Questo documento contiene lo svolgimento dei quesiti proposti nelle seguenti prove scritte per I'esame

di Analisi Matematica Il:

e prima prova di esonero (23 aprile 2025)

e seconda prova di esonero (10 giugno 2025)
e prova scritta del 24 giugno 2025

e prova scritta dell’8 luglio 2025

Naturalmente lo svolgimento proposto non & I'unico possibile. Talvolta vengono forniti alcuni dettagli

non indispensabili, allo scopo di costituire una guida nella preparazione all’'esame.

Sard grata a coloro che segnaleranno eventuali refusi e imprecisioni (scrivendo a monica.lazzo@uniba.it).



Svolgimento della prima prova di esonero di Analisi Matematica Il — 23 aprile 2025

Quesito 1
Si determini la soluzione del problema di Cauchy
y'— 4y +5y =te?t +4 cos(t), y(0)=0, y(0)=1.

Svolgimento
Il polinomio caratteristico dell’equazione omogena associata & P(A\) = A2 — 4\ + 5, che ha radici
complesse coniugate A=2+4/7 e A =2 — /. La generica soluzione dell'’equazione omogenea associata &
quindi

c1 €2t cos(t) + o €2t sin(t), teR

al variare di ¢1, ¢ € R.

Per il principio di sovrapposizione, una soluzione particolare dell’equazione non omogenea assegnata si
ottiene come somma di una soluzione particolare dell’equazione con termine noto t e2! e una soluzione
particolare dell’equazione con termine noto 4 cos(t). Per entrambe le equazioni si pud utilizzare il metodo

di somiglianza.

Osservando che P(2) # 0, determino una soluzione particolare dell'equazione con termine noto te?t

della forma @(t) = (at + b) 2. Derivando ottengo

O'(t) =ae?t +2(at+b)e?t, "(t)=2ae?t+2ae?t +4(at+ b)e?t;
sostituendo nell’equazione:

4ae’t +4(at+b)e?t —4ae’t —8(at+b)e*t +5(at+b)e?t =te?t,

cioe (at+ b)ezt = te?t, che equivale a at + b = t. Questa uguaglianza & soddisfatta per ogni t € R

seesolose a=1e b=0, dunque: @(t) =te’".

Osservando che P(i) # 0, determino una soluzione particolare dell’equazione con termine noto 4 cos(t)

della forma 9(t) = a cos(t) + b sin(t). Derivando ottengo
Y'(t) = —asin(t) + b cos(t), ¢"(t)=—acos(t) — bsin(t);
sostituendo nell’equazione:
—a cos(t) — bsin(t) —4(—asin(t) + b cos(t)) + 5 (a cos(t) + bsin(t)) = 4 cos(t).

Questa uguaglianza & soddisfatta per ogni t € R se e solo se



—a—4b+b5a=4, —-b+4a+5b=0
da cuiricavo a= 3 e b= —3. Dunque: 9(t) = 3 cos(t) — 3 sin(t).
La generica soluzione dell’'equazione assegnata €
y(t) = c1 €2t cos(t) + ¢ €2t sin(t) + te?t + 1 cos(t) — 3 sin(¢) teR

con ¢, ¢ € R.

Per determinare la soluzione del problema di Cauchy assegnato calcolo
y'(t) =2c1e?t cos(t) — c1 €2t sin(t) + 2 ¢ e?t sin(t) + ¢ 2t cos(t) +

+e?t+2te*t — Lsin(t) — 1 cos(t)

e impongo le condizioni iniziali:

O=y(0)=c+3, 1=y (0)=2ca+c+1-1.

w

Ottengo dunque ¢; = —% e o =32.

N

In conclusione, la soluzione del problema di Cauchy assegnato &

y(t) = —3 et cos(t) + 3 €2t sin(t) + t €2t + & cos(t) — 2 sin(t) teR.

Quesito 2

. L . - x+y—1

Si consideri la funzione definita ponendo f(x,y) = ——5——-

[ ideri la funzi inita p (x,y) e

(a) Si determini il dominio di f e se ne descrivano le proprieta (aperto, chiuso, convesso, connesso,
limitato, compatto).

(b) Sistudino i limiti significativi di f.

Svolgimento

(a) La funzione assegnata & definita nell'insieme
A={(xy) €ER? | x* +y?> - 1#0}

che pu0 essere espresso come unione degli insiemi disgiunti 3

B:={(x,y) €ER? | x>+ y?>—-1<0}
C:={(x,y) €ER? | x> +y%>—1>0}.




Noto che B & la palla aperta di centro (0,0) e raggio 1, quindi & un insieme aperto e limitato. L’insieme
C e invece il complementare della palla chiusa di centro (0,0) e raggio 1, quindi & un insieme aperto
(perché complementare di un insieme chiuso) e illimitato (perché complementare in R? di un insieme
limitato).

Contenendo un insieme illimitato, A e illimitato, e pertanto non compatto.

Essendo unione di due insiemi aperti disgiunti, A non & connesso (e pertanto non & connesso per poligonali,
né stellato, né convesso).

Osservo che la frontiera di A & la circonferenza unitaria S := {(x,y) € R? | x> + y2 = 1}, che non ¢

contenuta in A; pertanto, A non & chiuso.

0,1)

(b) Essendo una funzione razionale, f & continua nel proprio
dominio. Sono pertanto da ritenersi “significativi” i limiti nei punti Y,

di accumulazione di A che non appartengono ad A (ossia tutti i E 1.0

punti di S); inoltre, siccome A & illimitato, va considerato il limite

per [|(x, y)| = +oo.

Per ragioni che saranno subito chiare, denoto con Sy la porzione
di S contenuta nell'interno del primo quadrante e pongo S =S\ (S; U{(1,0),(0,1)}).
Fisso (a,b) € S1 (percid a4+ b—1>0). Risulta

im  fa(xy) = TP im  fe(ay)=2tPmt
s = = —0 , = = o0
(x,y)—(a,b) 8 0 (x.y)—+(a,b) Ic ot
dunque f non ha limite per (x,y) — (a, b).
Fisso (a, b) € S_ (percio a+ b—1<0). Risulta
. a+b—-1 _ a+b-1
lim fg(x,y) = ———— =+ lim fc(x,y) = ——F—=—-
() ey BV = T (erystam 1€ = g

dunque f non ha limite per (x,y) — (a, b).

Restano da studiare i limiti in (1,0) e (0, 1), che presentano una forma di indecisione “zero su zero”.
Pongo D := {(x,y) € R? | x € (0,1), x+y — 1 = 0} (segmento congiungente (0,1) e (1,0)) e
E:={(x,y) €R? | x € (0,1), y = 0} (segmento congiungente I'origine e (1,0)).

Dato che la restrizione di f a D coincide con la funzione identicamente nulla, si ha

lim fin(x, =0;
oMoy 100 Y)



tuttavia
1 1

lim  fig(x,y) = lim X lim
| X = 1l — = |l =
(x.y)—(1,0) 1 4 x—1x2—1 x=1x+1 2’

quindi f non ha limite per (x,y) — (1,0). Per ragioni di simmetria (oppure restringendo f al segmento

congiungente (0,0) e (0,1)) deduco che f non ha limite nemmeno per (x,y) — (0,1).

Osservando che la restrizione di f alla retta passante per (0,1) e (1,0) & identicamente nulla, congetturo
che f abbia limite 0 per ||(x,y)] = +o0.

Osservo che per ogni x,y € R si ha (|x| + [y)?2 = x2 + y? + 2|x||y| < x®> +y? + x2 + y2, quindi
x| + |y < v/2(x2 + y2). Pertanto, per ogni (x,y) € A si ha

X+y—=1] _ xl+lyl+1 _ V202 +y) +1
<I|f = < <
0 <[f(x.y)l X2+ y2 —1] = |x24+y2 -1 = |[x2+y2-1]

e siccome
20 +y)+1 ¢7t+1_0

o) lotoo  [X24+y2 =1 todoo |t — 1]

dal teorema di convergenza obbligata deduco

lim f(x,y)=0.
G )l =+o0

Quesito 3

Si consideri la funzione definita in R? ponendo
fx.y)=Ix—yl(x*+y*=2).

(a) Si studi la differenziabilita di f.

1 2
(b) Si calcoli la derivata di f nel punto (1, —1) nella direzione v = (— )

NG

(c) Si scriva I'equazione del piano tangente al grafico di f nel punto (1,0).

Svolgimento
(a) La funzione assegnata & prodotto della funzione (x, y) = x°+y? —2, polinomiale e quindi derivabile
parzialmente, e della funzione (x,y) — |x — y|, composta della funzione polinomiale (x,y) — x —y e

della funzione t + |t|, derivabile tranne che in t = 0.



Definisco I'insieme A := {(x,y) € R? | x —y # 0} (il piano privato della bisettrice di primo e terzo

quadrante); osservo che A & aperto e che per ogni (x,y) € A

af .
x5 ¥) = sign(x = y) (X +y?=2)+|x—y|2x

of .
@(X,y) = —sign(x —y) (P +y* = 2) +|x —y|2y

Tali derivate sono evidentemente continue in A; dal corollario del teorema del differenziale totale segue
allora che f & differenziabile in A.

Restano da esaminare, mediante la definizione, i punti della bisettrice di primo e terzo quadrante.

Fisso a € R e considero (a, a).

Considero il rapporto incrementale di f rispetto alla prima variabile. Per ogni t # 0 si ha

fla+t,a)—f(a,a) la+t—al((a+t)*+a°>—2)—0 |t
t - t Tt

2at+t>+2a>—2),
(

quindi

i f(a+t,a)—f(a,a):2(a2_1)’ lim f(a+t,a)—f(a,a):_2(82_1).

t—0+ t t—0~ t

Per a # +1 i limiti unilaterali sono diversi, quindi non esiste il limite per t — 0; in (a, a) la funzione non
e derivabile parzialmente rispetto a x, dunque non ¢& differenziabile.

Per a = =1 i limiti unilaterali sono entrambi uguali a 0, percio in (1,1) e (=1, —1) la funzione & derivabile
parzialmente rispetto a x con gi(il, +1)=0.

Verifico se in tali punti f & anche derivabile parzialmente rispetto a y.

Scrivo il rapporto incrementale di f rispetto alla seconda variabile. Per ogni t # 0 si ha

F(£1, 214 t) — F(£1,£1) [t ((£1)? + (£14+ )2 —2) -0 [t](£2 ¢+ t?)
t N t N t

= [t| (£2 + t);

il limite per t — 0 esiste ed & uguale a 0, pertanto f & derivabile parzialmente rispetto a y con

of
—(£1,£1) = 0.
5, (E1.%1) =0

Ricapitolando: in (1,1) e (—=1,—1) la funzione f & derivabile parzialmente e ha gradiente uguale al

vettore nullo.



Per stabilire se f & differenziabile, valuto il rapporto incrementale di f in (1,1) (per simmetria, in

(—1,—1) si otterra lo stesso risultato). Per (h, k) # (0,0) si ha

F(L+h1+k)—F(1,1) = VF(L,1)-(h k)

R(h, k) =
[1Ch, Kl
A=A+ R+ +(1+k)2=2)—0—0  |h—k|(2h+h*+2k+ k?)
\/h2+k2 w/h2—|—k2 !
quindi
0 < |R(h I < KL o 2 ok k2 <22 h 4 R 4 2k K2
Vh? 4+ k?

dal teorema di convergenza obbligata deduco facilmente che

lim R(h k) =0,
(h,k)—(0,0)

quindi f & differenziabile in (1,1).
(b) Dato che f & differenziabile nel punto (1,—1), posso calcolare la derivata direzionale richiesta

utilizzando la formula del gradiente:

12

of 19
5, (L-D =V -1)-v=(4-4)- (75, - >:ﬁ

N
(c) Ha senso parlare di piano tangente al grafico di f nel punto (1,0), perché f & differenziabile in tale
punto. Risulta
f(1,0)+VFf(1,0)-((x,¥y) —(1,0))=—-14+(1,1)- (x—1,y)=—-14+x—-1+y,

quindi I'equazione del piano tangente &

Z=x4+y—-2.



Svolgimento della seconda prova di esonero di Analisi Matematica Il — 10 giugno 2025

Quesito 1

Si determinino gli estremi locali della funzione definita in R? ponendo
fx.y)=e M@xy+y?).

Svolgimento
La funzione assegnata & continua in R?; la presenza del termine |x| non garantisce che sia differenziabile
nei punti dell'asse delle ordinate, cioé nei punti del tipo (0,y) con y € R. Non verifico se in tali punti la
funzione & effettivamente differenziabile (la traccia non lo richiede; si veda pero la nota al termine dello
svolgimento di questo quesito), pertanto li considero tutti candidati punti di estremo locale.

Dato che la restrizione di f all'asse delle ordinate & (0, y) = y?, crescente per y > 0 e decrescente per
¥ < 0, I'unico possibile punto di estremo dell'asse delle ordinate & (0,0), che potrebbe essere punto di
minimo.

Noto che f(0,0) = 0; dal segno di f, rappresentato nella

figura qui a lato (in blu: £ =0; in verde: f > 0; in rosso:

<
[
(=]

f < 0), deduco che (0,0) non & punto di estremo locale.

(Nota: non lo chiamo “punto di sella” perché non so se 2x+y=0

in tale punto f & differenziabile.)

La funzione assegnata & di classe C™ nell'insieme aperto R? \ {x = 0}; determino i punti stazionari in

tale insieme. Per ogni (x,y) € R? con x # 0 si ha
fe(x,y) = e (=sign(x)) 2xy +y?) + e ™ (2y) f(x,y) =e M @x+2y).

| punti stazionari sono le soluzioni del sistema

fe(x,y) =0
fy(x.y) =0
che equivale a
—sign(x) 2xy +y?)+2y =0
x+y=0.
Dalla seconda equazione ricavo y = —x; sostituendo nella prima ottengo —sign(x) (=2 x%>+x?)—2x =0,

ossia sign(x)x?> —2x = 0. Dato che x # 0, questa equazione equivale a sign(x)x — 2 = 0, ciog



|x| —2 = 0. che ha soluzioni x =2 e x = —2. Dunque, i punti stazionari di f sono (2,—-2) e (—2,2);
per classificarli determino il segno degli autovalori della matrice hessiana.

Per calcolare le derivate seconde, osservo che supponendo di far variare (x, y) in un intorno di (2, —2)
interamente contenuto nel semipiano aperto di equazione x > 0, oppure in un intorno di (—2,2) inte-
ramente contenuto nel semipiano aperto di equazione x < 0, posso ritenere il termine sign(x) costante

(di valore 1 e -1, rispettivamente). Pertanto:
fx(x,y) = e X (=sign(x))* (2xy + y*) + e M (=sign(x)) (2y) + e " (=sign(x)) (2y)
= e X (2xy+y?) — e Msign(x) (4y) = e ¥ (2xy + y? —sign(x) (4¥))
fy(x,¥) = fyx(x,y) = e M (=sign(x)) (2x +2y) + e 12 = e ¥ ((=sign(x)) (2x + 2y) +2)
fy(x,y) =e X2,

quindi

4e 2 De 2
He(2, —2) = — He(=2,2).
De™2 De2

Gli autovalori della matrice qui sopra sono le radici del polinomio

4e 2 )\ 2e2
det =X —6eA+4e*
De 2 272 )

dall’alternanza dei segni dei coefficienti del polinomio deduco che le radici sono entrambe positive, pertanto

(2,—-2) e (—2,2) sono punti di minimo locale.

Nota
Nella traccia proposta a chi il 10 giugno ha sostenuto la prova scritta completa (e non la seconda prova
di esonero) & richiesto esplicitamente di studiare la differenziabilita della funzione assegnata; includo qui
lo svolgimento.
Come gia notato, f &diclasse C? nell'insieme aperto R?\{x = 0} ; in tale insieme, come conseguenza del
teorema del differenziale totale, f risulta differenziabile. Restano da esaminare, mediante la definizione,
i punti dell’asse delle ordinate. Fisso g € R e considero (0, B).
Considero il rapporto incrementale di f rispetto alla prima variabile. Per ogni t # 0 si ha

e lth—1

— —[t] 2y — g2
f(0+t,ﬁ£ f0.8) _e f(2tﬁt+ﬁ> P —e f2p+———p.




L _ elth—1
Per t — 0, il primo addendo tende a 2 6; nel secondo addendo, il fattore — & asintoticamente

: —|t] _
equivalente a - Pertanto:

im QLB —FOB) o L FO+16) = F(0.5)

=28+ p°
t—0t t t—0~ t p+p

Per B # 0 i limiti unilaterali sono diversi, quindi non esiste il limite per t — 0; in (0, 8) la funzione non
e derivabile parzialmente rispetto a x, dunque non & differenziabile.
Per B = 0 i limiti unilaterali sono entrambi uguali a 0, percio in (0, 0) la funzione & derivabile parzialmente

rispetto a x con £(0,0) =0.

Verifico se in (0,0) la funzione f & anche derivabile parzialmente rispetto a y.

Scrivo il rapporto incrementale di f rispetto alla seconda variabile. Per ogni t # 0 si ha

f(0,£) - £(0,0) _£2—0 _

t;
t t

il limite per t — 0 esiste ed e uguale a 0, pertanto f & derivabile parzialmente rispetto a y con

£,(0,0) = 0.

Ricapitolando: in (0,0) la funzione f & derivabile parzialmente e ha gradiente uguale al vettore nullo;

per stabilire se f e differenziabile, valuto il rapporto incrementale di f in (0,0). Per (h, k) # (0,0) si

ha
f(04 h, 04 k) — f(0,0) — V£(0,0) - (h, k)
R(h, k) =
1Ch, k)l
e M@hk+k?)—0-0 e Ml (2h+k)k
Vh? + k2 Vh? + k2
quindi
k|
0 < |R(h, K)| < e "l (21n| + |k |7<e_|h| 2|h| + |k]);
< |R(h k)| < H"”JW— (2 |h] + |K])

dal teorema di convergenza obbligata deduco facilmente che

lim R(h, k) =0,
(h,k)—(0,0)

quindi f e differenziabile in (0,0).
Osservo che (0,0) & dunque un punto stazionario per f, che risulta essere un punto di sella in base

all'analisi del segno svolta in precedenza.



Quesito 2
Si calcoli il flusso del campo vettoriale

F(x,y,z) = (xy, x+2z, x°2)
uscente attraverso la frontiera del sottoinsieme di R3 delimitato dalla superficie conica di equazione
z= J)ﬁy2 e dai piani di equazione z=1e z=4.
Si verifichi mediante il teorema della divergenza la correttezza del risultato ottenuto.
Svolgimento
Dato che le sue componenti sono funzioni polinomiali, il campo vettoriale F & di classe C*® in R3.
Denoto con T il sottoinsieme di R3 assegnato. Si tratta
di un dominio regolare di R3, la cui frontiera & sostegno

della superficie regolare a pezzi chiusa avente come facce

una porzione di superficie conica e due dischi, denotati
rispettivamente con X1, 25 e 23 nella figura qui a lato. T
Parametrizzo le tre facce, utilizzando i simboli ¢ e K di volta in volta per denotare oggetti diversi.
Scelgo la parametrizzazione di >; definita ponendo

o(u,v)=(ucosv, usinv, u) (u,v) €[1,4] x[0,27] =: K.
Per ogni (u,v) € K:

ou(u,v) =(cosv, sinv, 1) ov(u,v)=(—usinv, ucosv, 0),

quindi il vettore normale &
€1 € €3

Ny(u,v)=0c,(u,v) xo,(u,v) =] cosv sinv 1|=(—uvcosv, —usinv, u).

—usinv wucosv 0

Osservo che in ogni punto il vettore normale & diretto verso I'asse z, ossia verso l'interno di T ; in altre
parole, la parametrizzazione scelta orienta X1 negativamente. Tenuto conto di cid, il flusso di F uscente

attraverso > ; &
oy, (F) = —// F(o(u,v))+ Ny(u,v)dudv
K
= —// (u? cosv sinv, ucosv+u, u®cos?v)-(—ucosv, —usinv, u)dudv
K

:// (u® cos? v sinv + u? cosv sinv + u? sinv — u* cos? v) dudv .
K



Per ragioni di periodicita, i primi tre addendi nella funzione integranda forniscono contributo nullo; per-

4 27
1023
C"Zl(F)Z//—u“coszvdudv:—/ u4du/ cos2vdv:—?7r.
K . 0

Scelgo la parametrizzazione di ¥, definita ponendo

tanto:

o(u,v) =(ucosv, usinv, 4) (u,v) €10,4] x[0,27] =: K.
Per ogni (u,v) € K:
oy(u,v) = (cosv, sinv, 0) oy(u,v)=(—usinv, ucosv, 0),

quindi il vettore normale &
€1 [S] €3

No(u,v) =0,(u,v) xo,(u,v) =1 cosv sin v 0|=(0, 0, v).

—usinv wvcosv 0

In ogni punto il vettore normale & diretto verso I'alto, ossia verso I'esterno di T ; la parametrizzazione

scelta orienta 2, positivamente. Tenuto conto di cio, il flusso di F uscente attraverso >, &

&y, (F) = //KF(a(u, v)) « No(u, v)dudv

:// (u? cosv sinv, ucosv+4, 4u? cos?v)-(0, 0, u)dudv
K

4 21
://4u3 coszvdudv:/ 4u3du/ cos?vdv =256 .
K 0 0

Infine, scelgo la parametrizzazione di >3 definita ponendo

o(u,v)=(ucosv, usinv, 1) (u,v) €[0,1] x[0,27] =: K.
Per ogni (u,v) € K:

ou(u,v) =(cosv, sinv, 0) ov(u,v)=(—usinv, ucosv, 0),

quindi il vettore normale & Ny(u,v) = o,(u,v) x o,(u,v) = (0, 0, u).
In ogni punto il vettore normale & diretto verso I'alto, ossia verso l'interno di T; la parametrizzazione

scelta orienta 23 negativamente. Tenuto conto di ciod, il flusso di F uscente attraverso 23 &

ds.(F) = —//KF(O'(U, v)) « Ny(u,v)dudyv

:—// (u? cosv sinv, ucosv+1, u?cos®v)- (0, 0, u)dudv
K

1 2m T
:—// 3C052VdUdV:—/ u3du/ cos?vdy = —— .
K 0 0 4



In conclusione, il flusso di F uscente attraverso la frontiera di T &
1023 om 1023

Verifico la correttezza del risultato ottenuto applicando il teorema della divergenza. Anzitutto ricordo

che la divergenza di un campo vettoriale di componenti F1, F», F3, nell’ordine, € il campo scalare

. __OF1 0F> 0OF3
divF = e + By + 57

Per il campo assegnato:

divF(x,y,z) =y +0+ x> =y +x2.

Per il teorema della divergenza, il flusso di F uscente attraverso la frontiera di 7 & uguale all'integrale

///TdivF(X,y,z) dxdydz.

Per calcolare I'integrale, utilizzo la formula di integrazione per strati:

///TdivF(x,y,z)dxdde:/14 </Tz(y+x2)dxdy> dz

dove, per ogni z € [1,4] la sezione T, di T & il disco chiuso di centro I'origine e raggio z. Calcolo

triplo

I'integrale doppio passando a coordinate polari:

/ (y +x?)dxdy = // (p sinf+ p? cos’ ) pdpdd
[0,2]x[0,27]

2 2m
/p d,o/ sm@d@—i—/ 0 dp/ cos’ 6 d6

—O+Z’IT—ZZ .

Pertanto:

4 5714
. _ [T 4, _m |z _ w1023 1023



Quesito 3
Si consideri la curva di parametrizzazione r(t) = (t(t —1)(2—-1t), 1 —|t—1]) , t€][0,2].
(a) Si stabilisca se la curva & regolare, semplice, chiusa e se ne disegni approssimativamente il sostegno.

(b) Si calcoli I'area del dominio regolare delimitato dal sostegno della curva.

Svolgimento
(a) Dato che r(0) =(0,0) e r(2) = (0,0), la curva & chiusa.
La prima componente della parametrizzazione, cioé la funzione x(t) = t(t — 1)(2 — t), & polinomiale,
quindi di classe C* in [0, 2]; la seconda componente, ciog la funzione y(t) = 1—|t—1]|, non & derivabile
in t =1 (pertanto la curva non & regolare), ma & di classe C* in [0,1) U(1,2].
Per t € [0,1)U(1,2] si ha y'(t) = —sign(t —1) # 0, quindi r'(t) # (0, 0); pertanto, la curva & regolare
a tratti.
Verifico se la curva & semplice. Prendo t,s nellintervallo [0,2], con almeno uno tra t e s interno
all'intervallo; per fissare le idee, suppongo t € (0,2). Suppongo r(t) = r(s), ciog x(t) = x(s) e
y(t) = y(s), cioe

t(t—1)(2—-t)=s(s—1)(2-5s) e 1—-|t—-1]=1—-|s—-1].
Dalla seconda uguaglianza deduco |t — 1| = |s — 1|, che & soddisfattase t —1 =s—1, cioe t = s,
oppurese t—1=1—5, cioe s =2 —t. In questo caso, sostituendo nella prima uguaglianza ottengo

tt—-12-t)=2-t)2-t-1)(2-2+1),

ciog t(t—1)(2—1t) = (2—t)(1 —t)t; semplificando per t(2 —t), che per ipotesi & diverso da 0, ricavo
t—1=1-—1t,cioe 2t=2,cioe t=1equindi s=2—1=1. Anche in questo caso, dunque, concludo
t = s. In conclusione, la curva & semplice.
Disegno separatamente i grafici delle due componenti. Osservando che x & una funzione polinomiale di
terzo grado, che si annulla per t € {0,1,2}, mentre y & ottenuta dalla funzione valore assoluto mediante

trasformazioni elementari, & facile ottenere i grafici qui sotto (x a sinistra, y a destra):




Seguendo I'andamento delle due componenti disegno il
sostegno della curva, che & percorso nel verso indicato

nella figura qui a lato.

(b) Per calcolare I'area del dominio D delimitato dal

sostegno della curva, utilizzo il teorema di Gauss-Green:

area(D) = // 1dxdy:j{ F(P)-dP,
D oD+
oF, OF

dove F = (Fi, ) & un qualsiasi campo vettoriale di classe C! tale che a W =1in D, e

la circuitazione di F & calcolata utilizzando una qualsiasi parametrizzazione della frontiera di D che la

orienti positivamente, cioé sia tale che percorrendo 9D I'insieme D rimanga a sinistra.

Scelgo F(x,y) = (0, x) e osservo che la parametrizzazione assegnata r induce su 9D il verso di

percorrenza opposto di quello richiesto. Pertanto:
1 2
_ffém F(P)-dP:/O F(r(t))-r(t)dt—i—/l F(r(D) - F'(1) dt

1 2

= [0 X)X, (@) de+ [0 x(0)- (0, y(2) e
0 1
1 2

:/ x(t)y’(t)dt+/ (1) y'(£) dt
0 1
1 2

:/ t(t—l)(2—t)(1)dt+/ HE—1)(2 - £)(-1) dt
0 1
1 2

:/ (3t2—t3—2t)dt—/ (3t2—t3-21¢t)dt
0 1

#4 ! #4 |
o G I G IS

1
In conclusione: area(D) = 5



Svolgimento della prova scritta di Analisi Matematica Il del 24 giugno 2025

Quesito 1
Si determini la soluzione del problema di Cauchy
yV'—4y=te’t,  y(0)=y'(0)=0.

Svolgimento
Il polinomio caratteristico dell’equazione omogena associata & P(\) = A% — 4, che ha radici reali A =2

e A = —2. La generica soluzione dell’'equazione omogenea associata & quindi
cre’t+ e 2t teR
al variare di ¢y, ¢ € R.

Determino una soluzione particolare dell’equazione non omogenea assegnata utilizzando il metodo di
somiglianza. Osservando che A = 2 & radice del polinomio caratteristico con molteplicita 1, cerco una

soluzione particolare dell’equazione con termine noto te?t della forma
o(t)=(at+b)e’tt=(at’>+bt)e’t.
Derivando ottengo
O(t)=Qat?+2at+2bt+b)e?t, " (t)=(4at>+8at+4bt+2a+4b)e?t;
sostituendo nell’equazione:
(4at’+8at+4bt+2a+4b)e’t —4(at>?+bt)e’t =te?t,

ciot (8at+2a+4b)e’t =te?t cheequivalea 8at+2a+4b=t.

Questa uguaglianza & soddisfatta per ogni t € R se e solose 8a=1¢e 2a+4b =20, cioce a=

o(t) = <t82— 1t6> et

La generica soluzione dell’'equazione assegnata €

Q| —

1
b= 15 dunque:

2t
y(t):cle2t+cze_2t+<8—l6> e?t teR

con ¢, ¢ € R.



Per determinare la soluzione del problema di Cauchy assegnato, calcolo

() =2 et —2ce 2t + t? 1 2t g t?2 ot 2t
yit)=<cae e 4 16) € g 16) ¢

e impongo le condizioni iniziali:
0=y(0)=a+c, 0=y(0)=2a-2c-=;
ottengo dunque ¢ 1ec L
unqu = — =——
Jodunque a1 =54 € 27 T
In conclusione, la soluzione del problema di Cauchy assegnato &

e?t ef2t t2 t
y(t)=6—4— +<—>e2f teR.

04 8 16

Quesito 2 (valido per il recupero della seconda prova di esonero)
Si consideri la funzione definita in R? ponendo f(x,y) = x3 +y® —3xy.
(a) Si determinino e classifichino i punti stazionari di f.

(b) Si determinino gli estremi globali di f nel triangolo di vertici (—3,0), (3,0), (0,3).

Svolgimento
(a) La funzione assegnata & di tipo polinomiale, pertanto & di classe C*® in R?.
Per ogni (x,y) € R? si ha

fX(x,y):3x2—3y fy(x,y):3y2—3x.

| punti stazionari sono le soluzioni del sistema

fe(x,y) =0

fy(x.y) =0
che equivale a

x2—y=0

y? —x=0.

2. sostituendo nella seconda ottengo x*—x = 0, ossia x(x3—1) =0,

Dalla prima equazione ricavo y = x
che ha soluzioni x =0 e x = 1. Dunque, i punti stazionari di f sono (0,0) e (1,1).

Per classificare 1 punti stazionari determino il segno degli autovalori della matrice hessiana.



Per ogni (x,y) € R? si ha

fx(X,y) =6x foy (X, y) = fx(x,y) = =3 fyy(x,y) =6y.
Pertanto:
0 -3 6 -3
Hf(0,0) = He(1,1) =
-3 0 -3

Gli autovalori di H¢(0,0) sono le radici del polinomio

dunque sono discordi; ne deduco che (0,0) & un punto di sella.
Gli autovalori di H¢(0,0) sono le radici del polinomio
6-Xx -3

det =(6-X)2—-9=X—12)+27;
-3 6-A

dall’alternanza dei segni dei coefficienti del polinomio deduco che le radici sono entrambe positive, pertanto
(1,1) & un punto di minimo locale.
Anche se non & richiesto esplicitamente nella traccia, osservo che f non ha estremi globali in R?, in

quanto e illimitata sia inferiormente che superiormente; cid si riconosce per esempio valutando il limite

3

lim f(x,0)= = *+o0.
x—Fo00

im x
x—too

(b) Denoto con T il triangolo di vertici A(=3,0), B(3,0), C(0,3).

Dato che T € un insieme chiuso e limitato, dunque
compatto, e la restrizione di f a T & una fun-
zione continua, il teorema di Weierstrass garantisce

I'esistenza degli estremi globali di £ in T. | punti di

estremo vanno ricercati tra i punti stazionari interni

a T eipuntidifrontieradi T. S

L'unico punto stazionario di f interno a T & P(1,1), che come visto & punto di minimo locale per f,
dunque candidato punto di minimo globale per f in T.

La frontiera di T & unione dei tre lati AB, AC e CB, che parametrizzo facilmente.



La restrizione di f al lato AB & g1(t) := f(t,0) = t3, con t € [-3,3]. Tale funzione (elementare!) &
crescente, pertanto A e candidato punto di minimo globale per f in T, mentre B & candidato punto di
massimo globale per f in T. (Per inciso, noto che per t = 0, ossia in (0,0), la restrizione di f al lato

AB presenta un punto di sella, in coerenza con la classificazione precedente di (0,0).)

La restrizione di f al lato AC & go(t) := f(t,.t+3) = 3+ (t+3)3-3(t>+3t), con t € [-3,0].
Risulta g5(t) =3t +3(t+3)>—3(2t+3) = 6t +12t+18. E immediato riconoscere che il polinomio
a destra & sempre positivo, dunque go & crescente; pertanto, oltre ad A, gia candidato punto di minimo

globale per f in T, ottengo che C & candidato punto di massimo globale per f in T.

La restrizione di f al lato CB & g3(t) = f(t,3—t) = t3+(3—1)3—-3(3t—1t2), con t € [0, 3]. Risulta
gi(t) =3t2 - 3(3— )2 -3(3-2t) =24t —36. E immediato riconoscere che il polinomio a destra
e nullo per t = 3/2, negativo per t € [0,3/2), positivo per t € (3/2,3], dunque g3 & decrescente in
[0,3/2] e crescente in [3/2,3]. Pertanto, oltre a B e C, gia candidati punti di massimo globale per f

in T, ottengo che D(3/2,3/2) & candidato punto di minimo globale per f in T.
Valutando f nei candidati punti di minimo globale ho f(1,1) = -1, f(-3,0) = =27, f(3/2,3/2) =0;

concludo che mTinf = —27. Valutando f nei candidati punti di massimo globale ho f(3,0) = 27,

£(0,3) = 27; concludo che max f=27.

Quesito 3 (valido per il recupero della seconda prova di esonero)
Si calcoli il flusso del rotore del campo vettoriale
F(x,y,z) = (xy, x +z, x2 z)
entrante nella porzione della superficie conica di equazione z = J)ﬁy2 delimitata dai piani di equazione
z=1lez=4.

Svolgimento
Dato che le sue componenti sono funzioni polinomiali, il campo vettoriale F & di classe C*® in R3.

Il rotore di F & dunque un campo vettoriale continuo in R3; lo determino calcolando il determinante

simbolico
€1 €2 €3
rotF(x,y,z) =18, 8, 8, |=(-1 —2xz 1-x).
2

Xy x+z x°z



La superficie conica X & una superficie orientabile, dunque ha senso calcolare il flusso di un campo

vettoriale attraverso X . Scelgo la parametrizzazione di X definita ponendo

o(u,v) =(ucosv, usinv, u) (u,v) €[1,4] x[0,27] =: K.
Per ogni (u,v) € K:

oy(u,v) = (cosv, sinv, 1) oy(u,v)=(—usinv, ucosv, 0),

quindi il vettore normale &
€1 €2 €3

Ny(u,v) =0o,(u,v) xo,(u,v) =1 cosv sinv 1|=(—ucosv, —usinv, u).

—usinv wuvcosv 0

Osservo che in ogni punto il vettore normale & diretto verso I'asse z, ossia verso il cono; la parametriz-

zazione di X & dunque coerente con il verso richiesto per il flusso. Risulta:
dy(rot F) = // rot F(o(u,v)) - No(u,v)dudv
K
= // (-1, —2u? cosv, 1 —ucosv)-(—ucosv, —usinv, u)dudv
K

:// (ucosv+42u® cosvsinv+ u— u? cosv)dudv
K

4 21 4 21 4 21
:/(u—uz)du/ cosvdv—l—/ u3du/ sin(2v)dv—|—/ udu/ dv.
1 0 1 0 1 0

Per ragioni di periodicita, gli integrali delle funzioni trigonometriche sono uguali a 0, pertanto:
4 27 w214
@z(rotl—_):/udu/ dv = [] 2w =157,
1 0 21

In alternativa, posso calcolare il flusso richiesto utilizzando il teorema di Stokes.
Riconosco infatti che X & sostegno di una super-
ficie regolare con bordo, il cui bordo & costituito

dall'unione della circonferenza «y; parametrizzata da

rn(t) = (4 cost,4sint,4) t €[0,2m] . .,

e la circonferenza -, parametrizzata da

ra(t) = (cost,sint, 1) t €[0,2m].



Siccome ¢ richiesto il flusso entrante attraverso %, orientare positivamente il bordo 9% significa
parametrizzare entrambe le circonferenze in modo che percorrendole ci si lasci a sinistra la faccia di
> rivolta verso l'interno del cono; noto che r» induce su -y il verso di percorrenza opposto a quello
richiesto. Pertanto:

¢zUmFU:iéz+FUﬂ-dP:i/

F(P)-dP— | F(P)-dP
[ Fee) /()

Y2

27 21
- / F(n(t) - ri(t) dt - / F(ra(t)) - (1) dt
0 0

27
= / (16 cost sint, 4 cost +4, 64 cos’t)-(—4sint, 4 cost, 0)dt +
0

2m
- (costsint, cost+1, cos’t)-(—sint, cost, 0)dt
0
2T 2m
= (—64 cost sin®t + 16 cos? t + 16 cost) dt — (—cost sin®t + cos? t + cost) dt
0 0
2T
= [ (—63costsin?t+ 15 cos®t+ 15 cost) dt .
0

Per ragioni di periodicita, gli integrali del primo e terzo addendo sono uguali a 0, pertanto:

2T
1 2t
1+cos@t) . qc

ds(rot F) = 15/

0

Quesito 4 (valido per il recupero della seconda prova di esonero)

Si calcoli I'integrale del campo vettoriale

Fly) = <<x2 ro Rl y2>2>

sulla curva grafico associata alla funzione definita ponendo g(x) = 1 — x? per ogni x € [-1, 1].

[Solo per il recupero della seconda prova di esonero: si verifichi la correttezza del risultato ottenuto,

ricalcolando I'integrale mediante un procedimento alternativo.]

Svolgimento

Il campo vettoriale assegnato & definito in R?\{(0, 0}, dove risulta continuo (in effetti, di classe C>, visto
che le sue componenti sono funzioni razionali). La curva assegnata, in quanto curva grafico associata a
una funzione di classe C!, & una curva regolare; inoltre, & immediato riconoscere che il suo sostegno -,

ossia il grafico di g, & contenuto nel dominio di F.



Dunque, I'integrale proposto & ben definito. Lo calcolo attraverso la definizione di integrale curvilineo,

utilizzando la parametrizzazione “standard” della curva grafico, cioe
r(t) = (t,g(t)) = (t,1-t%)  te[-1,1].

Risulta:

! , e t 1—t2
LHM*WZ/EHKW'“UM_/;Qﬂ+ﬂ—ﬂﬁf(ﬂ+ﬂ—ﬂ%9'@_ﬂwt

ot t 2t(1-t?) ! 213 — ¢
- /_1 ((t2 TA-2R2 (Br(- t2>2>2> qt= /_1 GRS

Osservo che la funzione integranda e dispari, e che l'intervallo di integrazione & simmetrico rispetto

all'origine; da questo deduco immediatamente che I'integrale & uguale a 0.

Come procedimento alternativo, provo a utilizzare la Formula Fondamentale del Calcolo per campi vetto-
riali conservativi. Siccome il dominio di F non & un insieme semplicemente connesso, se anche F fosse
un campo vettoriale chiuso (e lo &, come si verifica facilmente), cid non garantirebbe che sia conservativo.
Verifico che lo & direttamente, a norma di definizione, ossia cercandone un potenziale, che poi utilizzerd
per applicare la Formula.

Cerco dunque una funzione f : R?\ {(0,0)} tale che

X y
fx(X,Y):m fy(X:Y):m'
Dalla prima uguaglianza, integrando rispetto a x, deduco
1
f =—=——+h(y);

derivando rispetto a y e sostituendo nella seconda uguaglianza ottengo

y y
Y () e a—
(X2 1 y2)2 + () (2 + y2)2
ossia ' (y) = 0. Ne deduco che h & una funzione costante; scelgo h(y) =0.
In conclusione, la funzione definita ponendo

1

TR (x.y) € R2\ {(0,0)}

fix,y)=

& un potenziale di F. Applicando la Formula Fondamentale del Calcolo ottengo

/F(P) 4P = F(r(1)) = F(r(=1) = £(1,0) = F(=1,0) = —3 - <_1> -
v



Svolgimento della prova scritta di Analisi Matematica Il dell’8 luglio 2025

Quesito 1

Si determini I'integrale generale dell’equazione differenziale
y"+y=2cost+tsint.

Svolgimento
Il polinomio caratteristico dell'equazione omogena associata & P()\) = A2 + 1, che ha radici complesse

coniugate A =/ e A = —i. La generica soluzione dell’equazione omogenea associata € quindi
cp cost+ oo sint teR
al variare di ¢y, ¢ € R.

Determino una soluzione particolare dell’equazione non omogenea assegnata utilizzando il metodo di
somiglianza. Osservando che A =/ & radice del polinomio caratteristico con molteplicita 1, cerco una

soluzione particolare dell’equazione con termine noto 2 cost + t sint della forma
p(t) = ((at+b)cost+ (ct+d)sint)t=(at?+bt)cost+ (ct?+dt)sint.

Derivando ottengo

O'(t)=(2at+b)cost —(at? +bt)sint+(2ct+d)sint+ (ct?+d) cost

©"(t)=2acost—2(2at+b)sint — (at>+ bt) cost+2csint +
+2(2ct+d)cost—(ct>?+d)sint
sostituendo nell’equazione:
2acost—2(2at+b)sint— (at>+bt)cost+2csint+2(2ct+d) cost— (ct®+d)sint +

+(at?+bt)cost+ (ct>+dt)sint=2cost+tsint,

ciog

2acost—2(2at+b)sint+2csint+2(2ct+d)cost=2cost+tsint.
Questa uguaglianza & soddisfatta per ogni t € R se e solo se

2a+22ct+d)=2, —2(2at+b)+2c=t,

cioe se e solo se



4¢c=0, 2a+2d=2, —-4a=1 -2b+2c=0,

1 5
ossia c=b=0,a=—-,d=—.
' 4 4
t2 5t . : , : \
Dunque: ©(t) = 7 cost + e sint e la generica soluzione dell’equazione assegnata &
. t2 5. .
y(t):clcost+czsmt—Zcost+Ztsmt teR

con ¢, 6 € R.

Quesito 2
Si consideri la funzione definita ponendo
CIn(x*+y?)  (x.y) € R?\ {(0,0)}
0 (x,y) =(0,0).

fix,y)=

(a) Sistudi la differenziabilita di f.

(b) Si determinino e classifichino i punti stazionari di f.

Svolgimento

(a) La restrizione di f all'insieme aperto A := R?\ {(0,0)} & di classe C*, in quanto composta di
funzioni polinomiali e della funzione logaritmo. In particolare, essendo di classe C! in A, cioé avendo
derivate parziali continue, f risulta differenziabile in A come conseguenza del teorema del differenziale
totale.

Resta da esaminare, mediante la definizione, se f & differenziabile anche in (0,0). Anzitutto verifico se
e derivabile parzialmente.

Considero il rapporto incrementale di f rispetto alla prima variabile. Si ha

_ 3 2 .02y
i fO+80)—F(0,0) £ In(t? +02) —0
t—0 t t—0 t

= lim t2 In(t*) = 0;
t—0 ( )

nell'ultima uguaglianza ho tenuto conto del limite notevole Iim+s In(s) = 0. Dunque, f & derivabile
s—0
parzialmente rispetto a x in (0,0) con £(0,0) =0.

[noltre:

im f(0,0+1t)—£(0,0) _im H Y
t—0 t t—0 ¢

quindi f & derivabile parzialmente rispetto a y in (0,0) con f,(0,0) = 0.



Ricapitolando: in (0,0) la funzione f & derivabile parzialmente e ha gradiente uguale al vettore nullo;
per stabilire se e differenziabile, valuto il rapporto incrementale di f in (0,0).
Per (h, k) # (0,0) si ha

F(O+h,0+ k) — £(0,0) — VF(0,0) - (h, k) _ hIn(h?+k2) —0—0 _ h*In(h? + k?)

R k) = 1th 0] W N

pertanto

|| h? s s oo o
T mae (KIS < (7 4 k) In(h” + k)

Osservando che per (h, k) — (0,0) si ha (h?>+k2) In(h*+k?) — 0 (per il limite notevole gia ricordato),

0 <[R(h, k)| =

dal teorema di convergenza obbligata deduco immediatamente

im  R(hk)=0
(h,k)—(0,0)

quindi f e differenziabile in (0,0).

In conclusione, f & differenziabile in R2.

D.*| D,
(b) Per quanto discusso nel punto precedente, (0,0) & un ( .
punto stazionario per f. Noto che f(0,0) = 0; dal segno di f, \J
rappresentato nella figura qui a lato (in blu: f = 0; in verde:

f>0;inrosa: f <0), deduco che (0,0) & un punto di sella.

Determino ora i punti stazionari in A. Per ogni (x,y) € R?\ {(0,0)} si ha

2 x4 2x3y
_ a2 2 2 _
fX(X,_y)—3X |n(X +y)+m @(X,y)—m
| punti stazionari sono le soluzioni del sistema
fX(va) =0
fy(x,y) =0

che equivale a

x2(3(x2+y?) In(x®>+y?)+2x?) =0

x3y =0.
La seconda equazione & soddisfatta per x = 0 oppure y = 0. Se x = 0 la prima equazione & soddisfatta
perogni y #0. Se y =0 (e x # 0) la prima equazione equivale a 3x? In(x?) +2x? = 0, che equivale
a 31In(x?) +2 =0, soddisfatta per x2 = e 2/3 ossia x = e 1/3.

Ricapitolando, i punti stazionari in A sono (0,8) per B # 0 e (£e~1/3,0).



Dato che f(0,8) = 0 per ogni B # 0, dal segno di f deduco che questi punti sono tutti di sella (come
(0,0), del resto).
Classifico i punti A(e /3,0) e B(e /3,0) utilizzando la matrice hessiana. Con calcoli elementari

ottengo
6e 1 0 —6e /3 0
A 0 2e7Y3 &) 0 —2e71/3
Trattandosi di matrici diagonali, gli autovalori coincidono con gli elementi della diagonale principale. Dato
che gli autovalori di H¢(A) sono entrambi positivi, il punto A & di minimo locale; dato che gli autovalori

di H¢(B) sono entrambi negativi, il punto B & di massimo locale.

In alternativa, posso ragionare come segue. Considero I'insieme D = {(x,y) ER?|x>+y? <1, x> 0},
che & compatto in quanto chiuso e limitato. Dato che f & continua (in quanto differenziabile) in R?,
la sua restrizione a Dy € una funzione continua. Per il teorema di Weierstrass, fip, ammette massimo
e minimo globale. Siccome f & identicamente nulla sulla frontiera di D1 e negativa all'interno di D,
riconosco immediatamente che il massimo di f in Dy & 0, assunto in tutti i punti della frontiera 6D, ;
ne consegue che il minimo globale di fjp, € assunto in un punto interno a D4, che per il teorema di
Fermat & necessariamente un punto stazionario di f. Siccome I'unico punto stazionario di f interno a
D, e A, deduco che A & punto di minimo globale per fip, e quindi punto di minimo locale per f.

In modo analogo, considerando I'insieme D_ = {(x,y) € R?|x*> + y? < 1, x < 0}, deduco che B &

punto di massimo locale per f.

Anche se non & richiesto esplicitamente nella traccia, osservo che f non ha estremi globali in R?, in

quanto & illimitata sia inferiormente che superiormente; cio si riconosce per esempio valutando il limite

lim f(x,0)= lim x%In(x?) = +oc0.
x—+o0 x—+o0

Quesito 3
Si calcoli I'integrale triplo della funzione definita ponendo f(x,y,z) = xy nella regione dello spazio,

contenuta nel primo ottante, delimitata dal piano di equazione x +y + z = 1 e dal paraboloide di

equazione z =1 — x% — y?.
Nota: a seconda della formula di riduzione utilizzata per il calcolo dell'integrale, pud essere utile tenere presente
I'uguaglianza

/”/zcost—i—sint , 1
o (cost+sint)* 6



Svolgimento
Denoto con T l'insieme assegnato, rappresentato nella figura
a lato; osservo che & compreso tra i piani di equazione z =0

ez=1.

Per z € [0,1] denoto con T, la sezione di T corrispondente

y

alla quota z, ciog T, = {(x,y) € R*|(x,y,2) € T}. oy
Per z € (0,1) la sezione T, & rappresentata nella figura a lato; 12
osservo che per z =0 siha 1 —z = (1 - 2)Y/2 =1, mentre T
per z=1sihal—z=(1-2)Y2=0, quindi 71 si riduce

all'insieme {(0,0)}.

1z (17" X

Applico la formula di integrazione per strati:

///Tf(x,y,z)dxdydz:/01 (//nydxdy> dz.

Per calcolare I'integrale doppio su T, utilizzo coordinate polari di centro I'origine:
X = p cosf y=psing.

In tali coordinate la retta di equazione x +y =1 — z diventa p cosf +psinf =1 — z, ossia
11—z

p= cosf +sinf’

mentre la circonferenza di equazione x>+ y? = 1—z diventa p = v/1 — z; pertanto, l'insieme T, diventa

~ U 1-z
T, = (p, R?0<6< ~, ——————<p<Vi-2z}.
{(’0 eR70s6< 2" cosftsing P> Z}

Dunque:

/2 1-z
// xydxdy:/[pcos@psin@pdpdez/ cos@sin@(/ ) p3dp> de
> T 0 1=z

cos O+sin 6
/2 ,04 1-z
= / cosf sind {} dd
0 4- 1-z

cos 6+sin 6

1 [7/? _ ) (1-z)*
—4A cosf S|n9<(1—2) _(COSG—FSH’]9)4> do

1 — 7)2 /2 1—2)4 /2 6 sind
= (Z)/ cosd sinf df — ( ?) / €0 Sl.n
4 0 4 o (cosf+sing)4

Tenuto conto del suggerimento, ottengo



(=22 [sin20]™? (1-2%1 (1-22 (1-2)
nyydxdy_ 4 [ 2 ]O 4 6 8 24

Dunque:

///Tf(x,y,z)dxdydz:/01 <//nydxdy> dz:/o1 <(1_82)2 _a ;42)4> dz

[ a-2° a-2°5" 1 1 1
|

o 24 120 30

24 120 30

In alternativa, posso utilizzare la formula di integrazione per fili. y
Devo preliminarmente descrivere I'insieme T come insieme nor-
male, per esempio rispetto al piano x y. Considero gli insiemi

A e B rappresentati nella figura a lato e definisco le funzioni

Yx,y)=1l—x—yedxy)=1-x2—y2.

Risulta
T={(xy.2)|[(x.y) €A, v(x.y) <z<8(x,y)} U{(x,y,2)|(x.¥) €B, 0<z<(x.y)}

Integrando per fili:

///Tf(x,y,z)dxdydz:/A([;Z:)Xydz)dxdy~I—//B</06(X’y)xydz>dxdy
://Axy(é(xv)/)—’)’(xv)/)) dXdy—F//Bxyé(x,y)dxdy

://AUBxy(S(X,y) dxdy—//Axy’y(x,y) dxdy .

Il primo integrale si calcola facilmente utilizzando coordinate polari:

// xyd(x,y)dxdy = / p cosfpsinf (1 — p?cos®f — p?sin’H) pdpdd
AUB [0,1]x[0,7/2]

L /2 1 1\1 1
—/0 (p>—p )dp/O cosf sinf db (4 6) 5= 52

Per calcolare il secondo integrale, descrivo A come insieme normale rispetto all'asse x, cioe

A:{(x,y)ER2|0§x§1, Ogygl—x},



e integro per verticali:

//Axyfv(x,y)dxdyz/ol </01Xxy(1—x—y>dy) dx:/ol (/le(x(l—X)Y—Xy2)dy> dx
:/01 <X(1—x) (1_2X)2 —x(l_?)x)3> dx

:/01 <X(1—2x)3_x(1—3X)3> dx:/olg(l_x)sdx

Sottraendo i valori ottenuti:

f - - =

come gia calcolato.

Quesito 4
Sia X la porzione della sfera di equazione di centro I'origine e raggio 3 posta al di sopra del piano di
equazione z = 1. Si calcoli il flusso che attraversa > dall'alto verso il basso del rotore del campo

vettoriale F(x,y,z) = (x%y, yz, 3y?).

Svolgimento
Dato che le sue componenti sono funzioni polinomiali, il campo vettoriale F & di classe C® in R3.
[l rotore di F & dunque un campo vettoriale con-
tinuo in R3; lo determino calcolando il determinante
simbolico

€1 € €3

rotF(x.y.z)=|08, 8, 8,|=(5y 0 —x%).

x2y yz 3y?

La superficie assegnata X & una calotta sferica, dunque una superficie orientabile, pertanto ha senso
calcolare il flusso di un campo vettoriale attraverso > .
Parametrizzo ¥ come grafico della funzione definita ponendo f(x,y) = /9 — x? — y? nell'insieme

K ={(x,y) € R?| x> + y?> < 8}. Scelgo dunque la parametrizzazione



o(u,v)=(u, v, f(u,v)) (u,v) € K;

ricordo che per ogni (u, v) € K il vettore normale &

VOI—1u2—v2 V9 —u? -2

In ogni punto il vettore normale & diretto verso I'alto (in quanto la terza componente & positiva), percio

Ny (u, v) = (= fi(u, v), —F(u,v), 1)=< Y , Y , 1).

la parametrizzazione scelta induce su X l'orientazione opposta rispetto a quella richiesta per il calcolo
del flusso.

Risulta dunque:

dy(rot F) = —//Krot F(o(u,v))+ No(u,v)dudv

u v
=— 5v, 0, —u? < : : 1> dudv
/K( ) VO —u2—v2 O —u2 -2

5
://< N v UQV > u2) dudv
—u—v

Utilizzando coordinate polari ottengo

50%cosfsind 5,
b (rotF):// -+ p°cos° 0| pdpdd
* [0,2v/2] x[0,27] V9 —p?

22 3 2m
\/9 p?
Per ragioni di periodicita, il secondo fattore nel primo addendo & uguale a 0, pertanto:

2v2 o7 ,04 2v2
ds(rot F) = / Jou d,o/ cos? 6 df = [] T=167.
0 0 4 1o

22 2m
cosf sin9d9+/ Jou dp/ cos® 6 do
0 0

In alternativa, posso calcolare il flusso richiesto utilizzando il teorema di Stokes.
Riconosco infatti che X & sostegno di una superficie regolare con bordo, il cui bordo & costituito dalla

circonferenza «y parametrizzata da
r(t) = (2v/2 cost, 22 sint, 1) t €[0,2n].

Siccome & richiesto il flusso diretto dall’alto verso il basso, orientare positivamente il bordo 0% significa

parametrizzare la circonferenza in modo che percorrendola ci si lasci a sinistra la faccia di X rivolta verso



I'origine degli assi; noto che r induce su <y verso di percorrenza opposto a quello richiesto. Pertanto:

®5 (rot F) =/8Z+ F(P)-dP:—/F(P)-dP: —/027r F(r(t))-r'(t)dt

v
2
= —/ (16 V2 cos® t sint, 22 sint, 24 sin’t)- (=22 sint, 2+/2 cost, 0)dt
0
2m
= / (64 cos® t sin>t — 8 cost sint) dt.
0
Per ragioni di periodicita, I'integrale del secondo addendo ¢ uguale a 0, pertanto:
2w 2m 2m
. . 1-— 4t
®x(rotF) = / 64 cos?t sin’tdt = 16/ sin?(2t) dt = 16/ C(;S() dt =16,
0 0 0

come gia calcolato.

Osservo infine che, come conseguenza del teorema di Stokes, si pud calcolare il flusso richiesto anche
sostituendo 2 con una qualsiasi superficie regolare con bordo avente lo stesso bordo di 2 ; per esempio, si

potrebbe considerare la superficie avente come sostegno I'insieme {(x,y, Z)ER3 x> +y? <8, z= 1}.



