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Equazioni differenziali lineari — solo un’anteprima

Avvertenza
Al termine della lezione queste pagine verranno rese disponibili online;
non & quindi necessario copiarne il contenuto.



Terminologia

Una equazione differenziale ordinaria € un'equazione in cui I'incognita

& una funzione di una variabile reale; I'equazione viene espressa attraverso
una relazione tra la variabile indipendente, la funzione incognita e le sue
derivate fino a un certo ordine.

Il pit alto ordine di derivazione che compare nella relazione si chiama
ordine dell'equazione differenziale.

In questa “anteprima” consideriamo esclusivamente equazioni differenziali
lineari di ordine 1 e di ordine 2.



Equazioni differenziali lineari di ordine 1

Siano a, b funzioni reali definite in un medesimo intervallo I C R.
Chiamiamo equazione differenziale lineare di ordine 1 con coefficiente a
e termine noto b |'espressione

(1) y'+a(t)y = b(t).

Nota: nella scrittura (1) esplicitiamo la dipendenza dalla variabile indipendente
del coefficiente e del termine noto, mentre sottintendiamo la dipendenza della
funzione incognita e delle sue derivate.

Esempi

ey =¢t y =e?

e p+ap=0 (e € R)
e p+ap=sin(t) (aeR)

o p'+tp=sin(t)



L’equazione (1) & detta omogenea se il termine noto b & la funzione

identicamente nulla, altrimenti & detta non omogenea (oppure completa).

Se (1) & non omogenea, I'equazione differenziale lineare omogenea avente
lo stesso coefficiente & detta equazione omogenea associata a (1).

Se la funzione a & costante, I'equazione (1) & detta a coefficienti costanti.
(Nota: sul termine noto b non si suppone nulla.)

Esempi
N y’—i—ty:et
oy +ty=0

oy +2y=oc¢t



Siano a, b : I — R, con I intervallo.
Si chiama soluzione dell’'equazione differenziale

(1) y'+a(t)y = b(t)
una funzione ¢ : I — R derivabile e tale che

¢'(t) + a(t) ¢(t) = b(t) per ogni t € L.
0 0

qui la funzione e la sua derivata sono valutate in t

L'insieme di tutte le soluzioni di (1) viene detto integrale generale;
una singola soluzione viene detta integrale particolare.



Siano a,b: I — R, con I intervallo. Siano tg € I e xg € R.

Associando all'equazione differenziale
(1) y'+a(t)y = b(t)
la condizione iniziale
y(to) = xo
si ottiene il problema di Cauchy di valori iniziali tg, xg.

Esplicitare la nozione di soluzione ...

Come si determina l'integrale generale di (1)?

Come si risolvono i problemi di Cauchy associati?



Teorema

Siano I C R un intervallo e a, b € C(I,R).
Sia A una qualsiasi primitiva della funzione a.
Allora: I'integrale generale dell’'equazione differenziale

(1) y'+a(t)y = b(t)
é dato da

e A / AOpr)dt  tel.

Esplicitando: denotata con ~ una qualsiasi primitiva della funzione
t el e p(t),
la generica soluzione di (1) &
et = e A (3()+c)  tel

al variare di ¢ € R. Veerifica . ..



Note
e Talvolta le equazioni differenziali lineari di ordine 1 vengono scritte

nella forma
y' = a(t)y + b(t);

in tal caso, l'integrale generale diventa

o(t) = ) / e AWp(t)dt tel

e Nel teorema precedente, I'esistenza delle primitive A e & garantita
dal Teorema Fondamentale del Calcolo Integrale, ma non & detto che
tali primitive si possano esprimere in termini di funzioni elementari;
in questi casi, 'integrale generale di (1) non potra essere determinato

esplicitamente.



Esempi
Determinare I'integrale generale delle seguenti equazioni differenziali e risolvere
i problemi di Cauchy con le condizioni iniziali indicate:

e ¥y +3y=0 y(0) =2 y +ay=0
e y+ty=0 y(1)=2

o y —sin(t)y=0 y(m/2)=-1

ey —ety=0 y(0)=-2

o y +tan(t)y =0 y(m)=3

o y’+%y:4t y(l)=2

o vy —2ty=t y(0)=2

o yV+2ty=1 y(0) =2

. y’+iy: L y(-1)=0

t t3 et



Osservazione
Con le notazioni del teorema di pagina 6, poniamo

wo(t) == e A tel
La generica soluzione dell’equazione differenziale
(1) y'+a(t)y = b(t)
si scrive come
pc(t) = cpo(t) +7(t) wo(t)  (c €R)

con

e o soluzione particolare dell’equazione omogenea associata a (1),
e cyo soluzione generica dell’equazione omogenea associata a (1),

e 7o soluzione particolare di (1).

Ritroveremo questa “struttura” per le equazioni differenziali lineari di ordine 2



Equazioni differenziali lineari di ordine 2

Siano ag, a1, b funzioni reali definite in un medesimo intervallo I C R.

Chiamiamo equazione differenziale lineare di ordine 2 con coefficienti ag
e a; e termine noto b |'espressione

(2) y" 4+ ai(t)y' + ao(t) y = b(t).

Si chiama soluzione di (2) una funzione ¢ : I — R derivabile due volte
e tale che

(1) + ai(t) ¢'(t) + ao(t) p(t) = b(t)  perogni t €l

Nota

| termini integrale generale, integrale particolare, omogenea, non omogenea
(oppure completa), omogenea associata si utilizzano esattamente come nel
caso delle equazioni di ordine 1; a coefficienti costanti significa che entrambe
le funzioni ap e a; sono costanti.  Esempi ... 10



Siano ag, a1, b: I — R, con I intervallo. Siano tp € I e xp,x1 € R.
Associando all’equazione differenziale
(2) y" 4+ a1(t)y + ao(t)y = b(t)
le condizioni iniziali
y(to) = xo y'(to) = x1

si ottiene il problema di Cauchy di valori iniziali tg, xg,x1.  Soluzione?

Teorema < conseguenza di risultati generali del corso di An. Mat. Ill

Con le notazioni introdotte in questa pagina, supponiamo che ag, a1, b
siano funzioni continue.

Allora: esiste una e una sola soluzione del problema di Cauchy
y'+a(t)y +ao(t)y = b(t)

y(to) = x0, Y'(t) =x1 N



Come si determina |'unica soluzione prevista dal teorema?
Come si determina l'integrale generale di (2)7

Abbiamo bisogno di alcuni preliminari . ..

Proposizione (principio di sovrapposizione)

Sia I un intervallo; siano ag, a1, b1, b : I — R.

Siano ¢ e ¢, soluzioni delle equazioni differenziali lineari con coefficienti
ap, a1 e termini noti by e by, rispettivamente.

Siano ay,ap € R.

Allora: / combinazione lineare di 1 € p2

la funzione o 1 + a w2 € soluzione dell’equazione differenziale con

coefficienti ag, a1 e termine noto a1 by + as by.  « combinazione lineare
di by e by con gli
stessi coefficienti

Verifica . ..

Utilita pratica e significato fisico ...

12



Corollario 1

Sia I un intervallo; siano ag,a; : I — R.

La combinazione lineare di due soluzioni dell’equazione omogenea
y'+ai(t)y + ao(t)y =0

e soluzione della stessa equazione.  La verifica & immediatal!

Corollario 2 (struttura dell'integrale generale)
Sia I un intervallo; siano agp, a1, b: I — R.
Sia P un integrale particolare della equazione non omogenea

y'+ai(t)y' + a(t) y = b(t).
Allora: I'integrale generale della stessa equazione & costituito da tutte

e sole le funzioni del tipo ¢ = ¢g + P, con g soluzione dell’equazione

omogenea associata.

Verifica . . . Confrontare con pagina 9 ...

13



In base al Corollario 2, per determinare I'insieme di tutte le soluzioni di

un'equazione differenziale lineare di ordine 2 occorre e basta determinare:

@ tutte le soluzioni dell'equazione omogenea associata,

rilevante solo se I'equazione

@ una soluzione dell'equazione data. < .
data non & omogenea

Come si fa?

Nota (dolente!)

A differenza che nel caso delle equazioni differenziali lineari di ordine 1,
per quelle di ordine 2 non esiste una formula risolutiva generale;

si ricorre a sostituzioni, metodi di riduzione dell'ordine, integrazione per

serie, metodi numerici, ...

Per fortuna c'e una significativa eccezione . ..

14



Equazioni differenziali lineari omogenee a coefficienti costanti

Consideriamo |'equazione differenziale lineare omogenea
(3) y'+aiy +ay=0

con ap, a1 € R. Dove sono definite le soluzioni?

Prendendo spunto dall’equazione del primo ordine y' + ay = 0, che &
risolta dalla funzione esponenziale t — e~ 2, ci chiediamo se anche (3)
abbia soluzioni di tipo esponenziale.

Lemma

Sia A € R. La funzione esponenziale t € R > et

risolve |'equazione
differenziale omogenea (3) se e solo se
A2+ a;\+a=0.

Verifica . .. 15



Definiamo il polinomio caratteristico dell’equazione
(3) y'+ay' +ay=0
ponendo
P(\) := A2 4+ a1 A + ao.
Nota: P si ottiene formalmente da (3) sostituendo potenze di A a derivate di y.

In base al Lemma, a ogni radice reale del polinomio caratteristico corri-
sponde una soluzione di tipo esponenziale di (3).  Nota: & vero anche per

y'+ay=0
Esempi
e yV—y=0 e v/ -3y —10y=0
o y'+y =0 e y'+2y' +y=0

Il polinomio caratteristico potrebbe avere radici complesse!! 16



Parentesi: soluzioni complesse di equazioni differenziali

Sia I un intervallo; sia z : I — C una funzione complessa.
Definiamo le funzioni u:1— R e v :I — R ponendo

u(t) = Re(z(t)), v(t)=Im(z(t)) perognitel;
possiamo quindi scrivere

z(t) = u(t) +iv(t) perognitel

Chiamiamo u e v, rispettivamente, funzione parte reale di z e funzione
parte immaginaria di z.

Se u e v sono derivabili in I, diciamo che z & derivabile in I e definiamo
la derivata di z ponendo

Z/(t) = d'(t) +iv/(t) perognitel

Le derivate successive si definiscono in maniera analoga. 17



Esempio
Siad=a+ipfconaeRefeR" Lafunzione complessa

z:=t € R e = e*(cos(Bt) + i sin(Bt))

& derivabile in R con derivata Z/(t) = A e,

Diciamo che una funzione z : R — C & soluzione complessa dell'equazione

differenziale con coefficienti ag, a; € R
(3) y'+aiy +ay=0
se z & derivabile due volte e per ogni t € R:

Z'(t)+ a1 Z/(t)+ ap z(t) =0
1 zero di C

Esempio

La funzione t € R — e’ & soluzione complessa di y” + y = 0. "



Osservazioni

e Sez=u+iv, allora z & soluzione complessa di (3) se e solo se ue v
sono soluzioni reali (cioé nel modo precedentemente definito) di (3).

Riesaminare I'esempio precedente ...

e Se la funzione complessa z = u + i v & soluzione di (3), allora anche
la funzione complessa coniugata Z = u — i v & soluzione di (3).

Fine della parentesi

19



Proposizione
Per ogni numero reale (complesso) A, la funzione

t R e
& soluzione reale (complessa) dell'equazione

y'+a1y +ay=0

se e solo se \ & radice del polinomio caratteristico.

Dimostrazione . .. gia fatta!

Esempi

o vV +4y=0

o y/+2y'+5y=0
e y/—6y ' +25y=0

20



Teorema (determinazione dell'integrale generale di equazioni omogenee)
Sia P il polinomio caratteristico associato all’equazione differenziale
lineare omogenea

y'+a1y'+ay=0 (a0, a1 € R)

@ Se P ha due radici reali distinte A1 e Ay, allora I'integrale generale
€ costituito da tutte le combinazioni lineari a coefficienti reali delle
funzioni tce R Mt e t € R 2t

® Se P ha una radice reale A di molteplicita 2, allora I'integrale generale
& costituito da tutte le combinazioni lineari a coefficienti reali delle
funzioni teR— e’ e te R tett.

© Se P ha radici complesse coniugate o+ i3 (5 # 0), allora I'integrale
generale & costituito da tutte le combinazioni lineari a coefficienti reali
delle funzioni t € R+ e*f cos(Bt) e t € R+ e*t sin(Bt).

Dimostrazione . . .

21



Esempi
Determinare I'integrale generale delle seguenti equazioni differenziali
lineari omogenee:

.yll_y:O .yll_3y/_10y:O
.y//+y/:O .y//+2y/+y:O
o y'+y=0 o y'+4y=0

! / _ 7 / J—
o y'+2y ' 4+5y=0 o y' -6y +25y =0
Esempio

Determinare I'integrale generale della seguente equazione differenziale
lineare omogenea dipendente da parametri:

k
X"+ 2yx +wix =0 (7:&7 wo =14/ —, m7k>0,a20)
m 22



Equazioni differenziali lineari non omogenee a coefficienti costanti

Siano ap,a;1 € Re b € C(R,R), b #0.
Consideriamo I'equazione differenziale non omogenea a coefficienti
costanti

(4) y'"+ a1y +agy = b(t)

Ricordiamo che, conoscendo l'integrale generale dell’equazione omogenea
associata, per determinare |'integrale generale di (4) & sufficiente determi-
narne un integrale particolare.

Come si fa?
Rispondiamo a tale domanda nel caso di termini noti di tipo particolare.

Per termini noti generali: An. Mat. Il ...

23



Teorema (metodo di somiglianza)
Consideriamo I'equazione differenziale
(4) y'+a1y' +a0y = b(t)

con ag, a1 € R.

©® Supponiamo b(t) = e p(t) con
e A\ numero reale,

W(t) "somiglia” a b(t)
e p funzione polinomiale di grado k. 1

Allora: esiste una soluzione di (4) della forma v(t) = e p(t) t™
con

e p funzione polinomiale di grado k,

e m molteplicita di A come radice del polinomio caratteristico
dell’equazione omogenea associata a (4).

24



@® Supponiamo b(t) = O‘t(p(t) cos(ft) + q(t) sin(ﬁt)) con
e «, 3 numeri reali,

e p,q funzioni polinomiali di grado k e h, rispettivamente.

Allora: esiste una soluzione di (4) della forma
w(t) = et (p(t) cos(Bt) + g(t) sin(Be)) ¢
con
e peg funzioni polinomiali di grado minore o uguale a max{k, h},

e m molteplicita di A\ := « + i 8 come radice del polinomio
caratteristico dell’'equazione omogenea associata a (4).

Nota: se A non ¢ radice del polinomio caratteristico dell’equazione
omogenea associata, intendiamo m=0e t™ = 1.

25



Nota

Il teorema afferma 'esistenza di funzioni polinomiali tramite le quali si
costruiscono soluzioni di (4). Per determinare tali funzioni polinomiali
occorre determinarne i coefficienti; per questa ragione il metodo viene
anche chiamato dei coefficienti indeterminati.

Esempi
Determinare I'integrale generale delle seguenti equazioni differenziali

lineari:
o y,/—2y,—3y:362t [ ] y,/—y/—2y2_2t+4t2
ey +9y=1t>e3t 16 e y/+2y' +5y =3sin(2t)

o y/+2y' +y=2e"

26



Esempi

Risolvere i seguenti problemi di Cauchy:
o ¥ =4y +4y=(P+1t)e" y(0)=0, y'(0)=-1

e y'—3y ' +2y =10 cos(t) + e y(0)=3, y'(0)=-1

Esempio
Determinare l'integrale generale della seguente equazione differenziale

lineare non omogenea dipendente da parametri:

X"+ 2y x +wg x =6 sin(wt) wo,w,d € (0,+00), v € [0,+00)

27



