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non è quindi necessario copiarne il contenuto.



Terminologia

Una equazione differenziale ordinaria è un’equazione in cui l’incognita
è una funzione di una variabile reale; l’equazione viene espressa attraverso
una relazione tra la variabile indipendente, la funzione incognita e le sue
derivate fino a un certo ordine.
Il più alto ordine di derivazione che compare nella relazione si chiama
ordine dell’equazione differenziale.

In questa “anteprima” consideriamo esclusivamente equazioni differenziali
lineari di ordine 1 e di ordine 2.
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Equazioni differenziali lineari di ordine 1

Siano a, b funzioni reali definite in un medesimo intervallo I ⊆ R.
Chiamiamo equazione differenziale lineare di ordine 1 con coefficiente a
e termine noto b l’espressione

(1) y ′ + a(t) y = b(t).

Nota: nella scrittura (1) esplicitiamo la dipendenza dalla variabile indipendente
del coefficiente e del termine noto, mentre sottintendiamo la dipendenza della
funzione incognita e delle sue derivate.

Esempi
• y ′ = e−t y ′ = e−t2

• p′ + α p = 0 (α ∈ R)
• p′ + α p = sin(t) (α ∈ R)
• p′ + t p = sin(t)
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L’equazione (1) è detta omogenea se il termine noto b è la funzione
identicamente nulla, altrimenti è detta non omogenea (oppure completa).

Se (1) è non omogenea, l’equazione differenziale lineare omogenea avente
lo stesso coefficiente è detta equazione omogenea associata a (1).

Se la funzione a è costante, l’equazione (1) è detta a coefficienti costanti.
(Nota: sul termine noto b non si suppone nulla.)

Esempi

• y ′ + t y = et

• y ′ + t y = 0

• y ′ + 2 y = et
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Siano a, b : I→ R, con I intervallo.
Si chiama soluzione dell’equazione differenziale

(1) y ′ + a(t) y = b(t)

una funzione φ : I→ R derivabile e tale che

φ′(t) + a(t)φ(t) = b(t) per ogni t ∈ I.
↑ ↑

qui la funzione e la sua derivata sono valutate in t

L’insieme di tutte le soluzioni di (1) viene detto integrale generale;
una singola soluzione viene detta integrale particolare.
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Siano a, b : I→ R, con I intervallo. Siano t0 ∈ I e x0 ∈ R.
Associando all’equazione differenziale

(1) y ′ + a(t) y = b(t)

la condizione iniziale
y(t0) = x0

si ottiene il problema di Cauchy di valori iniziali t0, x0.

Esplicitare la nozione di soluzione . . .

Come si determina l’integrale generale di (1)?
Come si risolvono i problemi di Cauchy associati?
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Teorema
Siano I ⊆ R un intervallo e a, b ∈ C(I,R).
Sia A una qualsiasi primitiva della funzione a.
Allora: l’integrale generale dell’equazione differenziale

(1) y ′ + a(t) y = b(t)

è dato da
e−A(t)

∫
eA(t) b(t) dt t ∈ I.

Esplicitando: denotata con γ una qualsiasi primitiva della funzione

t ∈ I 7→ eA(t) b(t),

la generica soluzione di (1) è

φc(t) = e−A(t)(γ(t) + c
)

t ∈ I

al variare di c ∈ R. Verifica . . .
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Note
• Talvolta le equazioni differenziali lineari di ordine 1 vengono scritte

nella forma
y ′ = a(t) y + b(t);

in tal caso, l’integrale generale diventa

φ(t) = eA(t)
∫

e−A(t) b(t) dt t ∈ I.

• Nel teorema precedente, l’esistenza delle primitive A e γ è garantita
dal Teorema Fondamentale del Calcolo Integrale, ma non è detto che
tali primitive si possano esprimere in termini di funzioni elementari;
in questi casi, l’integrale generale di (1) non potrà essere determinato
esplicitamente.
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Esempi
Determinare l’integrale generale delle seguenti equazioni differenziali e risolvere
i problemi di Cauchy con le condizioni iniziali indicate:

• y ′ + 3 y = 0 y(0) = 2 y ′ + a y = 0

• y ′ + t y = 0 y(1) = 2

• y ′ − sin(t) y = 0 y(π/2) = −1

• y ′ − et2y = 0 y(0) = −2

• y ′ + tan(t) y = 0 y(π) = 3

• y ′ + 2
t y = 4 t y(1) = 2

• y ′ − 2 t y = t y(0) = 2

• y ′ + 2 t y = 1 y(0) = 2

• y ′ + 4
t y = 1

t3 et y(−1) = 0
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Osservazione
Con le notazioni del teorema di pagina 6, poniamo

φ0(t) := e−A(t) t ∈ I.

La generica soluzione dell’equazione differenziale

(1) y ′ + a(t) y = b(t)

si scrive come

φc(t) = c φ0(t) + γ(t)φ0(t) (c ∈ R)

con
• φ0 soluzione particolare dell’equazione omogenea associata a (1),
• c φ0 soluzione generica dell’equazione omogenea associata a (1),
• γ φ0 soluzione particolare di (1).

Ritroveremo questa “struttura” per le equazioni differenziali lineari di ordine 2
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Equazioni differenziali lineari di ordine 2

Siano a0, a1, b funzioni reali definite in un medesimo intervallo I ⊆ R.
Chiamiamo equazione differenziale lineare di ordine 2 con coefficienti a0

e a1 e termine noto b l’espressione

(2) y ′′ + a1(t) y ′ + a0(t) y = b(t).

Si chiama soluzione di (2) una funzione φ : I→ R derivabile due volte
e tale che

φ′′(t) + a1(t)φ′(t) + a0(t)φ(t) = b(t) per ogni t ∈ I.

Nota
I termini integrale generale, integrale particolare, omogenea, non omogenea
(oppure completa), omogenea associata si utilizzano esattamente come nel
caso delle equazioni di ordine 1; a coefficienti costanti significa che entrambe
le funzioni a0 e a1 sono costanti. Esempi . . . 10



Siano a0, a1, b : I→ R, con I intervallo. Siano t0 ∈ I e x0, x1 ∈ R.
Associando all’equazione differenziale

(2) y ′′ + a1(t) y ′ + a0(t) y = b(t)

le condizioni iniziali
y(t0) = x0 y ′(t0) = x1

si ottiene il problema di Cauchy di valori iniziali t0, x0, x1. Soluzione?

Teorema ← conseguenza di risultati generali del corso di An. Mat. III
Con le notazioni introdotte in questa pagina, supponiamo che a0, a1, b
siano funzioni continue.
Allora: esiste una e una sola soluzione del problema di Cauchy

y ′′ + a1(t) y ′ + a0(t) y = b(t)

y(t0) = x0, y ′(t0) = x1
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Come si determina l’unica soluzione prevista dal teorema?
Come si determina l’integrale generale di (2)?
Abbiamo bisogno di alcuni preliminari . . .

Proposizione (principio di sovrapposizione)
Sia I un intervallo; siano a0, a1, b1, b2 : I→ R.
Siano φ1 e φ2 soluzioni delle equazioni differenziali lineari con coefficienti
a0, a1 e termini noti b1 e b2, rispettivamente.
Siano α1, α2 ∈ R.
Allora:
la funzione α1 φ1 + α2 φ2 è soluzione dell’equazione differenziale con
coefficienti a0, a1 e termine noto α1 b1 + α2 b2.

↙ combinazione lineare di φ1 e φ2

← combinazione lineare
di b1 e b2 con gli
stessi coefficienti

Verifica . . .

Utilità pratica e significato fisico . . .
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Corollario 1
Sia I un intervallo; siano a0, a1 : I→ R.
La combinazione lineare di due soluzioni dell’equazione omogenea

y ′′ + a1(t) y ′ + a0(t) y = 0

è soluzione della stessa equazione. La verifica è immediata!

Corollario 2 (struttura dell’integrale generale)
Sia I un intervallo; siano a0, a1, b : I→ R.
Sia φ un integrale particolare della equazione non omogenea

y ′′ + a1(t) y ′ + a0(t) y = b(t).

Allora: l’integrale generale della stessa equazione è costituito da tutte
e sole le funzioni del tipo φ = φ0 + φ, con φ0 soluzione dell’equazione
omogenea associata.
Verifica . . . Confrontare con pagina 9 . . . 13



In base al Corollario 2, per determinare l’insieme di tutte le soluzioni di
un’equazione differenziale lineare di ordine 2 occorre e basta determinare:

1 tutte le soluzioni dell’equazione omogenea associata,

2 una soluzione dell’equazione data. ← rilevante solo se l’equazione
data non è omogenea

Come si fa?

Nota (dolente!)
A differenza che nel caso delle equazioni differenziali lineari di ordine 1,
per quelle di ordine 2 non esiste una formula risolutiva generale;
si ricorre a sostituzioni, metodi di riduzione dell’ordine, integrazione per
serie, metodi numerici, . . .
Per fortuna c’è una significativa eccezione . . .
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Equazioni differenziali lineari omogenee a coefficienti costanti

Consideriamo l’equazione differenziale lineare omogenea

(3) y ′′ + a1 y ′ + a0 y = 0

con a0, a1 ∈ R. Dove sono definite le soluzioni?

Prendendo spunto dall’equazione del primo ordine y ′ + a y = 0, che è
risolta dalla funzione esponenziale t 7→ e−at , ci chiediamo se anche (3)
abbia soluzioni di tipo esponenziale.

Lemma
Sia λ ∈ R. La funzione esponenziale t ∈ R 7→ eλt risolve l’equazione
differenziale omogenea (3) se e solo se

λ2 + a1 λ+ a0 = 0.
Verifica . . . 15



Definiamo il polinomio caratteristico dell’equazione

(3) y ′′ + a1 y ′ + a0 y = 0

ponendo
P(λ) := λ2 + a1 λ+ a0.

Nota: P si ottiene formalmente da (3) sostituendo potenze di λ a derivate di y .

In base al Lemma, a ogni radice reale del polinomio caratteristico corri-
sponde una soluzione di tipo esponenziale di (3). Nota: è vero anche per

y ′ + a y = 0

Esempi

• y ′′ − y = 0 • y ′′ − 3 y ′ − 10 y = 0

• y ′′ + y ′ = 0 • y ′′ + 2 y ′ + y = 0

Il polinomio caratteristico potrebbe avere radici complesse!! 16



Parentesi: soluzioni complesse di equazioni differenziali

Sia I un intervallo; sia z : I→ C una funzione complessa.

Definiamo le funzioni u : I→ R e v : I→ R ponendo

u(t) = Re(z(t)), v(t) = Im(z(t)) per ogni t ∈ I;

possiamo quindi scrivere

z(t) = u(t) + i v(t) per ogni t ∈ I.

Chiamiamo u e v , rispettivamente, funzione parte reale di z e funzione
parte immaginaria di z .

Se u e v sono derivabili in I, diciamo che z è derivabile in I e definiamo
la derivata di z ponendo

z ′(t) := u′(t) + i v ′(t) per ogni t ∈ I.

Le derivate successive si definiscono in maniera analoga. 17



Esempio
Sia λ = α+ i β con α ∈ R e β ∈ R∗. La funzione complessa

z := t ∈ R 7→ eλt := eα t(
cos(βt) + i sin(βt)

)
è derivabile in R con derivata z ′(t) = λ eλ t .

Diciamo che una funzione z : R→ C è soluzione complessa dell’equazione
differenziale con coefficienti a0, a1 ∈ R

(3) y ′′ + a1 y ′ + a0 y = 0

se z è derivabile due volte e per ogni t ∈ R:

z ′′(t) + a1 z ′(t) + a0 z(t) = 0
↑ zero di C

Esempio
La funzione t ∈ R 7→ ei t è soluzione complessa di y ′′ + y = 0.
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Osservazioni
• Se z = u + i v , allora z è soluzione complessa di (3) se e solo se u e v

sono soluzioni reali (cioè nel modo precedentemente definito) di (3).
Riesaminare l’esempio precedente . . .

• Se la funzione complessa z = u + i v è soluzione di (3), allora anche
la funzione complessa coniugata z = u − i v è soluzione di (3).

Fine della parentesi
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Proposizione
Per ogni numero reale (complesso) λ, la funzione

t ∈ R 7→ eλt

è soluzione reale (complessa) dell’equazione

y ′′ + a1 y ′ + a0 y = 0

se e solo se λ è radice del polinomio caratteristico.
Dimostrazione . . . già fatta!

Esempi

• y ′′ + 4 y = 0

• y ′′ + 2 y ′ + 5 y = 0

• y ′′ − 6 y ′ + 25 y = 0
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Teorema (determinazione dell’integrale generale di equazioni omogenee)
Sia P il polinomio caratteristico associato all’equazione differenziale
lineare omogenea

y ′′ + a1 y ′ + a0 y = 0 (a0, a1 ∈ R)

1 Se P ha due radici reali distinte λ1 e λ2, allora l’integrale generale
è costituito da tutte le combinazioni lineari a coefficienti reali delle
funzioni t ∈ R 7→ eλ1 t e t ∈ R 7→ eλ2 t .

2 Se P ha una radice reale λ di molteplicità 2, allora l’integrale generale
è costituito da tutte le combinazioni lineari a coefficienti reali delle
funzioni t ∈ R 7→ eλ t e t ∈ R 7→ t eλ t .

3 Se P ha radici complesse coniugate α± i β (β ̸= 0), allora l’integrale
generale è costituito da tutte le combinazioni lineari a coefficienti reali
delle funzioni t ∈ R 7→ eα t cos(β t) e t ∈ R 7→ eα t sin(β t).

Dimostrazione . . . 21



Esempi
Determinare l’integrale generale delle seguenti equazioni differenziali
lineari omogenee:

• y ′′ − y = 0 • y ′′ − 3 y ′ − 10 y = 0

• y ′′ + y ′ = 0 • y ′′ + 2 y ′ + y = 0

• y ′′ + y = 0 • y ′′ + 4 y = 0

• y ′′ + 2 y ′ + 5 y = 0 • y ′′ − 6 y ′ + 25 y = 0

Esempio
Determinare l’integrale generale della seguente equazione differenziale
lineare omogenea dipendente da parametri:

x ′′ + 2 γ x ′ + ω2
0 x = 0

(
γ = α

2 m , ω0 =
√

k
m , m, k > 0, α ≥ 0

)
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Equazioni differenziali lineari non omogenee a coefficienti costanti

Siano a0, a1 ∈ R e b ∈ C(R,R), b ̸≡ 0.
Consideriamo l’equazione differenziale non omogenea a coefficienti
costanti

(4) y ′′ + a1 y ′ + a0 y = b(t)

Ricordiamo che, conoscendo l’integrale generale dell’equazione omogenea
associata, per determinare l’integrale generale di (4) è sufficiente determi-
narne un integrale particolare.

Come si fa?
Rispondiamo a tale domanda nel caso di termini noti di tipo particolare.

Per termini noti generali: An. Mat. III . . .

23



Teorema (metodo di somiglianza)
Consideriamo l’equazione differenziale

(4) y ′′ + a1 y ′ + a0 y = b(t)

con a0, a1 ∈ R.

1 Supponiamo b(t) = eλt p(t) con

• λ numero reale,
• p funzione polinomiale di grado k.

Allora: esiste una soluzione di (4) della forma ψ(t) = eλt p̃(t) tm

con

• p̃ funzione polinomiale di grado k,
• m molteplicità di λ come radice del polinomio caratteristico

dell’equazione omogenea associata a (4).

ψ(t) “somiglia” a b(t)
↓
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2 Supponiamo b(t) = eαt
(
p(t) cos(βt) + q(t) sin(βt)

)
con

• α, β numeri reali,
• p, q funzioni polinomiali di grado k e h, rispettivamente.

Allora: esiste una soluzione di (4) della forma

ψ(t) = eαt
(
p̃(t) cos(βt) + q̃(t) sin(βt)

)
tm

con

• p̃ e q̃ funzioni polinomiali di grado minore o uguale a max{k, h},
• m molteplicità di λ := α+ i β come radice del polinomio

caratteristico dell’equazione omogenea associata a (4).

Nota: se λ non è radice del polinomio caratteristico dell’equazione
omogenea associata, intendiamo m = 0 e tm = 1.

25



Nota
Il teorema afferma l’esistenza di funzioni polinomiali tramite le quali si
costruiscono soluzioni di (4). Per determinare tali funzioni polinomiali
occorre determinarne i coefficienti; per questa ragione il metodo viene
anche chiamato dei coefficienti indeterminati.

Esempi
Determinare l’integrale generale delle seguenti equazioni differenziali
lineari:

• y ′′ − 2 y ′ − 3 y = 3 e2 t • y ′′ − y ′ − 2 y = −2 t + 4 t2

• y ′′ + 9 y = t2 e3 t + 6 • y ′′ + 2 y ′ + 5 y = 3 sin(2 t)

• y ′′ + 2 y ′ + y = 2 e−t
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Esempi
Risolvere i seguenti problemi di Cauchy:

• y ′′ − 4 y ′ + 4 y = (t2 + t) e−t y(0) = 0 , y ′(0) = −1

• y ′′ − 3 y ′ + 2 y = 10 cos(t) + et y(0) = 3 , y ′(0) = −1

Esempio
Determinare l’integrale generale della seguente equazione differenziale
lineare non omogenea dipendente da parametri:

x ′′ + 2 γ x ′ + ω2
0 x = δ sin(ω t) ω0, ω, δ ∈ (0,+∞), γ ∈ [0,+∞)
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