

CONSIGLIO INTERCLASSE IN MATEMATICA

General information	Academic year 2022-2023
Academic subject	Algebra 1
Degree programme	Mathematics
Programme year	Second
Term	First semester (September 26, 2022 – December 16, 2022)
European Credit Transfer and Accumu	lation System credits (ECTS) 8
Language	Italian
Attendance	Not compulsory

Lecturer	
Name and surname	Margherita Barile
E-mail	margherita.barile@uniba.it
Telephone	+39 080 544 2204
Department and office	Department of Mathematics, room 23 second floor
Virtual meeting room	Microsoft Teams – code: nceeadf
Web page	https://www.dm.uniba.it/members/barile
Office hours	By appointment: a virtual meeting on Microsoft Teams can be requested by e-mail.

Syllabus	
Learning objectives	Acquiring a solid knowledge of algebraic structures
Course prerequisites	Basic concepts of set theory, including maps, relations, number sets
Course contents	Number sets: The divisibility relation in \mathbb{Z} , prime numbers. Euclidean division in \mathbb{Z} . The GCD and Bézout's Identity, the Euclidean algorithm. The Fundamental Theorem of Arithmetic. Euclid's theorem on the infinitude of primes. The complex numbers as ordered pairs of real numbers, operations in \mathbb{C} , algebraic and trigonometric form, the <i>n</i> -th roots of a complex number, the Fundamental Theorem of Algebra.
	Algebraic structures and homomorphisms: Elementary properties of groups, Abelian groups, subgroups, cyclic groups and their generators, order of a periodic element, Lagrange's Theorem on the order of elements in a finite Abelian group. Elementary properties of rings, commutative rings, unit rings, invertible element, integral domains, division rings, fields, subrings, subfields. Rings of matrices. Direct product of groups and rings. Homomorphisms, monomorphisms, epimorphisms, isomorphisms, kernel of a homomorphism.
	Polynomial rings: Polynomials in one indeterminate, degree of a polynomial. Operations on polynomials. Polynomials with coefficients in an integral domain, the degree formula. Euclidean division in $K[x]$. The GCD and Bézout's Identity, the Euclidean division algorithm. Roots of a polynomial, Rational root theorem. Irreducible polynomials, factorization, associate polynomials. Algebraically closed fields. Gauss' Theorem and factorizations in $\mathbb{Q}[x]$. Reduction modulo p , Eisenstein's irreducibility criterion. Irreducible polynomials in

CONSIGLIO INTERCLASSE IN MATEMATICA

_	
	$\mathbb{C}[x]$ and in $\mathbb{R}[x]$.
	Quotient structures:
	The congruence modulo n in \mathbb{Z} . The residue class ring \mathbb{Z}_n . Linear
	congruences in \mathbb{Z} and linear equations in \mathbb{Z}_n . The group of units of
	\mathbb{Z}_n . The fields \mathbb{Z}_p . The Euler function. The Chinese Remainder
	Theorem. Fermat's little Theorem, the Euler Theorem. The congruence
	modulo $f(x)$ in $K[x]$. The residue class ring $K[x]/f(x)$ and its units.
	Symmetric groups:
	The natural action of S_n on $X = \{1,,n\}$. Orbits and cycles of a
	permutation. Decomposition of a permutation into disjoint cycles.
	Parity of a permutation, the alternating group A_n .
Reference books	Appunti di Algebra 1, Giulio Campanella (Nuova Cultura)
	Algebra, G.M. Piacentini Cattaneo (Decibel- Zanichelli)
	Elementi di Algebra, S. Franciosi, F. de Giovanni (Aracne Editrice)
	Algebra, I.N. Herstein (Editori Riuniti)
	Aritmetica e algebra, D. Dikranjan, M.S. Lucido (Liguori Editore)
Additional course materials	Material available on line:
	- Complete lecture notes
	- Exam sheets
	- Collections of exercises
	- Additional course material (historical notes, solved exercises, further
	remarks) uploaded to the Microsoft Teams platform
	https://www.dm.uniba.it/members/barile/homepage/algebra-n-1

Work schedule				
	Total	Lectures	Hands-on learning (recitations)	Self-study
Hours	200	56	15	129
ECTS credits	8	7	1	

Teaching methods	
	Lectures and exercise sessions

Expected learning outcomes	
Knowledge and understanding	Recognizing algebraic structures and their properties
Applying knowledge and understanding	Solving algebraic problems by means of a structural approach
Making judgements	Assessing the correctness of numerical results by reference to a conceptual framework
Communication skills	Formulating definitions and abstract arguments in a formally rigorous manner

CONSIGLIO INTERCLASSE IN MATEMATICA

Learning skills	Establishing logical connections between different topics

Assessment and feedback	
Assessment methods	Written exam (3 hours, exercises) and oral exam
Evaluation criteria	Knowledge and understanding: Logical reasoning and abstraction
	Applying knowledge and understanding: Solving theoretical problems
	Making judgements: Approaching notions in a critical way
	Communication skills: Mastering the algebraic language
	• Learning skills: Organizing knowledge
Grading policy	The grade (18-30) is assigned on the basis of an oral exam, after passing the
	written exam.