™. In sospeso: limite "“all’infinito”
limite “infinito”

Sia x € R"” un punto di accumulazione di A e sia / € R™.

DEF
lim f(x) =¢ <= per ogni successione (xx) C A\ {x} che converge a X

XX succ.
la successione trasformata (f(xx)) converge a ¢

DEF
< VeeR} J0€R} tc

intorni

VxeA tc 0<|[x =X|rn <6 : [[f(x) —Llrm < €



Osservazione

Dalla “banalita del limite delle successioni vettoriali” segue immediata-
mente la “banalita del limite delle funzioni vettoriali”.
Siaf:ACR" — R™, con m> 2.

Siano x € R" un punto di accumulazione di Ae £ € R™.

Per ogni i € {1,..., m}, denotiamo con f; e ¢;, rispettivamente, la i-esima
componente di f e di £.

Allora:

lim f(x)=¢ <= lim fi(x)=4¢; perogniiec{l,...,m}.

X—X X—X

Conseguenza:
possiamo concentrare la nostra attenzione sul calcolo dei limiti di funzioni
reali di piu variabili reali.



Esempi

Verificare i seguenti limiti attraverso la definizione:

1
lim x2 4+ y2) sin <> =0
* Moo TSN

3x3+2x%2+2y2 B

° lim 5 5 2
(x,y)—(0,0) Xty
—1)4
(xy)—=(11) X2+ y2 +2(1 —x — y)
' X3y 0 tenere presente che 2, g2
— = —
* (va)in(070) x4+ y2 per ogni a,b € R: |ab| < a+

2

(xt+y)zt
(x,y,2)—(0,0,0) x* + y2 + z*




Per parlare di funzione convergente “all’infinito”, supponiamo che f sia
definita in un insieme illimitato A.

per esercizio:

Formuliamo la definizione mediante le successioni. <+ . .
con gli intorni

Sia ¢ € R™.
DEF
lim  f(x)={ <= perognisucc. (xx) CA tc. [x||rn — 400
[Ixlgn =00 succ.
la succ. trasformata (f(xx)) converge a ¢

Osservazioni

o L'esistenza di almeno una successione (xx) C A tale che ||xk||gn — +00
& garantita dal fatto che A & un insieme illimitato.  Giustificare ...

e Condizione sufficiente affinché una successione diverga in norma & che
almeno una delle sue componenti diverga in valore assoluto.

E anche necessaria? No! Esempio ...



Nota

Per n =1, oltre al limite per |x| — +00, ha senso considerare anche

il limite per x che tende a +0c oppure a —o0, a seconda che A sia
illimitato superiormente oppure inferiormente. Formulare la definizione . ..

Ovviamente, anche per i limiti all'infinito possiamo concentrarci sul

calcolo del limite di funzioni reali.

Esempio
x2 + y

Verificare attraverso la definizione: lim <=
[[(x,y)l—+oo x4 + y*

| invece di || - ||r2

Notazione: dove non c'é possibilita di equivoco, scriviamo || -

oppure || - [|ps

10



Concludiamo con la definizione di “limite infinito”, o meglio di funzione
divergente in norma. Formuliamo le definizioni mediante le successioni.

N

_ ) ) ) per esercizio:
Se x € R"” & un punto di accumulazione di A: con gli intorni

DEF
lim [[f(x)|lgm = +00 <= per ogni succ. (xx) C A\ {X} che converge a x
X—X

si ha "f(Xk)‘|Rm — +00
Se A & un insieme illimitato:

DEF
[f(x)||rm = 400 <= V(xk) C A t.c. ||xk||rn — +00 :

[Ix|[gn—+o00 succ.
1 (i) [[mm — 400
Nota
Per m =1, oltre che di funzione divergente in norma (cioé in valore
assoluto) ha senso parlare di funzione divergente positivamente oppure

divergente negativamente.  Formulare le definizioni . .. 11



Esempi
Verificare i seguenti limiti attraverso la definizione:

1
l S
() 2(0,0) X2 + 4 oo

[ )
x4+y4_

[ ] m —_—
()| +oe X2+ y?

+oo

lim ‘(1 34+y28 x2y)H:+oo
(x,5,2)—(0,0,0) || \ x?’ ’



Estensione di risultati noti dal corso di AM |

Proposizione
Siano (ak), (bx) C R", (ck) C R. Siano a,b € R", c € R. Sia A € R.

Se a, — a, by — be ¢, — ¢, allora:

e a, +b—a+b regola della somma

e g, — by —>a—0>b regola della differenza

e \ay, —r \a regola del multiplo

e crax ——ca regola del prodotto

® ay-by—ra-b regola del prodotto scalare

Dimostrazione: basta tenere presente la “banalita del limite delle successioni
vettoriali” e applicare alle singole componenti le regole dei limiti di successioni

di numeri reali. 13



Avendo definito i limiti di funzioni tra spazi vettoriali euclidei mediante
successioni, si giustificano facilmente le seguenti affermazioni.

e Le regole algebriche sui limiti di successioni si estendono banalmente
alle funzioni convergenti.
Per funzioni a valori in R, che possono divergere positivamente o
negativamente, le regole algebriche si generalizzano con le medesime
precauzioni adottate per le funzioni reali di una variabile reale.

1 forme di indecisione ...

e | teoremi di permanenza del segno e delle disuguaglianze e i teoremi
di convergenza e divergenza obbligata si estendono alle funzioni reali
di piu variabili reali.

o Il teorema sul limite della funzione composta si estende senza eccezioni.

14



Funzioni continue tra spazi euclidei

Siano ACR"ef: A— R™ Siax € A.

Ricordiamo la formulazione della continuita mediante successioni:

f & continua in X se e solo se per ogni successione (xx) C A che converge
a X, la successione trasformata (f(xx)) converge a f(x).

Esempi
e La funzione definita in R? ponendo
) = ai (e #00)
0 (x,y) =(0,0)
non & continua in (0,0).
e Le funzioni costanti sono continue.

E la norma

e Le funzioni proiezioni sugli assi sono funzioni continue. _ jijaa? 5



In aggiunta alla proprieta su “continuita e composizione funzionale”,
valida per funzioni continue tra spazi metrici arbitrari, per funzioni

tra spazi euclidei valgono le seguenti proprieta:

@ Banalita della continuita delle funzioni vettoriali
Una funzione vettoriale & continua (in un punto, in un insieme)

se e solo se lo sono tutte le sue componenti.

® Continuita e operazioni algebriche

Con le notazioni dell’osservazione di pagina 4, se f, g e  sono
continue (in un punto, in un insieme), lo sono anche tutte le funzioni

ottenute attraverso le operazioni algebriche.

Esempio
Stabilire se le funzioni a pagina 3 sono continue nei rispettivi domini.

16



Osservazione
Le funzioni polinomiali e le funzioni razionali sono continue nei rispettivi
domini. 0 1
funzioni reali di piu variabili reali rapporti di funzioni polinomiali
ottenute sommando un numero
finito di multipli di prodotti
di proiezioni sugli assi



Osservazione (caratterizzazione della continuita mediante i limiti)
Siaf :ACR" - R"esiaxeA.

E facile riconoscere che:
e se X € un punto isolato di A, allora f & continua in X;
e se X e un punto di accumulazione di A, allora:

f & continua in X se e solo se lim f(x) = f(x).
X—rX

Pertanto, per una funzione continua gli unici limiti “significativi” sono

e i limiti per x che tende a X € R", con X punto di accumulazione del
dominio non appartenente al dominio;

e i limiti all'infinito (se il dominio & illimitato).

Esempio
Individuare i limiti significativi della funzione f(x,y) = arctan <2j_2>
XeTy
18



Come calcolare i limiti per funzioni reali di piu variabili
T non restrittivo (banalita del limite)
Osservazione preliminare

Sia f : ACR" — R e sia x un punto di accumulazione di A.

Se esiste lim f(x) =: ¢ € R, allora: ogni restrizione di f per la quale
X—rX

abbia senso calcolare il limite per x — X ha lo stesso limite.

In simboli: per ogni B C A tale che x € Dr(B) risulta lim fg(x) = £.

X—X

Strategia conseguente:

e se riesco a individuare una restrizione di f che non ha limite per
x — X, oppure due restrizioni di f che hanno limiti diversi per x — X,
allora deduco che f non ha limite per x — X;

e se, per x che tende a X, una o pil restrizioni producono il limite Z,
allora congetturo che f abbia limite ¢ e lo verifico tramite la definizione

di limite. T
come negli esempi 19



Nota: per i limiti all'infinito valgono analoghe considerazioni.

f(X7y):

f(X’y) =

f(X7y) =

x2y
x4+ y2

X2y

X2 )2

In(1+ xy)
x2 +y2

Esempi
Individuare e calcolare (se esistono) i limiti significativi delle seguenti
funzioni:
X
f = arctan | 5——>
o f(x,y)=nar n(x2+y2) .
Xy
o f(x,y)= m °
3,2
X"y
o f(x,y)= m °
Nota

Per calcolare i limiti di funzioni reali di due variabili pud essere utile

ricorrere alle coordinate polari. Esempi ...

20



Esempi
e Studiare la continuita della funzione definita ponendo

xv(x2 — y2
yX(2+y2y) (va)#(())O)

f(Xay) =
0 (x,y) = (0,0)

e Stabilire se la funzione definita ponendo

LoVI= oy ) £(0.0)

X2 +y2
1
(va) = (070)

f(x,y) =

2

ammette estremi globali nel proprio dominio.

21



Due classi speciali di funzioni continue

® Curvein R”

Siano I C R un intervallo, r : I — R” una funzione continua, ~y := r(I).
La coppia (7, r) si chiama curva in R".

L'insieme -~ si chiama sostegno della curva; la funzione r si chiama

parametrizzazione di 7v.  Diremo anche: parametrizzazione della curva

L'intervallo I si chiama intervallo dei parametri.

Esempio
Siano x,y € R", con x # y. La funzione t € R+ x+ t(y — x)
definisce una curva avente come sostegno la retta passante per x e y.

Nota
Il sostegno di una curva & sempre un insieme connesso; se |'intervallo dei
parametri € compatto, il sostegno & anche compatto. Perché?

22



Esempi

e Con le notazioni dell'esempio precedente, le funzioni
t €[0,+00) — x+ t(y — x) t€[0,1] — x+t(y — x)

definiscono due curve aventi come sostegno, rispettivamente, la semi-

retta uscente da x e passante per y e il segmento congiungente x e y.

e Le funzioni
t €0,27] — (cos(t), sin(t)) t € R+ (cos(t), sin(t))
t € 10,3 7] — (cos(t), sin(t)) t €0,27] — (sin(t), cos(t))
sono tutte parametrizzazioni dell'insieme
{(y) eR2 | x24+y2 =1} = S1 circonferenza unitaria in R?

e La funzione t € [0, 7] — (cos(t), sin(t)) & una parametrizzazione

dell'insieme SN {(x,y) € R?|y >0} meta superiore della
circonferenza unitaria

23



Osservazione

Assegnare il sostegno ~y non determina univocamente una curva; tuttavia,
se sottintendiamo una parametrizzazione “naturale”, possiamo parlare di

“curva 4".  Esempi ...

Viceversa, una curva € univocamente individuata quando se ne assegna la
parametrizzazione r. Cid equivale ad assegnare le equazioni parametriche

x1=n(t), ... ,xp=rn(t), tel

dove ri, ..., r, sono le componenti di r.

Nota

Il sostegno di una curva ne racchiude le informazioni geometriche; si pud
interpretare come la traiettoria descritta da una particella che si muove
nello spazio.

La parametrizzazione racchiude le informazioni cinematiche della curva;
si puo interpretare come la legge oraria del moto. 24



Osservazione
Essendo un sottoinsieme di R, I'intervallo dei parametri € orientato; la sua
orientazione induce una orientazione (o verso di percorrenza) sul sostegno

della curva.

Esempio
Le funzioni r; :=t € [0,27] — (cos(t), sin(t))

r =t € [0,27] — (cos(2m—t), sin(2m—t))

sono parametrizzazioni della circonferenza unitaria S su cui inducono

orientazioni opposte.

25



Sia (, r) una curva in R" con intervallo dei parametri I.

e Se I ha minimo oppure massimo, r(minI) e r(maxI) si chiamano

estremi della curva.

e Diciamo che la curva & chiusa se I = [a, b] e r(a) = r(b).
Significato?

e Diciamo che la curva & semplice se, presi due elementi distinti t;, to € I,
di cui almeno uno interno a I, si ha r(t1) # r(t2).

Significato?

e Se il sostegno «y & contenuto in un piano, diciamo che la curva & piana.

Esempi
Individuare gli estremi delle curve considerate a pagina 22 e 23; stabilire

se sono chiuse, semplici, piane.
26



Nota

Una curva piana chiusa e semplice si chiama curva di Jordan.

Il sostegno di una curva di Jordan & frontiera di due sottoinsiemi connessi
di R2, dei quali uno & limitato (interno della curva) e I'altro & illimitato

(esterno della curva). Risultato intuitivo, ma dimostrazione non banale!

Esempio
Si stabilisca se la curva di parametrizzazione

r(t) = ((t+1)2 t3(t+2)), te[-21]

& chiusa e se & semplice e se ne disegni approssimativamente il sostegno.

27



Osservazione (curva grafico)

Sia I C R intervallo e sia f : I — R una funzione continua.
La funzione vettoriale

ri=telw (t, f(t)) € R

& continua e la sua immagine coincide con il grafico di f; dunque r & una
parametrizzazione del grafico di f.

La curva piana corrispondente si chiama curva grafico o curva cartesiana;

€ una curva semplice non chiusa.

Esempi ...

28



@® Superfici in R®  In generale (ma non in questo corso): ipersuperfici in R”

Sia K C R2.
Diciamo che K & un insieme di parametri se esiste un insieme A C R?
aperto e connesso tale che AC K C A.

Esempi ...

Siano K C R? un insieme di parametri, o : K — R3 una funzione
continua e 3 := o (K).

La coppia (X, o) si chiama superficie in R3.

L'insieme X si chiama sostegno della superficie; la funzione o si chiama
parametrizzazione di X.

Confronto con la nozione di curva . ..
Proprieta topologiche del sostegno ...

29



Avvertenza: parlando di superfici, assumeremo tacitamente che la para-
metrizzazione o soddisfi la seguente condizione, formalmente identica a
quella che appare nella definizione di curva semplice:

() presi due elementi distinti (u1, v1), (u2, v2) € K, di cui almeno uno

interno a K, si ha o(u1,vi) # o(u2, v2).  Significato?
Formulazione alternativa?

Osservazione (analoga a quella per le curve)

Assegnare il sostegno 3 non determina univocamente una superficie.
Tuttavia, se sottintendiamo una parametrizzazione “naturale”, possiamo
parlare di “superficie 3"

In genere, definiremo una superficie assegnando la parametrizzazione o
oppure, equivalentemente, assegnando le equazioni parametriche

x=o1(uv), y=o2(u,v), z=o03(u,v), (yv)eK

dove o1, 02, 03 sono le componenti di o.

30



Osservazione (superficie grafico)
Siano K C R? insieme di parametri e f : K — R funzione continua.
La funzione vettoriale
o:=(uv)e K (u, v, f(uv)) e R®
& continua e la sua immagine coincide con il grafico di f; dunque o & una
parametrizzazione del grafico di f.
Evidentemente o soddisfa la condizione (x) di pagina 30.

La superficie corrispondente si chiama superficie grafico oppure superficie
cartesiana.

31



Esempi

Parametrizzare e rappresentare graficamente le superfici corrispondenti

alle seguenti funzioni:

o f(x,y)=x"+y?

o fx,y)=Vx2+y?

o f(x,y)=x%—y2

o flx,y)=Vrr-x2—y?

o fx,y)=1-x—y

(x,¥) € B2(0,0)

(x,y) € R?

(x,y) € R?

(x,y) € B,(0,0)  semi-superficie sferica

(x,y) € R? piano

32



Esempi Richiamo: coordinate cilindriche, sferiche
e Sia r € R%. La funzione o : [0,27] x R — R? definita ponendo
o(0,z) = (r cos(0), rsin(0), z)

definisce la superficie cilindrica, che ha come sostegno la “superficie
laterale” di un cilindro avente come direttrice la circonferenza di centro
I'origine e raggio r contenuta nel piano xy e generatrici parallele
all'asse z.

Cosa si ottiene restringendo o a [0, 27] x [0, h] con h € (0, +00)?
e Sia r € R%. La funzione o : [0, 7] x [0,27] — R3 definita ponendo

o(p,0) = (r sin(p)cos(d), rsin(p)sin(f), r cos(y))

definisce la superficie sferica, che ha come sostegno la sfera di centro
I'origine e raggio r.

Cosa si ottiene restringendo o a [0,7/2] x [0, 27]? 33



APPENDICE

(VERIFICHE, RICHIAMI, ...

)
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Limiti di funzioni di due variabili mediante coordinate polari

Sia f: B.(x,y) \{(X,7)} 2 ResialeR.
Introduciamo coordinate polari di centro (x,¥):

x=X4+pcost, y=y+psinf
e definiamo
g(p,0) :=f(x+ pcosh, y+psinb)

con p € (0,r) e 6 € [0,27].

DEF
lim  f(x,y)={ <=
(x.y)—=(%.¥) intorni

Ve>035>0 tc. 0< [[(x,y)— (X, )| <d = |f(x,y) =¥ <e

Equivalentemente:

Ve>0 35 >0 tc. 0 <|[((pcosh, psinf)|| <dé = |g(p,0) —¥| <535



Equivalentemente:

Ve>0 36>0 tc. 0<p<d, 0€[0,2nr] = |g(p,0)—¥ <e

Equivalentemente:

Ve>0 36>0 tc. 0<p<d = sup |g(p,0)—4 <e
0€[0,27]

In conclusione:

lim  f(x,y)={¢ <= lim su 0)— (| =0.
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