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Spazi metrici

Sia X un insieme qualsiasi (non vuoto).
Una metrica o distanza in X è una funzione d : X × X → R+ soddisfa-
cente le seguenti proprietà:

D1 d(x , y) = 0 se e solo se x = y ;

D2 d(x , y) = d(y , x) per ogni x , y ∈ X ;

D3 d(x , y) ≤ d(x , z) + d(z , y) per ogni x , y , z ∈ X . disuguaglianza
triangolare

La coppia (X , d) si chiama spazio metrico; X si chiama sostegno dello
spazio metrico.

Nota: dalla disuguaglianza triangolare si deduce la seconda disuguaglianza
triangolare:

|d(x , y)− d(x , z)| ≤ d(y , z) per ogni x , y , z ∈ X .

Verifica . . . 1



Esempio (metrica del valore assoluto)
Ricordiamo che in R si definisce la funzione valore assoluto ponendo

|x | :=

 x se x ∈ [0, +∞)
−x se x ∈ (−∞, 0)

la quale soddisfa le seguenti proprietà:
• per ogni x ∈ R : |x | ≥ 0 e |x | = 0 ⇐⇒ x = 0

• per ogni x ∈ R : |−x | = |x |

• per ogni x , y ∈ R : |x y | = |x | |y |

• per ogni x , y ∈ R : |x + y | ≤ |x |+ |y |

La funzione d definita in R× R ponendo

d(x , y) := |x − y | per ogni x , y ∈ R

è una metrica in R, detta metrica del valore assoluto. Verifica . . .
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Esempi (metriche in Rn) ←
per n = 1 coincidono con la metrica
del valore assoluto

Consideriamo Rn := R× . . .× R, insieme delle n-uple ordinate di numeri
reali.

︸ ︷︷ ︸
n fattori

La funzione dRn , definita ponendo

dRn(x , y) :=

√√√√ n∑
i=1

(xi − yi)2
x = (x1, . . . , xn) ∈ Rn

y = (y1, . . . , yn) ∈ Rn

è una metrica in Rn, detta metrica euclidea.
Verifichiamo D1 e D2 , rinviando la verifica di D3

Sono metriche in Rn anche le funzioni definite ponendo

d1(x , y) :=
n∑

i=1
|xi − yi | dmax(x , y) := max

1≤i≤n
|xi − yi |

metrica del reticolo (o del taxi) metrica del massimo

Verifica . . . 3



Esempio (spazio metrico discreto)
Sia X un qualsiasi insieme con almeno due elementi.
La funzione definita in X × X ponendo

dDIS(x , y) :=

0 se x = y
1 se x ̸= y

è una metrica, detta metrica discreta.
Verifica . . .

Nel corso di AM III verranno trattati ulteriori spazi metrici, i cui elementi
sono funzioni.
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Elementi di topologia in uno spazio metrico

In quel che segue (X , d) è uno spazio metrico.
Siano x0 ∈ X e r ∈ R∗

+.
L’insieme

Br (x0) :=
{

x ∈ X | d(x , x0) < r
}

si chiama intorno sferico (o palla) di centro x0 e raggio r .

Esempi
Descrivere gli intorni sferici:
• in uno spazio metrico discreto,
• in R (sottinteso: con la metrica del valore assoluto),
• in R2 rispetto alla metrica euclidea, alla metrica del reticolo e alla

metrica del massimo. Intorni “incapsulabili” . . .
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Siano E ⊆ X , x0 ∈ X .
Diciamo che x0 è un

• punto interno a E se esiste un intorno sferico di x0 contenuto in E ;

• punto esterno a E se è interno a E c (il complementare di E ), cioè
se esiste un intorno sferico di x0 contenuto in E c ;

• punto di frontiera per E se non è interno né esterno a E , cioè se
ogni intorno sferico di x0 contiene sia punti di E che punti di E c ;

• punto di accumulazione per E se ogni intorno sferico di x0 contiene
almeno un elemento di E diverso da x0. ← Superfluo se x0 ̸∈ E .

Esempio: intervalli di R . . .
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Osservazioni

1 Ogni punto interno è di accumulazione.

2 Un punto è di frontiera per E se e solo se è di frontiera per E c .

3 Un punto di frontiera non è necessariamente di accumulazione e
viceversa.
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Sia E ⊆ X .

• L’insieme dei punti interni a E si chiama interno o interiore di E
e si denota con int(E ) (oppure E̊ ). Nota: int(E ) ⊆ E

• L’insieme dei punti di frontiera per E si chiama frontiera di E
e si denota con ∂E . Nota: ∂E = ∂E c

• L’insieme dei punti di accumulazione per E si chiama derivato di E
e si denota con Dr(E ).
Nota: per l’osservazione 3 della pagina precedente, frontiera e derivato
di un insieme sono insiemi diversi, non confrontabili per inclusione.
Tuttavia: E ∪ ∂E = E ∪ Dr(E ). Verifica . . .

• L’insieme unione di E e della sua frontiera, o equivalentemente di E
e del suo derivato, si chiama chiusura di E e si denota con E .
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Diciamo che l’insieme E è aperto se vale una, e quindi ciascuna, delle
seguenti proprietà tra loro equivalenti:

1 tutti gli elementi di E sono punti interni a E ,
2 E = int(E ),
3 E ∩ ∂E = ∅.

Diciamo che l’insieme E è chiuso se vale una, e quindi ciascuna, delle
seguenti proprietà tra loro equivalenti:

1 E contiene tutti i suoi punti di accumulazione,
2 E = E ,
3 ∂E ⊆ E .

Osservazione
Un insieme è aperto se e solo se il suo complementare è chiuso.
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Esempio
In uno spazio metrico discreto:
• identificare la frontiera di un qualsiasi sottoinsieme;
• identificare gli insiemi aperti e gli insiemi chiusi.

Proprietà
• Le unioni qualsiasi e le intersezioni finite di insiemi aperti sono insiemi

aperti; le intersezioni qualsiasi e le unioni finite di insiemi chiusi sono
insiemi chiusi. Verifica . . .

↓ ??

↑ ??

• L’interiore di un insieme è il più grande insieme aperto contenuto
nell’insieme; la chiusura di un insieme è il più piccolo insieme chiuso
che contiene l’insieme.
Nota: “più grande” e “più piccolo” rispetto alla relazione di inclusione.
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Esempi (da ricordare)
Siano x0 ∈ X e r ∈ R∗

+.

• L’intorno sferico Br (x0) è aperto. verificare utilizzando la
disug. triangolare

• L’insieme
{
x ∈ X | d(x , x0) > r

}
è aperto. verificare utilizzando la

seconda disug. triangolare

• L’insieme
{
x ∈ X | d(x , x0) ≤ r

}
è chiuso.

↑ =: Br (x0) intorno sferico chiuso (o palla chiusa)

• Gli insiemi
{
x ∈ X | d(x , x0) ≥ r

}
e

{
x ∈ X | d(x , x0) = r

}
sono chiusi.

↑ =: Sr (x0) sfera

Osservazione
Nello spazio metrico euclideo la sfera coincide con la frontiera della palla
aperta (anche della palla chiusa e quindi dei rispettivi complementari);

↓ omettiamo la verifica

l’uguaglianza non è garantita in uno spazio metrico generico. Esempio?
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Insiemi limitati

Sia (X , d) uno spazio metrico e sia E ⊆ X .
Diciamo che E è limitato se esiste una palla (chiusa) che contiene E ,
cioè se esistono x̄ ∈ X e r ∈ R∗

+ tali che d(x , x̄) ≤ r per ogni x ∈ E .

Se E non è limitato diciamo che è illimitato.

Osservazioni
• Le palle aperte e le palle chiuse sono insiemi limitati.
• Un insieme contenuto in un insieme limitato è a sua volta limitato.
• L’unione di un numero finito di insiemi limitati è un insieme limitato.
• La chiusura e la frontiera di un insieme limitato sono insiemi limitati.

E se l’insieme è illimitato?
• In uno spazio metrico discreto, tutti gli insiemi sono limitati. Perché?
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Sottospazi metrici

Sia (X , d) uno spazio metrico e sia A ⊂ X .
Sia dA la restrizione della metrica d all’insieme A× A.

• La funzione dA è una metrica in A, detta metrica indotta in A.

• La coppia (A, dA) è uno spazio metrico, che chiamiamo sottospazio
metrico di (X , d).

Osservazione
Denotando con BA

r (x0) l’intorno sferico di centro x0 e raggio r nel sotto-
spazio metrico (A, dA), risulta: BA

r (x0) = A ∩ Br (x0).
Da questo segue che i sottoinsiemi aperti/chiusi di A sono tutti e soli
gli insiemi ottenuti intersecando A con i sottoinsiemi aperti/chiusi di X .
Esempi . . .

13



Successioni convergenti

Sia (X , d) uno spazio metrico. Da ora in poi: “intorno”
sta per “intorno sferico”Sia (xn) una successione di elementi di X .

Diciamo che (xn) converge nello spazio metrico (X , d) se esiste x ∈ X
soddisfacente una delle seguenti proprietà, tra loro equivalenti:

(a) ogni intorno di x contiene xn definitivamente. definizione
topologica

(b) per ogni ε ∈ R∗
+ risulta d(xn, x) < ε definitivamente “traduzione”

di (a)

(c) lim
n→+∞

d(xn, x) = 0 definizione
metrica

In tal caso, diciamo che (xn) converge a x , oppure che x è il limite di
(xn), e scriviamo lim

n→+∞
xn = x oppure xn → x . ↑ ??
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Giustifichiamo l’uso dell’articolo determinativo “il” nella pagina precedente.

Lemma (proprietà di separazione)
In qualsiasi spazio metrico, elementi distinti ammettono intorni disgiunti.
Dimostrazione . . .

Proposizione (unicità del limite)
In qualsiasi spazio metrico, una successione non può convergere a due
limiti distinti.
Dimostrazione . . .
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Esercizio
Esplicitare la nozione di successione convergente

• in uno spazio metrico discreto;

• in R con la metrica del valore assoluto;

• in Rn con la metrica euclidea. ← del reticolo, del massimo

Salvo avviso contrario, d’ora in poi sottintenderemo che in Rn sia asse-
gnata la metrica euclidea.

Ci proponiamo di ricondurre le nozioni di limitatezza e di convergenza
per successioni in Rn alle corrispondenti nozioni per successioni in R.
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Lemma
Per ogni x = (x1, . . . , xn) ∈ Rn e y = (y1, . . . , yn) ∈ Rn e per ogni
j ∈ {1, . . . , n} si ha

|xj − yj | ≤ dRn(x , y) ≤
n∑

i=1
|xi − yi |.

Verifica . . .

Proposizione
Siano (xk) ⊂ Rn e x ∈ Rn (n ≥ 2). Per ogni j ∈ {1, . . . , n}, denotiamo
con xk,j e xj , rispettivamente, la j-esima componente di xk e di x .
1 La successione (xk) è limitata se e solo se la successione di numeri

reali (xk,j) è limitata per ogni j ∈ {1, . . . , n}.

2 La successione (xk) converge a x in Rn se e solo se la successione di
numeri reali (xk,j) converge a xj in R per ogni j ∈ {1, . . . , n}.

Verifica . . . 2 : banalità del limite delle successioni vettoriali 17



La precedente proposizione consente di estendere a Rn un importante
risultato, già noto in R:

Teorema (di Bolzano-Weierstrass)
Ogni successione limitata di elementi di Rn ammette una successione
estratta convergente.

Dimostrazione . . .
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Successioni di Cauchy

Sia (X , d) uno spazio metrico. Sia (xn) una successione di elementi di X .

Diciamo che (xn) è una successione di Cauchy nello spazio metrico (X , d)
se

lim
n,m→+∞

d(xn, xm) = 0,
cioè

per ogni ε ∈ R∗
+ risulta d(xn, xm) < ε definitivamente.

Osservazione
Ogni successione convergente è anche una successione di Cauchy,

↓ perché?

ma non è vero il viceversa.

Esempio
La successione identica è di Cauchy ma non converge in R munito della
metrica definita ponendo d∗(x , y) := | arctan(x)− arctan(y)|. 19



Proposizione (proprietà delle successioni di Cauchy)
Sia (xn) una successione di Cauchy nello spazio metrico (X , d).
Allora:

1 (xn) è limitata;

2 se esiste una successione estratta da (xn) convergente a un certo x ,
anche (xn) converge a x .

Dimostrazione . . .

Osservazione
Sia (X , d) uno spazio metrico e sia A ⊂ X .
Ogni successione di elementi di A è di Cauchy in (A, dA) se e solo se
è di Cauchy in (X , d). Ovvio!

20



Spazi metrici completi

Diciamo che uno spazio metrico (X , d) è completo se tutte le successioni
di Cauchy sono anche convergenti.

Esempio
Ogni spazio metrico discreto è completo.

↙ basta identificare le successioni di Cauchy

Teorema (completezza dello spazio metrico euclideo)
Per ogni n ∈ N∗, Rn è completo rispetto alla metrica euclidea.
In particolare: R è completo rispetto alla metrica del valore assoluto.

Dimostrazione . . .
↖ Nota: non lo è rispetto alla metrica d∗ definita a pag. 19.

Commento sulle nozioni di “completezza di R” viste in precedenza . . .
21



Spazi metrici compatti

Diciamo che uno spazio metrico (X , d) è sequenzialmente compatto,
oppure compatto per successioni se da ogni successione di elementi di X
si può estrarre una sottosuccessione convergente in (X , d).

Nota: si può introdurre una nozione più generale di compattezza, basata
esclusivamente sulla nozione di insieme aperto e di unione insiemistica;
negli spazi metrici tale nozione è equivalente a quella espressa mediante
le successioni. Poiché nei corsi di Analisi Matematica II e III trattiamo solo
spazi metrici, possiamo semplificare la terminologia omettendo le locuzioni
“sequenzialmente” o “per successioni”.

Esempio
Uno spazio metrico discreto è compatto se e solo se il suo sostegno
è un insieme finito. Giustificare . . .
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Proposizione (compattezza e completezza)
Ogni spazio metrico compatto è anche uno spazio metrico completo.
Dimostrazione . . .

Osservazione
Il viceversa della proposizione precedente è falso, cioè esistono spazi
metrici completi che non sono compatti.
Per esempio, basta considerare uno spazio metrico discreto avente come
sostegno un insieme infinito.
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Completezza e compattezza nei sottospazi metrici

Ci proponiamo di dimostrare che le proprietà di completezza e compattezza
si trasferiscono ai sottospazi metrici aventi per sostegno un insieme chiuso.
Per farlo servono alcuni risultati preliminari.

Proposizione (caratterizzazione sequenziale degli insiemi chiusi)
Siano (X , d) uno spazio metrico, E ⊆ X , x ∈ X .

1 x ∈ Dr(E ) se e solo se esiste una successione di elementi di E \ {x}
convergente a x .

2 x ∈ E se e solo se esiste una successione di elementi di E convergente
a x .

3 E è chiuso se e solo se contiene i limiti di tutte le successioni di
elementi di E convergenti in (X , d). Esplicitare . . .

Dimostrazione . . .
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Osservazione (convergenza nei sottospazi)
Sia (X , d) uno spazio metrico e sia A ⊂ X .
• Ogni successione di elementi di A che converge in (A, dA) converge

anche in (X , d) (al medesimo limite).
• Se una successione di elementi di A converge in (X , d), non è detto

che essa converga in (A, dA). Esempio . . .
• Se A è un sottoinsieme chiuso di X , allora ogni successione di elementi

di A converge in (A, dA) se e solo se converge in (X , d).

Teorema (trasferimento di proprietà ai sottoinsiemi chiusi)
Sia (X , d) uno spazio metrico e sia A un sottoinsieme chiuso di X .
1 Se (X , d) è completo, allora (A, dA) è completo.

2 Se (X , d) è compatto, allora (A, dA) è compatto.

Dimostrazione . . . 25



Convenzione: se (X , d) è uno spazio metrico e il sottospazio metrico (A, dA)
è completo/compatto, diremo che l’insieme A è completo/compatto in X .

Proposizione (completezza, compattezza, chiusura e limitatezza)
Sia (X , d) uno spazio metrico qualsiasi e sia A ⊂ X .

1 Se A è completo, allora A è chiuso.

2 Se A è compatto, allora A è chiuso e limitato.

Dimostrazione . . .

Negli spazi metrici euclidei vale il viceversa di 2 :

Teorema (di Heine-Borel)
Un sottoinsieme di Rn è compatto se e solo se è chiuso e limitato.

Dimostrazione . . .
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Osservazione
In un generico spazio metrico gli insiemi chiusi e limitati non sono
necessariamente compatti.
Per esempio, in uno spazio metrico discreto tutti gli insiemi sono sia
chiusi che limitati; tuttavia, sono compatti se e solo se sono finiti.
Un esempio più interessante verrà presentato in AM III.

Nota
Come è noto dal corso di AM I, esistono successioni di numeri razionali che
hanno come limite un numero reale non razionale. Esempi?

Per la caratterizzazione sequenziale degli insiemi chiusi, ciò equivale a dire
che l’insieme Q dei numeri razionali non è chiuso in R; dalla parte 1 della
proposizione precedente segue allora che Q, munito della metrica del valore
assoluto, non è uno spazio metrico completo.
Da qui deriva la necessità di “completarlo”, aggiungendo i numeri irrazionali. . .
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Spazi metrici connessi

Sia (X , d) uno spazio metrico.
Diciamo che X è sconnesso se X è unione di due insiemi aperti, non vuoti
e disgiunti; diciamo che X è connesso se non è sconnesso.

Convenzione: se A ⊂ X , diremo che l’insieme A è connesso in X se il sotto-
spazio metrico (A, dA) è connesso.

Esempi
• Uno spazio metrico discreto è connesso se e solo se è un singoletto

(cioè è un insieme costituito da un solo elemento).
• Un sottoinsieme di R è connesso se e solo se è un intervallo.

Richiede una dimostrazione, che omettiamo.

In Rn si può definire una nozione alternativa di connessione; per presentarla
occorrono alcune nozioni preliminari. 28



Alcuni sottoinsiemi particolari di Rn

Ricordiamo che gli elementi di Rn sono n-uple ordinate di numeri reali.
Ha dunque senso definire
• l’operazione di addizione in Rn ponendo

x + y := (x1 + y1, . . . , xn + yn)

per ogni x = (x1, . . . , xn) ∈ Rn e y = (y1, . . . , yn) ∈ Rn;

• l’operazione di prodotto esterno in Rn ponendo

λ x := (λ x1, . . . , λ xn)

per ogni λ ∈ R e x = (x1, . . . , xn) ∈ Rn.

Dalle proprietà dell’addizione e della moltiplicazione tra numeri reali
derivano corrispondenti proprietà delle operazioni definite in Rn.
Più dettagli nel corso di Geometria . . . 29



Siano a, b ∈ Rn, con a ̸= b.
Chiamiamo segmento di estremi a e b l’insieme

[a, b] :=
{

z ∈ Rn ∣∣ z = (1− t) a + t b , t ∈ [0, 1]
}

.
= a + t (b − a)

Nota: se n = 1 e a < b, il segmento (chiuso) di estremi a e b coincide con
l’intervallo chiuso di estremi a e b; ciò giustifica la notazione utilizzata.

Siano x1, . . . , xk ∈ Rn.
Chiamiamo poligonale di vertici x1, x2, . . . xk (nell’ordine) l’unione dei
segmenti [x1, x2] , [x2, x3] , . . . , [xk−1, xk ].
I punti x1 e xk si chiamano estremi della poligonale.
I segmenti [x1, x2], . . . , [xk−1, xk ] si chiamano lati della poligonale.

30



Sia E ⊆ Rn. Diciamo che E è un insieme
• convesso se per ogni x , y ∈ E il segmento [x , y ] è contenuto in E ;
• stellato se esiste x0 ∈ E tale che per ogni x ∈ E il segmento [x0, x ]

sia contenuto in E ;
• connesso per poligonali se per ogni x , y ∈ E esiste una poligonale

di estremi x e y contenuta in E .

Osservazioni
• Si riconosce facilmente che ogni insieme convesso è stellato e ogni

insieme stellato è connesso per poligonali; le implicazioni inverse non
valgono. Esempi . . .

• Si dimostra (non lo facciamo) che ogni insieme connesso per poligonali
è connesso, e se l’insieme è aperto vale anche l’implicazione inversa.
Dunque: per i sottoinsiemi aperti di Rn connessione e connessione per poligo-
nali sono nozioni equivalenti. 31



Esercizio riepilogativo

Esaminiamo alcuni sottoinsiemi di R2 e di R3 dal punto di vista delle
proprietà che abbiamo introdotto in generici spazi metrici.
Precisamente, ci proponiamo di determinare la frontiera di ciascuno degli
insiemi proposti e di stabilire se sono aperti, chiusi, né aperti né chiusi;
se sono limitati, compatti, convessi, stellati, connessi per poligonali,
connessi.

Notazione: utilizzeremo le lettere x , y , z invece di x1, x2, x3.

•
{
(x , y) ∈ R2 | x2 + y2 ≤ 1

}
• R2 \ {(0, 0)}

•
{

(x , y) ∈ R2 | x > 0
}
∪

{
(0, y) ∈ R2 | y ≥ 0

}
32



•
{

(x , y) ∈ R2 | x ∈ [a, b], y = 0
}

•
{

(x , y) ∈ R2 | x ∈ (a, b), y = 0
}

•
{

(x , y) ∈ R2
∣∣∣ x2

16 + y2

9 ≤ 1 , x2 + y2 > 1
}

•
{

(x , y , z) ∈ R3 | 2 ≤ x + 3 y ≤ 10
}

•
{

(x , y , z) ∈ R3 | x2 + y2 ≤ 9 , 0 ≤ z ≤ 4
}

33



Funzioni continue

Siano (X , dX ) e (Y , dY ) spazi metrici. Sia x̄ ∈ X .
Diciamo che una funzione f : X → Y è continua in x̄ se è soddisfatta
una delle seguenti proprietà, tra loro equivalenti: ← verificare per esercizio

(a) per ogni intorno V di f (x̄) in (Y , dY ) esiste un intorno U di x̄ in
(X , dX ) tale che f (U) ⊆ V ;

(b) per ogni ε ∈ R∗
+ esiste δ ∈ R∗

+ tale che:
per ogni x ∈ X con dX (x , x̄) < δ risulta dY

(
f (x), f (x̄)

)
< ε;

(c) per ogni successione (xn) convergente a x̄ in (X , dX ), la successione
trasformata (f (xn)) converge a f (x̄) in (Y , dY ).

Se A ⊆ X , diciamo che f è continua in A se è continua in ogni punto
di A; diciamo che f è continua se è continua in X .
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Esempio
Siano (X , d) uno spazio metrico e x̃ ∈ X .
La funzione x ∈ X 7→ d(x , x̃) ∈ R è continua.

segue dalla seconda
disuguaglianza triangolare

Proposizione (continuità e composizione funzionale)
Siano (X , dX ), (Y , dY ) e (Z , dZ ) spazi metrici.
Siano f : X → Y e g : Y → Z .
Sia x0 ∈ X tale che f è continua in x0 e g è continua in f (x0).
Allora: la funzione composta g ◦ f è continua in x0.
Dimostrare per esercizio utilizzando la formulazione (c) della continuità
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Alcune proprietà delle funzioni continue

Teorema (di Weierstrass)
Siano (X , dX ) uno spazio metrico compatto, (Y , dY ) uno spazio metrico,
f : X → Y una funzione continua. Allora:
1 l’immagine f (X ) è un insieme compatto;

2 se Y = R, allora f ha massimo e minimo.

Dimostrazione . . .

Teorema (di Cantor)
Siano (X , dX ) uno spazio metrico compatto, (Y , dY ) uno spazio metrico,
f : X → Y una funzione continua.
Allora: f è uniformemente continua, cioè per ogni ε ∈ R∗

+ esiste δ ∈ R∗
+

tale che per ogni x , y ∈ X con dX (x , y) < δ risulta dY
(
f (x), f (y)

)
< ε.
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Teorema (dei valori intermedi)
Siano (X , dX ) uno spazio metrico connesso, (Y , dY ) uno spazio metrico,
f : X → Y una funzione continua.
Allora:

1 l’immagine f (X ) è un insieme connesso;

2 se Y = R, allora f (X ) è un intervallo e la funzione f assume tutti
i valori compresi tra il proprio estremo inferiore e il proprio estremo
superiore.
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Particolari spazi metrici: spazi normati e spazi con prodotto scalare

Sia X uno spazio vettoriale (su R).
↙ ormai è noto dal corso di Geometria!

Una norma in X è una funzione N : X → R+ soddisfacente le seguenti
proprietà:

N1 N(x) = 0 se e solo se x = 0;

N2 N(λ x) = |λ|N(x) per ogni λ ∈ R e x ∈ X ;

N3 N(x + y) ≤ N(x) + N(y) per ogni x , y ∈ X . disuguaglianza
triangolare

Di solito si utilizza la notazione ∥x∥ invece di N(x); la coppia (X , ∥ · ∥)
si chiama spazio normato.

Esempio . . .
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Osservazione
Sia ∥ · ∥ una norma nello spazio vettoriale X .
La funzione definita in X × X ponendo

d(x , y) := ∥x − y∥ per ogni x , y ∈ X

è una metrica in X , detta metrica indotta dalla norma. Verifica . . .

Pertanto: ogni spazio normato è anche uno spazio metrico.

Uno spazio normato che risulti completo rispetto alla metrica indotta
dalla norma viene chiamato spazio di Banach.

Esempio . . .

Osservazione
Se d è la distanza indotta dalla norma ∥ · ∥, allora: ∥x∥ = d(x , 0).
Pertanto: la norma è una funzione continua. ← esempio a pag. 35 39



Sia X uno spazio vettoriale su R.
Un prodotto scalare in X è una funzione P : X × X → R soddisfacente
le seguenti proprietà:

P1 P(x , x) ≥ 0 per ogni x ∈ X e P(x , x) = 0 se e solo se x = 0;

P2 P(x , y) = P(y , x) per ogni x , y ∈ X ;

P3 P(λ x , y) = λ P(x , y) per ogni λ ∈ R e x , y ∈ X ;

P4 P(x + y , z) = P(x , z) + P(y , z) per ogni x , y , z ∈ X .

Di solito si utilizza la notazione ⟨x , y⟩ invece di P(x , y);
la coppia (X , ⟨·, ·⟩) si chiama spazio pre-hilbertiano.

Esempio . . .
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Osservazione
Sia ⟨· , ·⟩ un prodotto scalare nello spazio vettoriale X .
La funzione definita in X ponendo

∥x∥ :=
√
⟨x , x⟩

è una norma in X , detta norma indotta dal prodotto scalare.

Nota: nella verifica (per la quale si rimanda al corso di Geometria) si utilizza
la disuguaglianza di Cauchy-Schwarz:

|⟨x , y⟩| ≤ ∥x∥ ∥y∥ per ogni x , y ∈ X .

Pertanto: ogni spazio pre-hilbertiano è anche uno spazio normato
(e dunque uno spazio metrico).
Uno spazio pre-hilbertiano che risulti di Banach rispetto alla norma
indotta dal prodotto scalare viene chiamato spazio di Hilbert.

Esempio . . . 41



Esempio (importante!)
L’applicazione definita ponendo

x · y :=
n∑

i=1
xi yi

per ogni x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn è un prodotto
scalare, detto prodotto scalare standard in Rn.
Chiamiamo norma euclidea la norma indotta dal prod. scalare standard:

∥x∥Rn :=
√

x · x =

√√√√ n∑
i=1

x2
i per ogni x ∈ Rn.

Poiché

∥x − y∥Rn =

√√√√ n∑
i=1

(xi − yi)2 per ogni x , y ∈ Rn,

la metrica indotta dalla norma euclidea coincide con la metrica euclidea.
↓ soddisfa D3 !

Pertanto:
(Rn, ∥ · ∥Rn) è uno spazio di Banach e (Rn, · ) è uno spazio di Hilbert. 42



Nota
Anche le applicazioni definite in Rn ponendo

∥x∥1 :=
n∑

i=1
|xi |, ∥x∥max := max

1≤i≤n
|xi |

sono norme. Verificare per esercizio . . .

Le metriche corrispondenti sono, rispettivamente, la metrica del reticolo
e la metrica del massimo.

Ciascuna di tali norme rende Rn uno spazio di Banach; tuttavia, tali
norme non sono indotte da alcun prodotto scalare.
E per questo preferiamo la norma euclidea . . .
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Concludiamo questo capitolo riformulando in termini della norma euclidea
alcune nozioni già introdotte in Rn mediante la distanza euclidea.

Se x0 ∈ Rn e r ∈ R∗
+:

• Br (x0) =
{
x ∈ Rn | ∥x − x0∥Rn < r

}
• Br (x0) =

{
x ∈ Rn | ∥x − x0∥Rn ≤ r

}
• Sr (x0) =

{
x ∈ Rn | ∥x − x0∥Rn = r

}
Se (xk) ⊂ Rn e x ∈ Rn:

(xk) converge a x ⇐⇒ lim
k→+∞

∥xk − x∥Rn = 0

Se E ⊂ Rn:

E è limitato ⇐⇒ ∃ x̄ ∈ Rn, r ∈ R∗
+ t.c. ∀ x ∈ E : ∥x − x̄∥ ≤ r

⇐⇒ ∃M ∈ R∗
+ t.c. ∀ x ∈ E : ∥x∥ ≤ M
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Riformuliamo anche il Lemma di pagina 17:

per ogni x = (x1, . . . , xn) ∈ Rn e per ogni j ∈ {1, . . . , n} si ha

|xj | ≤ ∥x∥Rn ≤
n∑

i=1
|xi |.

Equivalentemente: per ogni x ∈ Rn si ha

∥x∥max ≤ ∥x∥Rn ≤ ∥x∥1.
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A P P E N D I C E

(V E R I F I C H E, R I C H I A M I, . . . )
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Verifica della seconda disuguaglianza triangolare

Fisso x , y , z . Per la disuguaglianza triangolare:

d(x , y) ≤ d(x , z) + d(z , y);

portando a primo membro:

d(x , y)− d(x , z) ≤ d(z , y) (= d(y , z));

scambiando y e z :
d(x , z)− d(x , y) ≤ d(y , z);

moltiplicando per −1:
d(x , y)− d(x , z) ≥ −d(y , z).

Mettendo insieme le disuguaglianze colorate:

−d(y , z) ≤ d(x , y)− d(x , z) ≤ d(y , z),

che equivale a
|d(x , y)− d(x , z)| ≤ d(y , z). □ 47



Richiamo sulle successioni estratte

Sia X un insieme qualsiasi. Sia (xn) una successione di elementi di X .
Sia (kn) una successione strettamente crescente di elementi di N.
Nota: la stretta monotonia implica kn ≥ n per ogni n.

La successione (xkn) si chiama successione estratta dalla successione (xn),
o anche sottosuccessione della successione (xn).
Significato “pratico” . . .

Ricordiamo che
• se una successione converge, ogni sua sottosuccessione converge allo

stesso limite a cui converge la successione di partenza;
• una successione può avere sottosuccessioni convergenti e tuttavia non

convergere. Esempi?
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