
Questo documento contiene lo svolgimento dei quesiti proposti nelle seguenti prove scritte per l'esame

di Analisi Matematica II:

� prima prova di esonero (23 aprile 2025)

� seconda prova di esonero (10 giugno 2025)

� prova scritta del 24 giugno 2025

� prova scritta dell'8 luglio 2025

Naturalmente lo svolgimento proposto non �e l'unico possibile. Talvolta vengono forniti alcuni dettagli

non indispensabili, allo scopo di costituire una guida nella preparazione all'esame.

Sar�o grata a coloro che segnaleranno eventuali refusi e imprecisioni (scrivendo a monica.lazzo@uniba.it).



Svolgimento della prima prova di esonero di Analisi Matematica II { 23 aprile 2025

Quesito 1

Si determini la soluzione del problema di Cauchy

y 00 � 4 y 0 + 5 y = t e2 t + 4 cos(t) ; y(0) = 0 ; y 0(0) = 1 :

Svolgimento

Il polinomio caratteristico dell'equazione omogena associata �e P (�) = �2 � 4� + 5, che ha radici

complesse coniugate � = 2+ i e � = 2� i . La generica soluzione dell'equazione omogenea associata �e

quindi

c1 e
2 t cos(t) + c2 e

2 t sin(t), t 2 R
al variare di c1; c2 2 R .

Per il principio di sovrapposizione, una soluzione particolare dell'equazione non omogenea assegnata si

ottiene come somma di una soluzione particolare dell'equazione con termine noto t e2 t e una soluzione

particolare dell'equazione con termine noto 4 cos(t). Per entrambe le equazioni si pu�o utilizzare il metodo

di somiglianza.

Osservando che P (2) 6= 0, determino una soluzione particolare dell'equazione con termine noto t e2 t

della forma '(t) = (a t + b) e2 t . Derivando ottengo

'0(t) = a e2 t + 2 (a t + b)e2 t , '00(t) = 2 a e2 t + 2 a e2 t + 4 (a t + b)e2 t ;

sostituendo nell'equazione:

4 a e2 t + 4 (a t + b)e2 t � 4 a e2 t � 8 (a t + b)e2 t + 5 (a t + b) e2 t = t e2 t ,

cio�e (a t + b)e2 t = t e2 t , che equivale a a t + b = t . Questa uguaglianza �e soddisfatta per ogni t 2 R
se e solo se a = 1 e b = 0, dunque: '(t) = t e2 t .

Osservando che P (i) 6= 0, determino una soluzione particolare dell'equazione con termine noto 4 cos(t)

della forma  (t) = a cos(t) + b sin(t). Derivando ottengo

 0(t) = �a sin(t) + b cos(t),  00(t) = �a cos(t)� b sin(t);

sostituendo nell'equazione:

�a cos(t)� b sin(t)� 4 (�a sin(t) + b cos(t)) + 5 (a cos(t) + b sin(t)) = 4 cos(t).

Questa uguaglianza �e soddisfatta per ogni t 2 R se e solo se



�a � 4 b + 5 a = 4, �b + 4 a + 5 b = 0

da cui ricavo a = 1
2 e b = �1

2 . Dunque:  (t) =
1
2 cos(t)� 1

2 sin(t).

La generica soluzione dell'equazione assegnata �e

y(t) = c1 e
2 t cos(t) + c2 e

2 t sin(t) + t e2 t + 1
2 cos(t)� 1

2 sin(t) t 2 R

con c1; c2 2 R .
Per determinare la soluzione del problema di Cauchy assegnato calcolo

y 0(t) = 2 c1 e
2 t cos(t)� c1 e2 t sin(t) + 2 c2 e

2 t sin(t) + c2 e
2 t cos(t) +

+ e2 t + 2 t e2 t � 1
2 sin(t)� 1

2 cos(t)

e impongo le condizioni iniziali:

0 = y(0) = c1 +
1
2 , 1 = y 0(0) = 2 c1 + c2 + 1� 1

2 .

Ottengo dunque c1 = �1
2 e c2 =

3
2 .

In conclusione, la soluzione del problema di Cauchy assegnato �e

y(t) = �1
2 e

2 t cos(t) + 3
2 e

2 t sin(t) + t e2 t + 1
2 cos(t)� 1

2 sin(t) t 2 R .

Quesito 2

Si consideri la funzione de�nita ponendo f (x; y) =
x + y � 1

x2 + y2 � 1
�

(a) Si determini il dominio di f e se ne descrivano le propriet�a (aperto, chiuso, convesso, connesso,

limitato, compatto).

(b) Si studino i limiti signi�cativi di f .

Svolgimento

(a) La funzione assegnata �e de�nita nell'insieme

A := f(x; y) 2 R2 j x2 + y2 � 1 6= 0g
che pu�o essere espresso come unione degli insiemi disgiunti

B := f(x; y) 2 R2 j x2 + y2 � 1 < 0g
C := f(x; y) 2 R2 j x2 + y2 � 1 > 0g .



Noto che B �e la palla aperta di centro (0; 0) e raggio 1, quindi �e un insieme aperto e limitato. L'insieme

C �e invece il complementare della palla chiusa di centro (0; 0) e raggio 1, quindi �e un insieme aperto

(perch�e complementare di un insieme chiuso) e illimitato (perch�e complementare in R2 di un insieme

limitato).

Contenendo un insieme illimitato, A �e illimitato, e pertanto non compatto.

Essendo unione di due insiemi aperti disgiunti, A non �e connesso (e pertanto non �e connesso per poligonali,

n�e stellato, n�e convesso).

Osservo che la frontiera di A �e la circonferenza unitaria S := f(x; y) 2 R2 j x2 + y2 = 1g , che non �e

contenuta in A ; pertanto, A non �e chiuso.

(b) Essendo una funzione razionale, f �e continua nel proprio

dominio. Sono pertanto da ritenersi \signi�cativi" i limiti nei punti

di accumulazione di A che non appartengono ad A (ossia tutti i

punti di S ); inoltre, siccome A �e illimitato, va considerato il limite

per k(x; y)k ! +1 .

Per ragioni che saranno subito chiare, denoto con S+ la porzione

di S contenuta nell'interno del primo quadrante e pongo S� := S n (S+ [ f(1; 0); (0; 1)g).
Fisso (a; b) 2 S+ (perci�o a + b � 1 > 0). Risulta

lim
(x;y)!(a;b)

fjB(x; y) =
a + b � 1

0�
= �1 lim

(x;y)!(a;b)
fjC(x; y) =

a + b � 1

0+
= +1

dunque f non ha limite per (x; y)! (a; b).

Fisso (a; b) 2 S� (perci�o a + b � 1 < 0). Risulta

lim
(x;y)!(a;b)

fjB(x; y) =
a + b � 1

0�
= +1 lim

(x;y)!(a;b)
fjC(x; y) =

a + b � 1

0+
= �1

dunque f non ha limite per (x; y)! (a; b).

Restano da studiare i limiti in (1; 0) e (0; 1), che presentano una forma di indecisione \zero su zero".

Pongo D := f(x; y) 2 R
2 j x 2 (0; 1); x + y � 1 = 0g (segmento congiungente (0; 1) e (1; 0)) e

E := f(x; y) 2 R2 j x 2 (0; 1); y = 0g (segmento congiungente l'origine e (1; 0)).

Dato che la restrizione di f a D coincide con la funzione identicamente nulla, si ha

lim
(x;y)!(1;0)

fjD(x; y) = 0;



tuttavia

lim
(x;y)!(1;0)

fjE(x; y) = lim
x!1

x � 1

x2 � 1
= lim

x!1

1

x + 1
=

1

2
;

quindi f non ha limite per (x; y)! (1; 0). Per ragioni di simmetria (oppure restringendo f al segmento

congiungente (0; 0) e (0; 1)) deduco che f non ha limite nemmeno per (x; y)! (0; 1).

Osservando che la restrizione di f alla retta passante per (0; 1) e (1; 0) �e identicamente nulla, congetturo

che f abbia limite 0 per k(x; y)k ! +1 .

Osservo che per ogni x; y 2 R si ha (jx j + jy j)2 = x2 + y2 + 2 jx j jy j � x2 + y2 + x2 + y2 , quindi

jx j+ jy j �
√
2(x2 + y2). Pertanto, per ogni (x; y) 2 A si ha

0 � jf (x; y)j = jx + y � 1j
jx2 + y2 � 1j �

jx j+ jy j+ 1

jx2 + y2 � 1j �
√
2 (x2 + y2) + 1

jx2 + y2 � 1j

e siccome

lim
k(x;y)k!+1

√
2 (x2 + y2) + 1

jx2 + y2 � 1j = lim
t!+1

p
2 t + 1

jt � 1j = 0

dal teorema di convergenza obbligata deduco

lim
k(x;y)k!+1

f (x; y) = 0:

Quesito 3

Si consideri la funzione de�nita in R2 ponendo

f (x; y) = jx � y j (x2 + y2 � 2).

(a) Si studi la di�erenziabilit�a di f .

(b) Si calcoli la derivata di f nel punto (1;�1) nella direzione v =
( 1p

5
; � 2p

5

)
.

(c) Si scriva l'equazione del piano tangente al gra�co di f nel punto (1; 0).

Svolgimento

(a) La funzione assegnata �e prodotto della funzione (x; y) 7! x2+y2�2, polinomiale e quindi derivabile

parzialmente, e della funzione (x; y) 7! jx � y j , composta della funzione polinomiale (x; y) 7! x � y e

della funzione t 7! jtj , derivabile tranne che in t = 0.



De�nisco l'insieme A := f(x; y) 2 R
2 j x � y 6= 0g (il piano privato della bisettrice di primo e terzo

quadrante); osservo che A �e aperto e che per ogni (x; y) 2 A

@f

@x
(x; y) = sign(x � y) (x2 + y2 � 2) + jx � y j 2 x

@f

@y
(x; y) = �sign(x � y) (x2 + y2 � 2) + jx � y j 2 y

Tali derivate sono evidentemente continue in A ; dal corollario del teorema del di�erenziale totale segue

allora che f �e di�erenziabile in A .

Restano da esaminare, mediante la de�nizione, i punti della bisettrice di primo e terzo quadrante.

Fisso a 2 R e considero (a; a).

Considero il rapporto incrementale di f rispetto alla prima variabile. Per ogni t 6= 0 si ha

f (a + t; a)� f (a; a)
t

=
ja + t � aj ((a + t)2 + a2 � 2)� 0

t
=
jtj
t
(2 a t + t2 + 2 a2 � 2);

quindi

lim
t!0+

f (a + t; a)� f (a; a)
t

= 2(a2 � 1); lim
t!0�

f (a + t; a)� f (a; a)
t

= �2(a2 � 1):

Per a 6= �1 i limiti unilaterali sono diversi, quindi non esiste il limite per t ! 0; in (a; a) la funzione non

�e derivabile parzialmente rispetto a x , dunque non �e di�erenziabile.

Per a = �1 i limiti unilaterali sono entrambi uguali a 0, perci�o in (1; 1) e (�1;�1) la funzione �e derivabile
parzialmente rispetto a x con

@f

@x
(�1;�1) = 0.

Veri�co se in tali punti f �e anche derivabile parzialmente rispetto a y .

Scrivo il rapporto incrementale di f rispetto alla seconda variabile. Per ogni t 6= 0 si ha

f (�1;�1 + t)� f (�1;�1)
t

=
jtj ((�1)2 + (�1 + t)2 � 2)� 0

t
=
jtj (�2 t + t2)

t
= jtj (�2 + t);

il limite per t ! 0 esiste ed �e uguale a 0, pertanto f �e derivabile parzialmente rispetto a y con
@f

@y
(�1;�1) = 0.

Ricapitolando: in (1; 1) e (�1;�1) la funzione f �e derivabile parzialmente e ha gradiente uguale al

vettore nullo.



Per stabilire se f �e di�erenziabile, valuto il rapporto incrementale di f in (1; 1) (per simmetria, in

(�1;�1) si otterr�a lo stesso risultato). Per (h; k) 6= (0; 0) si ha

R(h; k) :=
f (1 + h; 1 + k)� f (1; 1)�rf (1; 1) · (h; k)

k(h; k)k

=
j1 + h � (1 + k)j ((1 + h)2 + (1 + k)2 � 2)� 0� 0p

h2 + k2
=
jh � k j (2 h + h2 + 2 k + k2)p

h2 + k2
;

quindi

0 � jR(h; k)j � jhj+ jk jp
h2 + k2

j2 h + h2 + 2 k + k2j � 2 j2 h + h2 + 2 k + k2j ;

dal teorema di convergenza obbligata deduco facilmente che

lim
(h;k)!(0;0)

R(h; k) = 0,

quindi f �e di�erenziabile in (1; 1).

(b) Dato che f �e di�erenziabile nel punto (1;�1), posso calcolare la derivata direzionale richiesta

utilizzando la formula del gradiente:

@f

@v
(1;�1) = rf (1;�1) · v = (4;�4) ·

( 1p
5
; � 2p

5

)
=

12p
5
�

(c) Ha senso parlare di piano tangente al gra�co di f nel punto (1; 0), perch�e f �e di�erenziabile in tale

punto. Risulta

f (1; 0) +rf (1; 0) · ((x; y)� (1; 0)) = �1 + (1; 1) · (x � 1; y) = �1 + x � 1 + y ;

quindi l'equazione del piano tangente �e

z = x + y � 2 :



Svolgimento della seconda prova di esonero di Analisi Matematica II { 10 giugno 2025

Quesito 1

Si determinino gli estremi locali della funzione de�nita in R2 ponendo

f (x; y) = e�jx j (2 x y + y2):

Svolgimento

La funzione assegnata �e continua in R2 ; la presenza del termine jx j non garantisce che sia di�erenziabile

nei punti dell'asse delle ordinate, cio�e nei punti del tipo (0; y) con y 2 R . Non veri�co se in tali punti la

funzione �e e�ettivamente di�erenziabile (la traccia non lo richiede; si veda per�o la nota al termine dello

svolgimento di questo quesito), pertanto li considero tutti candidati punti di estremo locale.

Dato che la restrizione di f all'asse delle ordinate �e f (0; y) = y2 , crescente per y > 0 e decrescente per

y < 0, l'unico possibile punto di estremo dell'asse delle ordinate �e (0; 0), che potrebbe essere punto di

minimo.

Noto che f (0; 0) = 0; dal segno di f , rappresentato nella

�gura qui a lato (in blu: f = 0; in verde: f > 0; in rosso:

f < 0), deduco che (0; 0) non �e punto di estremo locale.

(Nota: non lo chiamo \punto di sella" perch�e non so se

in tale punto f �e di�erenziabile.)

La funzione assegnata �e di classe C1 nell'insieme aperto R2 n fx = 0g ; determino i punti stazionari in

tale insieme. Per ogni (x; y) 2 R2 con x 6= 0 si ha

fx(x; y) = e�jx j (�sign(x)) (2 x y + y2) + e�jx j (2 y) fy (x; y) = e�jx j (2 x + 2 y).

I punti stazionari sono le soluzioni del sistemafx(x; y) = 0

fy (x; y) = 0

che equivale a �sign(x) (2 x y + y
2) + 2 y = 0

x + y = 0:

Dalla seconda equazione ricavo y = �x ; sostituendo nella prima ottengo �sign(x) (�2 x2+x2)�2 x = 0,

ossia sign(x) x2 � 2 x = 0. Dato che x 6= 0, questa equazione equivale a sign(x) x � 2 = 0, cio�e



jx j � 2 = 0. che ha soluzioni x = 2 e x = �2. Dunque, i punti stazionari di f sono (2;�2) e (�2; 2);
per classi�carli determino il segno degli autovalori della matrice hessiana.

Per calcolare le derivate seconde, osservo che supponendo di far variare (x; y) in un intorno di (2;�2)
interamente contenuto nel semipiano aperto di equazione x > 0, oppure in un intorno di (�2; 2) inte-

ramente contenuto nel semipiano aperto di equazione x < 0, posso ritenere il termine sign(x) costante

(di valore 1 e -1, rispettivamente). Pertanto:

fxx(x; y) = e�jx j (�sign(x))2 (2 x y + y2) + e�jx j (�sign(x)) (2y) + e�jx j (�sign(x)) (2 y)

= e�jx j (2 x y + y2)� e�jx j sign(x) (4 y) = e�jx j (2 x y + y2 � sign(x) (4 y))

fxy (x; y) = fyx(x; y) = e�jx j (�sign(x)) (2 x + 2 y) + e�jx j 2 = e�jx j ((�sign(x)) (2 x + 2 y) + 2)

fyy (x; y) = e�jx j 2 ;

quindi

Hf (2;�2) =
4 e�2 2 e�2

2 e�2 2 e�2

 = Hf (�2; 2):

Gli autovalori della matrice qui sopra sono le radici del polinomio

det

4 e�2 � � 2 e�2

2 e�2 2 e�2 � �

 = �2 � 6 e�2 �+ 4 e�4;

dall'alternanza dei segni dei coe�cienti del polinomio deduco che le radici sono entrambe positive, pertanto

(2;�2) e (�2; 2) sono punti di minimo locale.

Nota

Nella traccia proposta a chi il 10 giugno ha sostenuto la prova scritta completa (e non la seconda prova

di esonero) �e richiesto esplicitamente di studiare la di�erenziabilit�a della funzione assegnata; includo qui

lo svolgimento.

Come gi�a notato, f �e di classe C2 nell'insieme aperto R2nfx = 0g ; in tale insieme, come conseguenza del

teorema del di�erenziale totale, f risulta di�erenziabile. Restano da esaminare, mediante la de�nizione,

i punti dell'asse delle ordinate. Fisso � 2 R e considero (0; �).

Considero il rapporto incrementale di f rispetto alla prima variabile. Per ogni t 6= 0 si ha

f (0 + t; �)� f (0; �)
t

=
e�jtj (2 t � + �2)� �2

t
= e�jtj 2� +

e�jtj � 1

t
�2 :



Per t ! 0, il primo addendo tende a 2� ; nel secondo addendo, il fattore
e�jtj � 1

t
�e asintoticamente

equivalente a
�jtj
t

. Pertanto:

lim
t!0+

f (0 + t; �)� f (0; �)
t

= 2� � �2; lim
t!0�

f (0 + t; �)� f (0; �)
t

= 2� + �2:

Per � 6= 0 i limiti unilaterali sono diversi, quindi non esiste il limite per t ! 0; in (0; �) la funzione non

�e derivabile parzialmente rispetto a x , dunque non �e di�erenziabile.

Per � = 0 i limiti unilaterali sono entrambi uguali a 0, perci�o in (0; 0) la funzione �e derivabile parzialmente

rispetto a x con fx(0; 0) = 0.

Veri�co se in (0; 0) la funzione f �e anche derivabile parzialmente rispetto a y .

Scrivo il rapporto incrementale di f rispetto alla seconda variabile. Per ogni t 6= 0 si ha

f (0; t)� f (0; 0)
t

=
t2 � 0

t
= t;

il limite per t ! 0 esiste ed �e uguale a 0, pertanto f �e derivabile parzialmente rispetto a y con

fy (0; 0) = 0.

Ricapitolando: in (0; 0) la funzione f �e derivabile parzialmente e ha gradiente uguale al vettore nullo;

per stabilire se f �e di�erenziabile, valuto il rapporto incrementale di f in (0; 0). Per (h; k) 6= (0; 0) si

ha

R(h; k) :=
f (0 + h; 0 + k)� f (0; 0)�rf (0; 0) · (h; k)

k(h; k)k

=
e�jhj (2 h k + k2)� 0� 0p

h2 + k2
=
e�jhj (2 h + k) kp

h2 + k2
;

quindi

0 � jR(h; k)j � e�jhj (2 jhj+ jk j) jk jp
h2 + k2

� e�jhj (2 jhj+ jk j);

dal teorema di convergenza obbligata deduco facilmente che

lim
(h;k)!(0;0)

R(h; k) = 0,

quindi f �e di�erenziabile in (0; 0).

Osservo che (0; 0) �e dunque un punto stazionario per f , che risulta essere un punto di sella in base

all'analisi del segno svolta in precedenza.



Quesito 2

Si calcoli il 
usso del campo vettoriale

F (x; y ; z) = (x y ; x + z; x2 z)

uscente attraverso la frontiera del sottoinsieme di R3 delimitato dalla super�cie conica di equazione

z =
√
x2 + y2 e dai piani di equazione z = 1 e z = 4.

Si veri�chi mediante il teorema della divergenza la correttezza del risultato ottenuto.

Svolgimento

Dato che le sue componenti sono funzioni polinomiali, il campo vettoriale F �e di classe C1 in R3 .

Denoto con T il sottoinsieme di R3 assegnato. Si tratta

di un dominio regolare di R3 , la cui frontiera �e sostegno

della super�cie regolare a pezzi chiusa avente come facce

una porzione di super�cie conica e due dischi, denotati

rispettivamente con �1 , �2 e �3 nella �gura qui a lato.

Parametrizzo le tre facce, utilizzando i simboli � e K di volta in volta per denotare oggetti diversi.

Scelgo la parametrizzazione di �1 de�nita ponendo

�(u; v) = (u cos v ; u sin v ; u) (u; v) 2 [1; 4]� [0; 2�] =: K .

Per ogni (u; v) 2 K :

�u(u; v) = (cos v ; sin v ; 1) �v (u; v) = (�u sin v ; u cos v ; 0);

quindi il vettore normale �e

N�(u; v) = �u(u; v)� �v (u; v) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

cos v sin v 1

�u sin v u cos v 0

∣∣∣∣∣∣∣∣∣ = (�u cos v ; �u sin v ; u):

Osservo che in ogni punto il vettore normale �e diretto verso l'asse z , ossia verso l'interno di T ; in altre

parole, la parametrizzazione scelta orienta �1 negativamente. Tenuto conto di ci�o, il 
usso di F uscente

attraverso �1 �e

��1
(F ) = �

∫∫
K
F (�(u; v)) · N�(u; v) du dv

= �
∫∫

K
(u2 cos v sin v ; u cos v + u; u3 cos2 v) · (�u cos v ; �u sin v ; u) du dv

=

∫∫
K
(u3 cos2 v sin v + u2 cos v sin v + u2 sin v � u4 cos2 v) du dv :



Per ragioni di periodicit�a, i primi tre addendi nella funzione integranda forniscono contributo nullo; per-

tanto:

��1
(F ) =

∫∫
K
� u4 cos2 v du dv = �

∫ 4

1
u4 du

∫ 2�

0
cos2 v dv = �1023

5
� .

Scelgo la parametrizzazione di �2 de�nita ponendo

�(u; v) = (u cos v ; u sin v ; 4) (u; v) 2 [0; 4]� [0; 2�] =: K .

Per ogni (u; v) 2 K :

�u(u; v) = (cos v ; sin v ; 0) �v (u; v) = (�u sin v ; u cos v ; 0);

quindi il vettore normale �e

N�(u; v) = �u(u; v)� �v (u; v) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

cos v sin v 0

�u sin v u cos v 0

∣∣∣∣∣∣∣∣∣ = (0; 0; u):

In ogni punto il vettore normale �e diretto verso l'alto, ossia verso l'esterno di T ; la parametrizzazione

scelta orienta �2 positivamente. Tenuto conto di ci�o, il 
usso di F uscente attraverso �2 �e

��2
(F ) =

∫∫
K
F (�(u; v)) · N�(u; v) du dv

=

∫∫
K
(u2 cos v sin v ; u cos v + 4; 4 u2 cos2 v) · (0; 0; u) du dv

=

∫∫
K
4 u3 cos2 v du dv =

∫ 4

0
4 u3 du

∫ 2�

0
cos2 v dv = 256� :

In�ne, scelgo la parametrizzazione di �3 de�nita ponendo

�(u; v) = (u cos v ; u sin v ; 1) (u; v) 2 [0; 1]� [0; 2�] =: K .

Per ogni (u; v) 2 K :

�u(u; v) = (cos v ; sin v ; 0) �v (u; v) = (�u sin v ; u cos v ; 0);

quindi il vettore normale �e N�(u; v) = �u(u; v)� �v (u; v) = (0; 0; u).

In ogni punto il vettore normale �e diretto verso l'alto, ossia verso l'interno di T ; la parametrizzazione

scelta orienta �3 negativamente. Tenuto conto di ci�o, il 
usso di F uscente attraverso �3 �e

��3
(F ) = �

∫∫
K
F (�(u; v)) · N�(u; v) du dv

= �
∫∫

K
(u2 cos v sin v ; u cos v + 1; u2 cos2 v) · (0; 0; u) du dv

= �
∫∫

K
u3 cos2 v du dv = �

∫ 1

0
u3 du

∫ 2�

0
cos2 v dv = ��

4
:



In conclusione, il 
usso di F uscente attraverso la frontiera di T �e

��1
(F ) + ��2

(F ) + ��3
(F ) = �1023

5
� + 256� � �

4
=

1023

20
� :

Veri�co la correttezza del risultato ottenuto applicando il teorema della divergenza. Anzitutto ricordo

che la divergenza di un campo vettoriale di componenti F1; F2; F3 , nell'ordine, �e il campo scalare

divF :=
@F1

@x
+
@F2

@y
+
@F3

@z
:

Per il campo assegnato:

divF (x; y ; z) = y + 0 + x2 = y + x2 :

Per il teorema della divergenza, il 
usso di F uscente attraverso la frontiera di T �e uguale all'integrale

triplo ∫∫∫
T
divF (x; y ; z) dx dy dz :

Per calcolare l'integrale, utilizzo la formula di integrazione per strati:∫∫∫
T
divF (x; y ; z) dx dy dz =

∫ 4

1

(∫∫
Tz

(y + x2) dx dy

)
dz

dove, per ogni z 2 [1; 4] la sezione Tz di T �e il disco chiuso di centro l'origine e raggio z . Calcolo

l'integrale doppio passando a coordinate polari:∫∫
Tz

(y + x2) dx dy =

∫∫
[0;z ]�[0;2�]

(� sin � + �2 cos2 �) � d� d�

=

∫ z

0
�2 d�

∫ 2�

0
sin � d� +

∫ z

0
�3 d�

∫ 2�

0
cos2 � d�

= 0 +
z4

4
� =

�

4
z4 :

Pertanto: ∫∫∫
T
divF (x; y ; z) dx dy dz =

∫ 4

1

�

4
z4 dz =

�

4

[
z5

5

]4
1

=
�

4

1023

5
=

1023

20
� :



Quesito 3

Si consideri la curva di parametrizzazione r(t) = (t(t � 1)(2� t); 1� jt � 1j) , t 2 [0; 2].

(a) Si stabilisca se la curva �e regolare, semplice, chiusa e se ne disegni approssimativamente il sostegno.

(b) Si calcoli l'area del dominio regolare delimitato dal sostegno della curva.

Svolgimento

(a) Dato che r(0) = (0; 0) e r(2) = (0; 0), la curva �e chiusa.

La prima componente della parametrizzazione, cio�e la funzione x(t) = t(t � 1)(2 � t), �e polinomiale,

quindi di classe C1 in [0; 2]; la seconda componente, cio�e la funzione y(t) = 1�jt�1j , non �e derivabile
in t = 1 (pertanto la curva non �e regolare), ma �e di classe C1 in [0; 1) [ (1; 2].

Per t 2 [0; 1)[ (1; 2] si ha y 0(t) = �sign(t � 1) 6= 0, quindi r 0(t) 6= (0; 0); pertanto, la curva �e regolare

a tratti.

Veri�co se la curva �e semplice. Prendo t; s nell'intervallo [0; 2], con almeno uno tra t e s interno

all'intervallo; per �ssare le idee, suppongo t 2 (0; 2). Suppongo r(t) = r(s), cio�e x(t) = x(s) e

y(t) = y(s), cio�e

t(t � 1)(2� t) = s(s � 1)(2� s) e 1� jt � 1j = 1� js � 1j :

Dalla seconda uguaglianza deduco jt � 1j = js � 1j , che �e soddisfatta se t � 1 = s � 1, cio�e t = s ,

oppure se t � 1 = 1� s , cio�e s = 2� t . In questo caso, sostituendo nella prima uguaglianza ottengo

t(t � 1)(2� t) = (2� t)(2� t � 1)(2� 2 + t);

cio�e t(t � 1)(2� t) = (2� t)(1� t)t; sempli�cando per t(2� t), che per ipotesi �e diverso da 0, ricavo

t � 1 = 1� t , cio�e 2t = 2, cio�e t = 1 e quindi s = 2� 1 = 1. Anche in questo caso, dunque, concludo

t = s . In conclusione, la curva �e semplice.

Disegno separatamente i gra�ci delle due componenti. Osservando che x �e una funzione polinomiale di

terzo grado, che si annulla per t 2 f0; 1; 2g , mentre y �e ottenuta dalla funzione valore assoluto mediante

trasformazioni elementari, �e facile ottenere i gra�ci qui sotto (x a sinistra, y a destra):



Seguendo l'andamento delle due componenti disegno il

sostegno della curva, che �e percorso nel verso indicato

nella �gura qui a lato.

(b) Per calcolare l'area del dominio D delimitato dal

sostegno della curva, utilizzo il teorema di Gauss-Green:

area(D) =

∫∫
D
1 dx dy =

∮
@D+

F (P ) · dP ;

dove F = (F1; F2) �e un qualsiasi campo vettoriale di classe C1 tale che
@F2

@x
� @F1

@y
� 1 in D , e

la circuitazione di F �e calcolata utilizzando una qualsiasi parametrizzazione della frontiera di D che la

orienti positivamente, cio�e sia tale che percorrendo @D l'insieme D rimanga a sinistra.

Scelgo F (x; y) = (0; x) e osservo che la parametrizzazione assegnata r induce su @D il verso di

percorrenza opposto di quello richiesto. Pertanto:

�
∮
@D+

F (P ) · dP =

∫ 1

0
F (r(t)) · r 0(t) dt +

∫ 2

1
F (r(t)) · r 0(t) dt

=

∫ 1

0
(0; x(t)) · (x 0(t); y 0(t)) dt +

∫ 2

1
(0; x(t)) · (x 0(t); y 0(t)) dt

=

∫ 1

0
x(t) y 0(t) dt +

∫ 2

1
x(t) y 0(t) dt

=

∫ 1

0
t(t � 1)(2� t)(1) dt +

∫ 2

1
t(t � 1)(2� t)(�1) dt

=

∫ 1

0
(3 t2 � t3 � 2 t) dt �

∫ 2

1
(3 t2 � t3 � 2 t) dt

=

[
t3 � t4

4
� t2

]1
0

�
[
t3 � t4

4
� t2

]2
1

= �1

2
:

In conclusione: area(D) =
1

2
.



Svolgimento della prova scritta di Analisi Matematica II del 24 giugno 2025

Quesito 1

Si determini la soluzione del problema di Cauchy

y 00 � 4 y = t e2 t ; y(0) = y 0(0) = 0 :

Svolgimento

Il polinomio caratteristico dell'equazione omogena associata �e P (�) = �2 � 4, che ha radici reali � = 2

e � = �2. La generica soluzione dell'equazione omogenea associata �e quindi

c1 e
2 t + c2 e

�2 t t 2 R

al variare di c1; c2 2 R .

Determino una soluzione particolare dell'equazione non omogenea assegnata utilizzando il metodo di

somiglianza. Osservando che � = 2 �e radice del polinomio caratteristico con molteplicit�a 1, cerco una

soluzione particolare dell'equazione con termine noto t e2 t della forma

'(t) = (a t + b) e2 t t = (a t2 + b t) e2 t .

Derivando ottengo

'0(t) = (2 a t2 + 2 a t + 2 b t + b) e2 t , '00(t) = (4 a t2 + 8 a t + 4 b t + 2 a + 4 b) e2 t ;

sostituendo nell'equazione:

(4 a t2 + 8 a t + 4 b t + 2 a + 4 b) e2 t � 4 (a t2 + b t) e2 t = t e2 t ,

cio�e (8 a t + 2 a + 4 b) e2 t = t e2 t , che equivale a 8 a t + 2 a + 4 b = t .

Questa uguaglianza �e soddisfatta per ogni t 2 R se e solo se 8 a = 1 e 2 a + 4 b = 0, cio�e a =
1

8
e

b = � 1

16
, dunque:

'(t) =

(
t2

8
� t

16

)
e2 t .

La generica soluzione dell'equazione assegnata �e

y(t) = c1 e
2 t + c2 e

�2 t +
(
t2

8
� t

16

)
e2 t t 2 R

con c1; c2 2 R .



Per determinare la soluzione del problema di Cauchy assegnato, calcolo

y 0(t) = 2 c1 e
2 t � 2 c2 e

�2 t +
(
t2

4
� 1

16

)
e2 t + 2

(
t2

8
� t

16

)
e2 t

e impongo le condizioni iniziali:

0 = y(0) = c1 + c2 , 0 = y 0(0) = 2 c1 � 2 c2 � 1
16 ;

ottengo dunque c1 =
1

64
e c2 = � 1

64
.

In conclusione, la soluzione del problema di Cauchy assegnato �e

y(t) =
e2 t

64
� e�2 t

64
+

(
t2

8
� t

16

)
e2 t t 2 R .

Quesito 2 (valido per il recupero della seconda prova di esonero)

Si consideri la funzione de�nita in R2 ponendo f (x; y) = x3 + y3 � 3 x y .

(a) Si determinino e classi�chino i punti stazionari di f .

(b) Si determinino gli estremi globali di f nel triangolo di vertici (�3; 0), (3; 0), (0; 3).

Svolgimento

(a) La funzione assegnata �e di tipo polinomiale, pertanto �e di classe C1 in R2 .

Per ogni (x; y) 2 R2 si ha

fx(x; y) = 3 x2 � 3 y fy (x; y) = 3 y2 � 3 x .

I punti stazionari sono le soluzioni del sistemafx(x; y) = 0

fy (x; y) = 0

che equivale a x
2 � y = 0

y2 � x = 0:

Dalla prima equazione ricavo y = x2 ; sostituendo nella seconda ottengo x4�x = 0, ossia x(x3�1) = 0,

che ha soluzioni x = 0 e x = 1. Dunque, i punti stazionari di f sono (0; 0) e (1; 1).

Per classi�care i punti stazionari determino il segno degli autovalori della matrice hessiana.



Per ogni (x; y) 2 R2 si ha

fxx(x; y) = 6 x fxy (x; y) = fyx(x; y) = �3 fyy (x; y) = 6 y .

Pertanto:

Hf (0; 0) =

 0 �3
�3 0

 Hf (1; 1) =

 6 �3
�3 6


Gli autovalori di Hf (0; 0) sono le radici del polinomio

det

0� � �3
�3 0� �

 = �2 � 9;

dunque sono discordi; ne deduco che (0; 0) �e un punto di sella.

Gli autovalori di Hf (0; 0) sono le radici del polinomio

det

6� � �3
�3 6� �

 = (6� �)2 � 9 = �2 � 12�+ 27;

dall'alternanza dei segni dei coe�cienti del polinomio deduco che le radici sono entrambe positive, pertanto

(1; 1) �e un punto di minimo locale.

Anche se non �e richiesto esplicitamente nella traccia, osservo che f non ha estremi globali in R2 , in

quanto �e illimitata sia inferiormente che superiormente; ci�o si riconosce per esempio valutando il limite

lim
x!�1

f (x; 0) = lim
x!�1

x3 = �1:

(b) Denoto con T il triangolo di vertici A(�3; 0), B(3; 0), C(0; 3).

Dato che T �e un insieme chiuso e limitato, dunque

compatto, e la restrizione di f a T �e una fun-

zione continua, il teorema di Weierstrass garantisce

l'esistenza degli estremi globali di f in T . I punti di

estremo vanno ricercati tra i punti stazionari interni

a T e i punti di frontiera di T .

L'unico punto stazionario di f interno a T �e P (1; 1), che come visto �e punto di minimo locale per f ,

dunque candidato punto di minimo globale per f in T .

La frontiera di T �e unione dei tre lati AB , AC e CB , che parametrizzo facilmente.



La restrizione di f al lato AB �e g1(t) := f (t; 0) = t3 , con t 2 [�3; 3]. Tale funzione (elementare!) �e

crescente, pertanto A �e candidato punto di minimo globale per f in T , mentre B �e candidato punto di

massimo globale per f in T . (Per inciso, noto che per t = 0, ossia in (0; 0), la restrizione di f al lato

AB presenta un punto di sella, in coerenza con la classi�cazione precedente di (0; 0).)

La restrizione di f al lato AC �e g2(t) := f (t; t + 3) = t3 + (t + 3)3 � 3 (t2 + 3 t), con t 2 [�3; 0].
Risulta g02(t) = 3 t2+3 (t+3)2�3 (2 t+3) = 6 t2+12 t+18. �E immediato riconoscere che il polinomio

a destra �e sempre positivo, dunque g2 �e crescente; pertanto, oltre ad A , gi�a candidato punto di minimo

globale per f in T , ottengo che C �e candidato punto di massimo globale per f in T .

La restrizione di f al lato CB �e g3(t) := f (t; 3� t) = t3+(3� t)3�3 (3 t� t2), con t 2 [0; 3]. Risulta

g03(t) = 3 t2 � 3 (3 � t)2 � 3 (3 � 2 t) = 24 t � 36. �E immediato riconoscere che il polinomio a destra

�e nullo per t = 3=2, negativo per t 2 [0; 3=2), positivo per t 2 (3=2; 3], dunque g3 �e decrescente in

[0; 3=2] e crescente in [3=2; 3]. Pertanto, oltre a B e C , gi�a candidati punti di massimo globale per f

in T , ottengo che D(3=2; 3=2) �e candidato punto di minimo globale per f in T .

Valutando f nei candidati punti di minimo globale ho f (1; 1) = �1, f (�3; 0) = �27, f (3=2; 3=2) = 0;

concludo che min
T
f = �27. Valutando f nei candidati punti di massimo globale ho f (3; 0) = 27,

f (0; 3) = 27; concludo che max
T
f = 27.

Quesito 3 (valido per il recupero della seconda prova di esonero)

Si calcoli il 
usso del rotore del campo vettoriale

F (x; y ; z) = (x y ; x + z; x2 z)

entrante nella porzione della super�cie conica di equazione z =
√
x2 + y2 delimitata dai piani di equazione

z = 1 e z = 4.

Svolgimento

Dato che le sue componenti sono funzioni polinomiali, il campo vettoriale F �e di classe C1 in R
3 .

Il rotore di F �e dunque un campo vettoriale continuo in R3 ; lo determino calcolando il determinante

simbolico

rotF (x; y ; z) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

@x @y @z

x y x + z x2 z

∣∣∣∣∣∣∣∣∣ = (�1; �2 x z; 1� x):



La super�cie conica � �e una super�cie orientabile, dunque ha senso calcolare il 
usso di un campo

vettoriale attraverso �. Scelgo la parametrizzazione di � de�nita ponendo

�(u; v) = (u cos v ; u sin v ; u) (u; v) 2 [1; 4]� [0; 2�] =: K .

Per ogni (u; v) 2 K :

�u(u; v) = (cos v ; sin v ; 1) �v (u; v) = (�u sin v ; u cos v ; 0);

quindi il vettore normale �e

N�(u; v) = �u(u; v)� �v (u; v) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

cos v sin v 1

�u sin v u cos v 0

∣∣∣∣∣∣∣∣∣ = (�u cos v ; �u sin v ; u):

Osservo che in ogni punto il vettore normale �e diretto verso l'asse z , ossia verso il cono; la parametriz-

zazione di � �e dunque coerente con il verso richiesto per il 
usso. Risulta:

��(rotF ) =

∫∫
K
rotF (�(u; v)) · N�(u; v) du dv

=

∫∫
K
(�1; �2 u2 cos v ; 1� u cos v) · (�u cos v ; �u sin v ; u) du dv

=

∫∫
K
(u cos v + 2 u3 cos v sin v + u � u2 cos v) du dv

=

∫ 4

1
(u � u2) du

∫ 2�

0
cos v dv +

∫ 4

1
u3 du

∫ 2�

0
sin(2 v) dv +

∫ 4

1
u du

∫ 2�

0
dv:

Per ragioni di periodicit�a, gli integrali delle funzioni trigonometriche sono uguali a 0, pertanto:

��(rotF ) =

∫ 4

1
u du

∫ 2�

0
dv =

[
u2

2

]4
1

2� = 15�:

In alternativa, posso calcolare il 
usso richiesto utilizzando il teorema di Stokes.

Riconosco infatti che � �e sostegno di una super-

�cie regolare con bordo, il cui bordo �e costituito

dall'unione della circonferenza 
1 parametrizzata da

r1(t) = (4 cos t; 4 sin t; 4) t 2 [0; 2�]

e la circonferenza 
2 parametrizzata da

r2(t) = (cos t; sin t; 1) t 2 [0; 2�]:



Siccome �e richiesto il 
usso entrante attraverso �, orientare positivamente il bordo @� signi�ca

parametrizzare entrambe le circonferenze in modo che percorrendole ci si lasci a sinistra la faccia di

� rivolta verso l'interno del cono; noto che r2 induce su 
2 il verso di percorrenza opposto a quello

richiesto. Pertanto:

��(rotF ) =

∫
@�+

F (P ) � dP =

∫

1

F (P ) � dP �
∫

2

F (P ) � dP

=

∫ 2�

0
F (r1(t)) · r 01(t) dt �

∫ 2�

0
F (r2(t)) · r 02(t) dt

=

∫ 2�

0
(16 cos t sin t; 4 cos t + 4; 64 cos2 t) · (�4 sin t; 4 cos t; 0) dt +

�
∫ 2�

0
(cos t sin t; cos t + 1; cos2 t) · (� sin t; cos t; 0) dt

=

∫ 2�

0
(�64 cos t sin2 t + 16 cos2 t + 16 cos t) dt �

∫ 2�

0
(� cos t sin2 t + cos2 t + cos t) dt

=

∫ 2�

0
(�63 cos t sin2 t + 15 cos2 t + 15 cos t) dt :

Per ragioni di periodicit�a, gli integrali del primo e terzo addendo sono uguali a 0, pertanto:

��(rotF ) = 15

∫ 2�

0

1 + cos(2t)

2
dt = 15�:

Quesito 4 (valido per il recupero della seconda prova di esonero)

Si calcoli l'integrale del campo vettoriale

F (x; y) =

(
x

(x2 + y2)2
;

y

(x2 + y2)2

)
sulla curva gra�co associata alla funzione de�nita ponendo g(x) = 1� x2 per ogni x 2 [�1; 1].
[Solo per il recupero della seconda prova di esonero: si veri�chi la correttezza del risultato ottenuto,

ricalcolando l'integrale mediante un procedimento alternativo.]

Svolgimento

Il campo vettoriale assegnato �e de�nito in R2nf(0; 0g , dove risulta continuo (in e�etti, di classe C1; visto
che le sue componenti sono funzioni razionali). La curva assegnata, in quanto curva gra�co associata a

una funzione di classe C1 , �e una curva regolare; inoltre, �e immediato riconoscere che il suo sostegno 
 ,

ossia il gra�co di g , �e contenuto nel dominio di F .



Dunque, l'integrale proposto �e ben de�nito. Lo calcolo attraverso la de�nizione di integrale curvilineo,

utilizzando la parametrizzazione \standard" della curva gra�co, cio�e

r(t) = (t; g(t)) = (t; 1� t2) t 2 [�1; 1].

Risulta:∫


F (P ) � dP =

∫ 1

�1
F (r(t)) · r 0(t) dt =

∫ 1

�1

(
t

(t2 + (1� t2)2)2 ;
1� t2

(t2 + (1� t2)2)2
)
· (1;�2 t) dt

=

∫ 1

�1

(
t

(t2 + (1� t2)2)2 �
2 t (1� t2)

(t2 + (1� t2)2)2
)
dt =

∫ 1

�1

2 t3 � t
(t2 + (1� t2)2)2 dt :

Osservo che la funzione integranda �e dispari, e che l'intervallo di integrazione �e simmetrico rispetto

all'origine; da questo deduco immediatamente che l'integrale �e uguale a 0.

Come procedimento alternativo, provo a utilizzare la Formula Fondamentale del Calcolo per campi vetto-

riali conservativi. Siccome il dominio di F non �e un insieme semplicemente connesso, se anche F fosse

un campo vettoriale chiuso (e lo �e, come si veri�ca facilmente), ci�o non garantirebbe che sia conservativo.

Veri�co che lo �e direttamente, a norma di de�nizione, ossia cercandone un potenziale, che poi utilizzer�o

per applicare la Formula.

Cerco dunque una funzione f : R2 n f(0; 0)g tale che

fx(x; y) =
x

(x2 + y2)2
fy (x; y) =

y

(x2 + y2)2
.

Dalla prima uguaglianza, integrando rispetto a x , deduco

f (x; y) = �1

2

1

x2 + y2
+ h(y);

derivando rispetto a y e sostituendo nella seconda uguaglianza ottengo

y

(x2 + y2)2
+ h0(y) =

y

(x2 + y2)2
,

ossia h0(y) = 0. Ne deduco che h �e una funzione costante; scelgo h(y) � 0.

In conclusione, la funzione de�nita ponendo

f (x; y) = � 1

2 (x2 + y2)
(x; y) 2 R2 n f(0; 0)g

�e un potenziale di F . Applicando la Formula Fondamentale del Calcolo ottengo∫


F (P ) � dP = f (r(1))� f (r(�1)) = f (1; 0)� f (�1; 0) = �1

2
�
(
�1

2

)
= 0 :



Svolgimento della prova scritta di Analisi Matematica II dell'8 luglio 2025

Quesito 1

Si determini l'integrale generale dell'equazione di�erenziale

y 00 + y = 2 cos t + t sin t :

Svolgimento

Il polinomio caratteristico dell'equazione omogena associata �e P (�) = �2 + 1, che ha radici complesse

coniugate � = i e � = �i . La generica soluzione dell'equazione omogenea associata �e quindi

c1 cos t + c2 sin t t 2 R

al variare di c1; c2 2 R .

Determino una soluzione particolare dell'equazione non omogenea assegnata utilizzando il metodo di

somiglianza. Osservando che � = i �e radice del polinomio caratteristico con molteplicit�a 1, cerco una

soluzione particolare dell'equazione con termine noto 2 cos t + t sin t della forma

'(t) =
(
(a t + b) cos t + (c t + d) sin t

)
t = (a t2 + b t) cos t + (c t2 + d t) sin t .

Derivando ottengo

'0(t) = (2 a t + b) cos t � (a t2 + b t) sin t + (2 c t + d) sin t + (c t2 + d) cos t

e

'00(t) = 2 a cos t � 2 (2 a t + b) sin t � (a t2 + b t) cos t + 2 c sin t +

+ 2 (2 c t + d) cos t � (c t2 + d) sin t

sostituendo nell'equazione:

2 a cos t � 2 (2 a t + b) sin t � (a t2 + b t) cos t + 2 c sin t + 2 (2 c t + d) cos t � (c t2 + d) sin t +

+ (a t2 + b t) cos t + (c t2 + d t) sin t = 2 cos t + t sin t ;

cio�e

2 a cos t � 2 (2 a t + b) sin t + 2 c sin t + 2(2 c t + d) cos t = 2 cos t + t sin t :

Questa uguaglianza �e soddisfatta per ogni t 2 R se e solo se

2 a + 2 (2 c t + d) = 2, �2 (2 a t + b) + 2 c = t ;

cio�e se e solo se



4 c = 0; 2 a + 2 d = 2; �4 a = 1; �2 b + 2 c = 0,

ossia c = b = 0, a = �1

4
, d =

5

4
.

Dunque: '(t) = �t
2

4
cos t +

5 t

4
sin t e la generica soluzione dell'equazione assegnata �e

y(t) = c1 cos t + c2 sin t � t2

4
cos t +

5

4
t sin t t 2 R

con c1; c2 2 R .

Quesito 2

Si consideri la funzione de�nita ponendo

f (x; y) =

x
3 ln(x2 + y2) (x; y) 2 R2 n f(0; 0)g
0 (x; y) = (0; 0):

(a) Si studi la di�erenziabilit�a di f .

(b) Si determinino e classi�chino i punti stazionari di f .

Svolgimento

(a) La restrizione di f all'insieme aperto A := R
2 n f(0; 0)g �e di classe C1 , in quanto composta di

funzioni polinomiali e della funzione logaritmo. In particolare, essendo di classe C1 in A , cio�e avendo

derivate parziali continue, f risulta di�erenziabile in A come conseguenza del teorema del di�erenziale

totale.

Resta da esaminare, mediante la de�nizione, se f �e di�erenziabile anche in (0; 0). Anzitutto veri�co se

�e derivabile parzialmente.

Considero il rapporto incrementale di f rispetto alla prima variabile. Si ha

lim
t!0

f (0 + t; 0)� f (0; 0)
t

= lim
t!0

t3 ln(t2 + 02)� 0

t
= lim

t!0
t2 ln(t2) = 0 ;

nell'ultima uguaglianza ho tenuto conto del limite notevole lim
s!0+

s ln(s) = 0. Dunque, f �e derivabile

parzialmente rispetto a x in (0; 0) con fx(0; 0) = 0.

Inoltre:

lim
t!0

f (0; 0 + t)� f (0; 0)
t

= lim
t!0

0� 0

t
= 0 ;

quindi f �e derivabile parzialmente rispetto a y in (0; 0) con fy (0; 0) = 0.



Ricapitolando: in (0; 0) la funzione f �e derivabile parzialmente e ha gradiente uguale al vettore nullo;

per stabilire se �e di�erenziabile, valuto il rapporto incrementale di f in (0; 0).

Per (h; k) 6= (0; 0) si ha

R(h; k) :=
f (0 + h; 0 + k)� f (0; 0)�rf (0; 0) · (h; k)

k(h; k)k =
h3 ln(h2 + k2)� 0� 0p

h2 + k2
=
h3 ln(h2 + k2)p

h2 + k2
;

pertanto

0 � jR(h; k)j = jhjp
h2 + k2

h2

h2 + k2
(h2 + k2) ln(h2 + k2) � (h2 + k2) ln(h2 + k2) :

Osservando che per (h; k)! (0; 0) si ha (h2+k2) ln(h2+k2)! 0 (per il limite notevole gi�a ricordato),

dal teorema di convergenza obbligata deduco immediatamente

lim
(h;k)!(0;0)

R(h; k) = 0,

quindi f �e di�erenziabile in (0; 0).

In conclusione, f �e di�erenziabile in R2 .

(b) Per quanto discusso nel punto precedente, (0; 0) �e un

punto stazionario per f . Noto che f (0; 0) = 0; dal segno di f ,

rappresentato nella �gura qui a lato (in blu: f = 0; in verde:

f > 0; in rosa: f < 0), deduco che (0; 0) �e un punto di sella.

Determino ora i punti stazionari in A . Per ogni (x; y) 2 R2 n f(0; 0)g si ha

fx(x; y) = 3 x2 ln(x2 + y2) +
2 x4

x2 + y2
fy (x; y) =

2 x3 y

x2 + y2
.

I punti stazionari sono le soluzioni del sistemafx(x; y) = 0

fy (x; y) = 0

che equivale a x
2
(
3 (x2 + y2) ln(x2 + y2) + 2 x2

)
= 0

x3 y = 0:

La seconda equazione �e soddisfatta per x = 0 oppure y = 0. Se x = 0 la prima equazione �e soddisfatta

per ogni y 6= 0. Se y = 0 (e x 6= 0) la prima equazione equivale a 3 x2 ln(x2) + 2 x2 = 0, che equivale

a 3 ln(x2) + 2 = 0, soddisfatta per x2 = e�2=3 , ossia x = �e�1=3 .
Ricapitolando, i punti stazionari in A sono (0; �) per � 6= 0 e (�e�1=3; 0).



Dato che f (0; �) = 0 per ogni � 6= 0, dal segno di f deduco che questi punti sono tutti di sella (come

(0; 0), del resto).

Classi�co i punti A(e�1=3; 0) e B(e�1=3; 0) utilizzando la matrice hessiana. Con calcoli elementari

ottengo

Hf (A) =

6 e�1=3 0

0 2 e�1=3

 Hf (B) =

�6 e�1=3 0

0 �2 e�1=3

 :
Trattandosi di matrici diagonali, gli autovalori coincidono con gli elementi della diagonale principale. Dato

che gli autovalori di Hf (A) sono entrambi positivi, il punto A �e di minimo locale; dato che gli autovalori

di Hf (B) sono entrambi negativi, il punto B �e di massimo locale.

In alternativa, posso ragionare come segue. Considero l'insieme D+ =
{
(x; y) 2 R2 j x2+y2 � 1; x � 0

}
,

che �e compatto in quanto chiuso e limitato. Dato che f �e continua (in quanto di�erenziabile) in R2 ,

la sua restrizione a D+ �e una funzione continua. Per il teorema di Weierstrass, fjD+
ammette massimo

e minimo globale. Siccome f �e identicamente nulla sulla frontiera di D+ e negativa all'interno di D+ ,

riconosco immediatamente che il massimo di f in D+ �e 0, assunto in tutti i punti della frontiera @D+ ;

ne consegue che il minimo globale di fjD+
�e assunto in un punto interno a D+ , che per il teorema di

Fermat �e necessariamente un punto stazionario di f . Siccome l'unico punto stazionario di f interno a

D+ �e A , deduco che A �e punto di minimo globale per fjD+
e quindi punto di minimo locale per f .

In modo analogo, considerando l'insieme D� =
{
(x; y) 2 R2 j x2 + y2 � 1; x � 0

}
, deduco che B �e

punto di massimo locale per f .

Anche se non �e richiesto esplicitamente nella traccia, osservo che f non ha estremi globali in R2 , in

quanto �e illimitata sia inferiormente che superiormente; ci�o si riconosce per esempio valutando il limite

lim
x!�1

f (x; 0) = lim
x!�1

x3 ln(x2) = �1 .

Quesito 3

Si calcoli l'integrale triplo della funzione de�nita ponendo f (x; y ; z) = x y nella regione dello spazio,

contenuta nel primo ottante, delimitata dal piano di equazione x + y + z = 1 e dal paraboloide di

equazione z = 1� x2 � y2 .
Nota: a seconda della formula di riduzione utilizzata per il calcolo dell'integrale, pu�o essere utile tenere presente

l'uguaglianza ∫ �=2

0

cos t + sin t

(cos t + sin t)4
dt =

1

6
�



Svolgimento

Denoto con T l'insieme assegnato, rappresentato nella �gura

a lato; osservo che �e compreso tra i piani di equazione z = 0

e z = 1.

Per z 2 [0; 1] denoto con Tz la sezione di T corrispondente

alla quota z , cio�e Tz =
{
(x; y) 2 R2 j (x; y ; z) 2 T} .

Per z 2 (0; 1) la sezione Tz �e rappresentata nella �gura a lato;

osservo che per z = 0 si ha 1 � z = (1 � z)1=2 = 1, mentre

per z = 1 si ha 1 � z = (1 � z)1=2 = 0, quindi T1 si riduce

all'insieme f(0; 0)g .

Applico la formula di integrazione per strati:∫∫∫
T
f (x; y ; z) dx dy dz =

∫ 1

0

(∫∫
Tz

x y dx dy

)
dz .

Per calcolare l'integrale doppio su Tz utilizzo coordinate polari di centro l'origine:

x = � cos � y = � sin � .

In tali coordinate la retta di equazione x + y = 1� z diventa � cos � + � sin � = 1� z , ossia

� =
1� z

cos � + sin �
,

mentre la circonferenza di equazione x2+y2 = 1�z diventa � =
p
1� z ; pertanto, l'insieme Tz diventa

T̃z =

{
(�; �) 2 R2 j 0 � � � �

2
;

1� z
cos � + sin �

� � � p
1� z

}
:

Dunque: ∫∫
Tz

x y dx dy =

∫∫
T̃z

� cos � � sin � � d� d� =

∫ �=2

0
cos � sin �

(∫ p
1�z

1�z

cos �+sin �

�3 d�

)
d�

=

∫ �=2

0
cos � sin �

[
�4

4

]p1�z

1�z

cos �+sin �

d�

=
1

4

∫ �=2

0
cos � sin �

(
(1� z)2 � (1� z)4

(cos � + sin �)4

)
d�

=
(1� z)2

4

∫ �=2

0
cos � sin � d� � (1� z)4

4

∫ �=2

0

cos � sin �

(cos � + sin �)4
d� :

Tenuto conto del suggerimento, ottengo



∫∫
Tz

x y dx dy =
(1� z)2

4

[
sin2 �

2

]�=2
0

� (1� z)4
4

1

6
=

(1� z)2
8

� (1� z)4
24

.

Dunque: ∫∫∫
T
f (x; y ; z) dx dy dz =

∫ 1

0

(∫∫
Tz

x y dx dy

)
dz =

∫ 1

0

(
(1� z)2

8
� (1� z)4

24

)
dz

=

[
�(1� z)3

24
+

(1� z)5
120

]1
0

=
1

24
� 1

120
=

1

30
�

In alternativa, posso utilizzare la formula di integrazione per �li.

Devo preliminarmente descrivere l'insieme T come insieme nor-

male, per esempio rispetto al piano x y . Considero gli insiemi

A e B rappresentati nella �gura a lato e de�nisco le funzioni


(x; y) = 1� x � y e �(x; y) = 1� x2 � y2 .

Risulta

T = f(x; y ; z) j (x; y) 2 A ; 
(x; y) � z � �(x; y)
} [ f(x; y ; z) j (x; y) 2 B ; 0 � z � �(x; y)

}
Integrando per �li:∫∫∫

T
f (x; y ; z) dx dy dz =

∫∫
A

(∫ �(x;y)


(x;y)
x y dz

)
dx dy +

∫∫
B

(∫ �(x;y)

0
x y dz

)
dx dy

=

∫∫
A
x y
(
�(x; y)� 
(x; y)) dx dy + ∫∫

B
x y �(x; y) dx dy

=

∫∫
A[B

x y �(x; y) dx dy �
∫∫

A
x y 
(x; y) dx dy :

Il primo integrale si calcola facilmente utilizzando coordinate polari:∫∫
A[B

x y �(x; y) dx dy =

∫
[0;1]�[0;�=2]

� cos � � sin � (1� �2 cos2 � � �2 sin2 �) � d� d�

=

∫ 1

0
(�3 � �5) d�

∫ �=2

0
cos � sin � d� =

(
1

4
� 1

6

)
1

2
=

1

24
�

Per calcolare il secondo integrale, descrivo A come insieme normale rispetto all'asse x , cio�e

A =
{
(x; y) 2 R2 j 0 � x � 1 ; 0 � y � 1� x} ,



e integro per verticali:∫∫
A
x y 
(x; y) dx dy =

∫ 1

0

(∫ 1�x

0
x y (1� x � y) dy

)
dx =

∫ 1

0

(∫ 1�x

0
(x (1� x) y � x y2) dy

)
dx

=

∫ 1

0

(
x (1� x) (1� x)

2

2
� x (1� x)

3

3

)
dx

=

∫ 1

0

(
x
(1� x)3

2
� x (1� x)

3

3

)
dx =

∫ 1

0

x

6
(1� x)3 dx

=
1

6

∫ 1

0
(x � 3 x2 + 3 x3 � x4) dx = 1

6

(
1

2
� 1 +

3

4
� 1

5

)
=

1

120
�

Sottraendo i valori ottenuti: ∫∫∫
T
f (x; y ; z) dx dy dz =

1

24
� 1

120
=

1

30
;

come gi�a calcolato.

Quesito 4

Sia � la porzione della sfera di equazione di centro l'origine e raggio 3 posta al di sopra del piano di

equazione z = 1. Si calcoli il 
usso che attraversa � dall'alto verso il basso del rotore del campo

vettoriale F (x; y ; z) = (x2 y ; y z; 3 y2).

Svolgimento

Dato che le sue componenti sono funzioni polinomiali, il campo vettoriale F �e di classe C1 in R3 .

Il rotore di F �e dunque un campo vettoriale con-

tinuo in R3 ; lo determino calcolando il determinante

simbolico

rotF (x; y ; z) =

∣∣∣∣∣∣∣∣∣
e1 e2 e3

@x @y @z

x2 y y z 3 y2

∣∣∣∣∣∣∣∣∣ = (5 y ; 0; �x2):

La super�cie assegnata � �e una calotta sferica, dunque una super�cie orientabile, pertanto ha senso

calcolare il 
usso di un campo vettoriale attraverso �.

Parametrizzo � come gra�co della funzione de�nita ponendo f (x; y) =
√
9� x2 � y2 nell'insieme

K =
{
(x; y) 2 R2 j x2 + y2 � 8

}
. Scelgo dunque la parametrizzazione



�(u; v) = (u; v ; f (u; v)) (u; v) 2 K ;

ricordo che per ogni (u; v) 2 K il vettore normale �e

N�(u; v) = (�fu(u; v); �fv (u; v); 1) =
(

up
9� u2 � v2 ;

vp
9� u2 � v2 ; 1

)
.

In ogni punto il vettore normale �e diretto verso l'alto (in quanto la terza componente �e positiva), perci�o

la parametrizzazione scelta induce su � l'orientazione opposta rispetto a quella richiesta per il calcolo

del 
usso.

Risulta dunque:

��(rotF ) = �
∫∫

K
rotF (�(u; v)) · N�(u; v) du dv

= �
∫∫

K
(5 v ; 0; �u2) ·

(
up

9� u2 � v2 ;
vp

9� u2 � v2 ; 1
)
du dv

=

∫∫
K

(
� 5 u vp

9� u2 � v2 + u2
)
du dv

Utilizzando coordinate polari ottengo

��(rotF ) =

∫∫
[0;2

p
2]�[0;2�]

(
�5 �2 cos � sin �√

9� �2
+ �2 cos2 �

)
� d� d�

=

∫ 2
p
2

0
� 5 �3√

9� �2
d�

∫ 2�

0
cos � sin � d� +

∫ 2
p
2

0
�3 d�

∫ 2�

0
cos2 � d�

Per ragioni di periodicit�a, il secondo fattore nel primo addendo �e uguale a 0, pertanto:

��(rotF ) =

∫ 2
p
2

0
�3 d�

∫ 2�

0
cos2 � d� =

[
�4

4

]2p2

0

� = 16�:

In alternativa, posso calcolare il 
usso richiesto utilizzando il teorema di Stokes.

Riconosco infatti che � �e sostegno di una super�cie regolare con bordo, il cui bordo �e costituito dalla

circonferenza 
 parametrizzata da

r(t) = (2
p
2 cos t; 2

p
2 sin t; 1) t 2 [0; 2�] .

Siccome �e richiesto il 
usso diretto dall'alto verso il basso, orientare positivamente il bordo @� signi�ca

parametrizzare la circonferenza in modo che percorrendola ci si lasci a sinistra la faccia di � rivolta verso



l'origine degli assi; noto che r induce su 
 verso di percorrenza opposto a quello richiesto. Pertanto:

��(rotF ) =

∫
@�+

F (P ) � dP = �
∫


F (P ) � dP = �

∫ 2�

0
F (r(t)) · r 0(t) dt

= �
∫ 2�

0
(16

p
2 cos2 t sin t; 2

p
2 sin t; 24 sin2 t) · (�2

p
2 sin t; 2

p
2 cos t; 0) dt

=

∫ 2�

0
(64 cos2 t sin2 t � 8 cos t sin t) dt :

Per ragioni di periodicit�a, l'integrale del secondo addendo �e uguale a 0, pertanto:

��(rotF ) =

∫ 2�

0
64 cos2 t sin2 t dt = 16

∫ 2�

0
sin2(2 t) dt = 16

∫ 2�

0

1� cos(4 t)

2
dt = 16�;

come gi�a calcolato.

Osservo in�ne che, come conseguenza del teorema di Stokes, si pu�o calcolare il 
usso richiesto anche

sostituendo � con una qualsiasi super�cie regolare con bordo avente lo stesso bordo di �; per esempio, si

potrebbe considerare la super�cie avente come sostegno l'insieme
{
(x; y ; z) 2 R3 j x2+ y2 � 8; z = 1

}
.


