Talete di Mileto (VI1-VI secolo a.C.)
Enunciati attribuiti a Talete (e contenuti negli Elementi di Euclide)

1. Il diametro biseca il cerchio. (Libro I, Definizione XVII)

2. Gli angoli alla base di un triangolo isoscele sono uguali. (Libro I, Proposizione 5)

3. Gli angoli (opposti) compresi fra due rette incidenti sono uguali. (Libro I, Proposizione 15)

4. Due triangoli aventi uguali due angoli e il lato ad essi adiacente sono uguali. (Libro I,

Proposizione 26)

Ogni angolo inscritto in una semicirconferenza e retto. (Libro I11, Proposizione 31)

Due triangoli equiangoli hanno i lati proporzionali. (Libro VI, Proposizione 4)

7. Lasomma degli angoli interni di un triangolo & pari a due angoli retti. (Libro I, Proposizione
32)

o o

Tale attribuzione é controversa, esattamente come non € chiaro il ragionamento che avrebbe portato
il matematico greco a stabilire tali risultati. L’argomento ¢ stato oggetto di leggende come di
speculazioni filosofiche.

Brani significativi sono contenuti nei seguenti scritti:

- Diogene Laerzio, Vite dei filosofi (111 secolo)

- Proclo, Commento al Libro I degli Elementi di Euclide (V secolo)

- George Johnston Allman, Greek Geometry from Thales to Euclid (1889)
- Auguste Comte, Systeme de la politique positive, vol. 111 (1853)

- Thomas Heath, History of Greek Mathematics,vol. 1 (1921)

1. Ispirazione artistica?

Vasi della XVIII dinastia egizia




2. Ispirazione architettonica?

L’inclinazione delle piramidi era detta seked: la si misurava come lo spostamento orizzontale del
muro in corrispondenza di 1 cubito di altezza.

seked

1 cubito

3-4. Applicazione: determinazione della distanza di una nave dalla riva (varie congetture sul metodo):

E

gnomoéne = gr. GNOMON propr. che cono-

sce, da GNOO = GI-GNOSK" comnosco dalla)

= stessa radice del laf. NOSCO = GNOSCO co-
B nosco (v. Conoscere).

_ Strumento consistente in uno stilo, obe-
lisco o simile per misurare l'altezza del
sole nel suo passaggio pel meridiano; Ago
dell’orcilogio solare, che con la sua ombra

; ; i segna le ore.
Groma . romana (per Fra}cuare conglur}gentl. € [T Greci dissero cosi anche i denti del
perpendicolari) e groma egizia (sotto). La misurazione cavallo, dai quali si conosce V’eta di esso).

della distanza ignota (AB) avviene attraverso la DO Gnomomicoa [=gr. gnomonikos-dl.
misurazione del lato CE del triangolo rettangolo DCE congruente a DAB. Lo strumento egizio € di
probabile origine greca; il nome latino deriva da una variante etrusca di gnomone.




AIIHDMALOD

Il principio di funzionamento dello strumento e analogo a quello del merkhet egizio, utilizzato per
individuare il piano del meridiano celeste passante per la stella polare, onde misurare il tempo con
I’osservazione del moto degli astri. Un filo a piombo, inquadrato attraverso una fessura, consentiva
di determinare la direzione verticale. Si noti che il nome dello strumento, traslitterato come m r.t,

significa letteralmente conoscendo.

USE OF THE MERKHET IN ANCIENT EGYPT




b) La squadra mobile

L al

Una volta individuata I’inclinazione sotto la quale si vede un oggetto (una nave) del quale si vuole
stabilire la distanza dall’osservatore, si ruota lo strumento intorno al suo supporto verticale fino a
individuare un altro oggetto, che risulti raggiungibile e sia visibile sotto la medesima angolazione.
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5. Come dimostrare la proposizione senza conoscere la somma degli angoli interni di un

triangolo
A D
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L’angolo ABC ¢ retto, inscritto in una circonferenza.

Viceversa, dati il segmento AC, e il punto B giacente su una circonferenza avente 4C come diametro,
tracciando il segmento OD che prolunga OB ed ¢ di uguale lunghezza si costruisce un quadrilatero
che ¢ necessariamente un rettangolo (le sue diagonali hanno uguale lunghezza e si bisecano
reciprocamente). Segue che 1’angolo ABC ¢ retto. La proprieta citata era certamente nota agli Egizi,
essendo alla base di una tecnica comunemente usata dagli agrimensori di tutte le epoche per tracciare



rettangoli sul terreno, o per verificare la forma rettangolare di confini gia tracciati). La pratica ¢ tuttora
seguita, ad esempio, nelle zone rurali del Mozambico (Heilbron, 2000).

(a) Ap-.
B -

(b} Ar.. 1€
B “4p

Per altro, per dimostrare questa proprieta ¢ sufficiente conoscere i citati criteri di uguaglianza per i
triangoli e i loro angoli interni.

@+ ® = 4 angoli retti

La somma degli angoli interni di un quadrilatero
e pari a un angolo giro


Stamp


Da Thomas Heath, History of Greek Mathematics, vol. 1, 1921

There is even more difficulty about the dictum of Pamphile
mplying that Thales first discovered the fact that the angle
In a semicircle is a right angle. Pamphile lived in the reign
of Nero (s.D. 54-68), and is therefore a late authority. The
date of Apollodorus the -ecaleulator’ or arithmetician is not
known, but he is given as only one of several authorities who
attributed the proposition to Pythagoras, Again, the story
of the sacrifice of an ox by Thales on the occasion of his
discovery is suspiciously like that told in the distich of
Apollodorus ‘when Pythagoras discovered that famous pro-
position, on the strength of which he offered a splendid
sacrifice of oxen’. But, in quoting the distich of Apollodorus,
Plutarch expresses doubt whether the diseovery so celebrated
was that of the theorem of the square of the hypotenuse or
the solution of the problem of ‘application of areas’*; there
is nothing about the discovery of the fact of the angle in
a semieircle being a right angle. It may thereforc be that

Diogenes Laertius was mistaken in bringing Apollodorus into
the story mow in question at all; the mere mention of the
sacrifice in Pamphile’s account would naturally reeall Apollo-
dorus’s lines ahout Pythagoras, and Diogenes may have
forgotten that they referred to a different proposition.

Now Euclid in TIT. 31 proves that the angle in v semicircle
15 a right angle by means of the general theorem of I. 32

that the sum of the angles of any tiiangle is equal to two
right angles; but if Thales was aware of the truth of the
latter general proposition and proved the proposition ahout
the semicircle in this way, by means of it, how did Eudemus
come to credit the Pythagoreans, not only with the general
proof, but with the discovery, of the theorem that the angles
of any triangle are together equal to two right angles??

Cantor, who supposes that Thales proved his proposition
after the manner of Euclid ITL 31, i.e. by means of the general
theorem of T. 32, suggests that Thales arrived at the truth of
the latter, not by a general proof like that attributed by
Eudemus to the Pythagoreans, but by an argument following
the steps indicated by Geminus. Geminus says that

‘the ancients investigated the theorem of the two right
angles in each individual species of triangle, first in the equi-
lateral, then in the isosceles, and afterwards in the scalene
triangle, but later geometers demonstrated the general theorem
that m any triangle the three interior angles are equal to two
right angles’.?



The *later geumetel s’ being the Pythagoreans, it is assumed
that the ‘ancients’ may be Thales and his contemporaries.
As regards the equilateral triangle, the fact might be suggested
by the observation that six such triangles arranged round one
point as eommon vertex would fill up the space round that
pomt; wheunce it follows that each angle is one-sixth of four
right angles, and three such angles make up two right angles.
Again, suppose that in cither an equilateral or an isosceles

triangle the vertical angle is bisected by a straight line meet-
ing the base, and that the rectangle of which the bisector and
one half of the base are adjacent sides is completed ; the
rectangle is double of the half of the original triangle, and the
angles of the half-triangle are together equal to half the sum

of the angles of the rectangle, i.e. are equal to two right
angles ; and it immediately follows that the sum of the angles
of the original equilateral or isosceles triangle is equal to two
right angles. The same thing is easily proved of any triangle
by dividing it into two right-angled
triangles and completing the rectangles
which are their doubles respectively, as
in the figure. But the fact that a proof
on these lines is just as easy in.the case
of the general triangle as it is for the
equilateral and isosceles trlanﬂ']es, throws doubt on the whole
procedure; and we are led to question whether there is any
foundation for Gewinus’s account at all.  Aristotle has a re-
mark that

‘even if one should prove, with reference to each (sort of)
triangle, the equilateral, scalene, and isosceles, separately, that
each has its angles equal to two right anglea either by one
proof or by different proofs, he does not vet know that the
triangle, i.e. the triangle in general, has its angles equal to
two right angles, except in a sophistical sense, even though
there exists no tnang]]j? other than triangles of the kinds
mentioned. For he knows it not gud triangle, nor of every
triangle, except in a numerical sense; he does not know it
notwnfd,ly of every triangle, even though there be actually no
triangle which he does not know .



It may well be that Geminus was misled into taking for
a historical fact what Aristotle gives only as a hypothetical
illustration, and that the exact stages by which the proposi-
tion was first proved were not those indicated by Geminus.

Could Thales have arrived at Lis prop(;sition about the
semicircle without assuming, or even knowing, that the sum
of the angles of wny triangle is equal to two right angles? It
seems possible, and in the following way.
Many propositions were doubtless first
discovered by drawing all sortsof figures
0 and lines inthem,and observing appurent
relations of equallty, &e., between parts.
It would, for example, be very natural
to draw a rectangle, a figure with fow right angles (which, it

A D

B C

would be found, could be drawn in practiee), and to put in the
two diagonals. The equality of the oppostte sides would
doubtless, in the first beginnings of geonietry, be assumed as
obvious, or verified by measurement. 1f then it was assumed
that a rectangle is a figure with all its angles right angles and
each side equal to its opposite, it would be easy to deduee
certain consequences. Take first the two triangles ADC, BCD.
Sinee by hypothesis 4D = BC and CD is eommon, the two
triangles have the sides AD, DO respeetively equal to the sides
BC, CD, and the ineluded angles, being right angles, are equal ;
therefore the triangles ADC, BCD are equal in all respects
(ef. Eucl. I.4), and accordingly the angles ACD (i.e. 0CD) and
BDC (i.e. 0DC) are equal, whenee (by the converse of Eucl. 1. 5,
known to Thales) 0D = OC. Similarly by means of the
equality of 4B, CD we prove the equality of OB,0C. Conse-
quently OB, OC, OD (and UA4) are all equal. It follows that
a cirele with eentre O and radius O A passes through B, €, D
also; sinee 40, OC are in a straight line, AC is a diameter of
the eirele, and the angle A BC, by hypothesis a right angle, is
an *angle in a semieirele’. 1t would then appear that, given
any right angle as ABC standing on AC as base, it was only
necessary to biseet A(* at 0, and O would then be the centre of
a semicirele on AC as diameter and passing through B. The
eonstruction indieated would be the construetion of a circle
about the right-angled triangle 4 BC, which seems to corre-
spond well enough to Pamphile’s phrase about ¢ describing on
(1.e. 1n) a ecirele a triangle (whieh shall be) right angled’.



Dimostrazione euclidea del “Teorema di Talete”

B

Ora, poiché BE ¢ uguale ad EA, anche l'angolo ABE
¢ uguale all’angolo BAE (I, 5). Di nuovo, poiché CE é
uguale ad EA, pure I'angolo ACE & uguale all’angolo CAE
(id.); quindi tutto quanto I'angolo BAC & uguale alla somma
dei due angoli ABC, ACB (noz. com. II). Ma nel triangolo
ABC pure I'angolo esterno FAC é uguale alla somma dei
due angoli ABC, ACB (I, 32), per cui anche gli angoli BAC,
FAC sono uguali fra loro (noz. com. I); ciascuno det due
¢ quindi retto (I, def. X); dunque l'angolo alla circonfe-
renza BAC, iscritto nel semicerchio BAC, é retto.

PROPOSIZIONE 32.

In ogni triangolo, se si prolunga uno dei lali, l'angolo esterno
¢ uguale alla somma dei due angoli interni ed opposti, e la
somma dei ire angoli interni del triangolo é uguale a due relli 7.



Esempi di “applicazione di aree”

Book I

Proposition 44

To a given straight line in a given rectilinear angle, to apply a parallelogram equal to a given triangle.
Let 4B be the given straight line, D the given rectilinear angle, and C the given triangle.
It is required to apply a parallelogram equal to the given triangle C to the given straight line AB in an angle equal to D.

Construct the parallelogram BEFG equal to the triangle € in the angle EBG which equals D, and let it be placed so that B is in a straight line
with AB.

[
&

V D / Draw £ through to /1, and draw .4/{ through 4 parallel to either BG or EF. Join f1B. L“»lI-II;:::l-’l
Since the straight line /7F falls upon the parallels 471 and FF, therefore the sum of the angles A//F and HFE equals two right angles.
Therefore the sum of the angles BHG and GFE 1s less than two right angles. And straight lines produced ndefinitely from angles
less than two right angles meet, therefore HB and I'E, when produced, will meet.
L K Letthem be produced and meet at K. Draw KZ through the point K parallel to either E4 or FH, Produce HA and GB to the points L and M. 131
Then HLKF is a parallelogram, HK is its diameter, and AG and ME are parallelograms, and LB and BF are the so-called complements about HK. 143
Therefore LB equals BF
A E Bul BF equals the triangle C, therelore LB also equals €. CN1
: : / / Since the angle GBE equals the angle 4BM, while the angle GBE equals D, therefore the angle 4BM also equals the angle D, LIS, CN1
H = F Therefore the parallelogram LB equal to the given triangle € has been applied to the given straight line 458, in the angle ABM which equals D.
QEF
Book I1
Proposition 14
1o construct a square equal to a given rectilinear figure.
Let 4 be the given rectilinear figure.
It is required to construct a square equal to the rectilinear figure A.
Construct the rectangular parallelogram BD equal to the rectilinear figure A. L45
Then, if BE equals £1), then that which was proposed is done, for a square /) has been constructed equal to the rectilinear figure 4.
But, il not, one of the straight lines BE or ED is grealer.
Let BE be greater, and produce it to 2 Make EF equal to ED, and bisect BF at G. L3 Lio
B G E Describe the semicircle BHF with center G and radius one of the straight lines GB or GF. Produce DE to H, and jom GH. LDef18
Then. since the straight line BI has been cut into equal segments at G and into unequal segments at I, the rectangle BE by LT together s
c with the square on EG equals the square on GF
But GF equals GH, therefore the rectangle BE by EF together with the square on GE equals the square on G
But the sum of the squares on [/E and K7 equals the square on GI1, therefore the rectangle BE by EF together with the square on GE 147

equals the sum of the squares on HE and EG.
Subtract the square on GE from each. Therefore the remaining rectangle BE by EF equals the square on EH.
But the rectangle BE by LT is BD, for LI7 equals ED, therefore the parallelogram BD equals the square on HE.
And BD equals the rectilinear figure A.
Therefore the rectilinear figure A also equals the square which can be described on EH.

Therefore a square, namely that which can be described on EH, has been constructed equal to the given rectilinear figure 1.

QEF.




I triangoli in Euclide

Book VI

Proposition 4

In equiangular triangles the sides about the equal angles are proportional where the corresponding sides are opposite the equal angles.

Let 4BC and DCE be equiangular triangles having the angle 4BC equal to the angle DCE, the angle BAC equal to the angle CDE, and the angle ACB equal to the angle CED.
I say that in the triangles ABC and DEC the sides about the equal angles are proportional where the corresponding sides are opposite the equal angles.
Let BC be placed in a straight line with CE.
Then, since the sum of the angles 4BC and ACB is less than two right angles, and the angle ACB equals the angle DEC, therefore the sum of the angles ABC and

=1

DEC is less than two right angles. Therefore B4 and ED, when produced. will meet. Let them be produced and meet at F/ LRt
Now, since the angle DCE equals the angle ABC, DC is parallel to #B. Again, since the angle ACB equals the angle DEC, AC is parallel to FE. L28
Therefore FACD is a parallelogram, therefore F24 equals DC, and AC equals FD. L34
And, since AC is parallel to a side FE of the triangle FBE, therefore BA is to AF as BC'is to CE. Vi2
But £D equals AC, therefore BC is to CE as AC is to DE, and alternately BC is to C4 as CE is to £D ‘LL'r'ﬁ
Since then it was proved that 4B is to BC as DC is to CE, and BC is to CA as CE is to ED, therefore, ex aequali, BA is to AC as CD is to DE. Y22
Therefore, in equiangular triangles the sides about the equal angles are proportional where the corresponding sides are opposite the equal angles.
QED.
Book I
Proposition 38
Triangles which are on equal bases and in the same parallels equal one another.
Let ABC and DEF be triangles on equal bases BC and EF and in the same parallels BF and 4D.
I say that the triangle ABC equals the triangle DEF
G A D H Produce 4D in both directions to G and . Draw BG through B parallel to C4, and draw FH through F parallel to DE. T-PUST;-I
Then each of the figures GBC4 and DEFH is a parallelogram, and GBCA equals DEFH, for they are on equal bases BC and EF and in 136
the same parallels B and GH.
Moreover the triangle ABC is half of the parallelogram GBCA, for the diameter 4B bisects it. And the triangle F£D is half of the parallelogram L34
DEFH, for the diameter DI bisects it.
N

Therefore the triangle ABC equals the triangle DEF

B © E Therefore triangles which are on equal bases and in the same parallels equal one another.

QED.




Leggendo Auguste Comte

1. Lasomma degli angoli interni di un triangolo




2. La proporzionalita dei lati dei triangoli simili a partire dalle aree

Rivedendo Euclide:

VI.2. If a straight line be drawn parallel to one of the sides of a triangle, it will cut the sides of the triangle
proportionally; and [conversely].

VI.1. Triangles and parallelograms which are under the same height are to one another as their bases.

Height here refers to perpendicular height, and by the ratio of two triangles "to one another" is meant the ratio of
their areas. In modern parlance, VI.1 states that the ratio of the area of two triangles with the same height is
equal to the ratio of their bases, and this result also holds for parallelograms. For triangles with commensurable
bases, Euclid's proof of VI.1 begins by constructing whole number multiples of the two bases to arrive at two
triangles with equal bases. The result then follows from 1.38, discussed in the introduction. Issues of
incommensurability are addressed via the Eudoxan theory of proportion.

A

Figure 1: Proposition VI.2.

To prove V1.2, Euclid begins with triangle ABC (not necessarily isosceles) and constructs DE parallel to BC
(Figure 1). Note that triangles DEB and DEC have the same area, since they are on the same base DE and are
in the same parallels (between DE and BC). It follows that triangle ABE and triangle ACD have the same area. A
modern interpretation of Euclid would read

Area (triangle ABE) Area (triangle ACD)

Area (triangle DEB) Area (triangle DEC)

Since triangles ABE and DEB are under the same height, they are to one another as their bases, and similarly

for triangle ACD and triangle DEC. Thus,

Area (triangle ABE) AB Area (triangle ACD) AC

Area (triangle DEB) DB Area (triangle DEC) EC

It follows that AB/DB = AC/EC.




A

Figure 2: Proposition V1.4.

To prove V1.4 quickly, begin with similar triangles ABC and DEF and construct triangle DEF inside triangle ABC
along a congruent pair of angles (Figure 2). The result then follows from Proposition V1.2, and a general position
argument stating that triangle DEF could be constructed inside triangle ABC along any pair of congruent angles.
Euclid, however, avoids a general argument in favor of a more literal proof. (See [1]).

Jerry Lodder (New Mexico State University), "Proportionality in Similar Triangles: A Cross-Cultural Comparison -
The Ancient Greek Contribution," Convergence (July 2010)

3. La geometria delle linee e il Teorema di Pitagora

a) Dimostrazione attribuita a Pitagora:

b a

b) Dimostrazione di Euclide:

Book I

Proposition 47

In right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle.

Let ABC be a right-angled triangle having the angle BAC right.

1 say that the square on BC equals the sum of the squares on B4 and AC.

Describe the square BDEC on BC., and the squares GB and HC on BA and AC. Draw 1L through /1 parallel to either BD or CE, and join AD and FC. 146

H

D

L

E

131 LPost.1

Since each of the angles BAC and BAG is right, it follows that with a straight line B4, and at the point 4 on it, the two straight LDef22
lines AC and 4G not lying on the same side make the adjacent angles equal to two right angles, therefore €4 is in a straight line L
with 4G.

For the same reason B4 is also in a straight line with AH.

Since the angle DBC equals the angle /B4, for each is right, add the angle ABC to each, therefore the whole angle DB.A equals the whole LDef22
angle FBC. I'P(m]:;
Since DB equals BC, and FB equals BA, the two sides 4B and BD equal the two sides FB and BC respectively, and the angle LDef22
ABD equals the angle FBC, therefore the base 4D equals the base FC, and the triangle ABD equals the triangle FBC. Lt

Now the parallelogram BL is double the triangle ABD, for they have the same base BD and are in the same parallels BD and L. And the square GB is
double the triangle FBC, for they again have the same base FB and are in the same parallels FB and GC.

Therefore the parallelogram BL also equals the square GB. 141

Similarly, if 4F and BK are joined, the parallelogram CL can also be proved equal to the square Z/C. Therefore the whole square BDEC equals the sum of
the two squares GB and HC.

And the square BDEC is described on BC, and the squares GB and HC on B4 and AC. CN2

Therefore the square on BC equals the sum of the squares on B4 and AC.

Therefore in right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle..




Osservazione: La presenza preponderante della geometria delle linee nella precedente
dimostrazione euclidea non toglie, pero, che il Teorema di Pitagora sia un teorema sulle
aree (e sul rapporto fra le aree delle figure simili). Lo evidenzia la sua generalizzazione,
presentata come Proposizione 31 del Libro VI:

Book VI

Proposition 31

In right-angled triangles the figure on the side opposite the right angle equals the sum of the similar and similarly described figures on the sides containing the right
angle.

Let ABC be a right-angled triangle having the angle BAC right.
1 say that the figure on BC equals the sum of the similar and similarly described figures on B4 and AC.

Draw the perpendicular 4D.

L12
Then, since in the right-angled triangle 4BC, 4D has been drawn from the right angle at 4 perpendicular to the base BC, therefore the triangles DB.A and DAC VIS
adjoining the perpendicular are similar both to the whole 4BC and to one another.

And, since ABC is similar to DBA, therefore BC is to BA as BA is to BD VLDef.l
And, since three straight lines are proportional, the first is to the third as the figure on the first is to the similar and similarly described figure on the second. VL19.Cor
Therefore BC'is to BD as the figure on BC is to the similar and similarly described figure on BA.
For the same reason also, BC is to CD as the figure on BC is to that on C4, so that, in addition, BC is to the sum of B and DC as the figure on BC is to the sum V24
of the similar and similarly described figures on B4 and AC.
But BC equals the sum of BD and DC, therefore the figure on BC equals the sum of the similar and similarly described figures on BA and AC.
Therefore, in right-angled triangles the figure on the side opposite the right angle equals the sum of the similar and similarly described figures on the sides containing the right angle.
QED

BOOK VI. PROP. XXXI. THEOR. 259
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La geometria delle linee

Nella geometria arcaica, la linea prende significato solo in quanto tratto che delimita un’area, e la cui
misura interviene aritmeticamente nella determinazione di quest’ultima. Il suo ruolo é evidenziato,
ad esempio, dai nomi attribuiti ai lati di un rettangolo (lunghezza, larghezza), e alla circonferenza
(arco, ossia, linea curva), che ne rispecchiano la dipendenza dalla forma della figura che racchiudono.
La linea comincia ad acquisire una funzione autonoma nel momento in cui smette di essere il contorno
di un contenuto che deve essere quantificato in senso assoluto (tramite, ad esempio, il numero di hekat
di un campo) o relativo (come nel caso della trasversale che biseca un trapezio).
Allora, ad assumere rilevanza ¢ il suo “percorso”, che indica

- il collegamento tra punti;

- la posizione reciproca di punti.

Entrambe le informazioni possono avere una valenza dinamica, in quanto atte a descrivere un
particolare momento o effetto di un movimento: 1’allineamento di corpi celesti, lo spostamento
determinato da una rotazione. L’ispirazione, negli esempi citati, proviene dall’astronomia, che, come
ci viene ricordato dai testi dedicati ai riti egizi di fondazione degli edifici, serviva, originariamente,
soprattutto per la misurazione del tempo (fasi lunari) e la determinazione delle direzioni (punti
cardinali).

Ora: la geometria delle aree e quella delle linee sembrano vivere in mondi separati: la prima sulla
terra, la seconda in cielo. Sappiamo, pero, che nell’evoluzione successiva (matematica greca), questa
distinzione e destinata a svanire. Occorre dunque immaginare un luogo di raccordo, in cui, ad
esempio, I’area, pur presente, sfumi, per lasciare in primo piano la linea, divenuta interessante di per
sé, presa singolarmente, in virtu della sua collocazione all’interno di una certa configurazione
spaziale. Potrebbe essere nata in questo modo, in Talete, 1’idea del teorema sulla somma degli angoli
interni di un triangolo. Questa gli sarebbe stata suggerita dall’osservazione, in Egitto, di alcune
tassellature di pavimenti realizzati con triangoli equilateri o quadrati:

Se si mette a fuoco uno qualsiasi dei vertici dei triangoli o quadrati, si nota unicamente una raggiera
di linee che in quel punto si incontrano. La simmetria della configurazione suggerisce un’uguaglianza
tra cio che separa due linee consecutive, che non ¢ un’area chiusa, ma qualcosa di interpretabile come
un’ampiezza. Indipendentemente dalla possibilita di attribuire a quest’ultima una misura numerica,
salta all’occhio la sua esprimibilita in senso relativo, come la sesta (o quarta) parte dell’angolo giro
(equivalente a quattro angoli retti). Ritornando al triangolo equilatero, si ritrovera quell’ampiezza,
internamente, in corrispondenza di ciascuno dei vertici. Tre di queste ampiezze equivalgono quindi a



triangolo rettangolo isoscele (ciascuna delle meta in cui un quadrato é suddiviso
da una diagonale). Da questa osservazione puo essere scaturita la
generalizzazione ad ogni triangolo rettangolo, deducibile facilmente attraverso
il completamento ad un rettangolo. Un’ulteriore indagine empirica, basata
sull’esame di vari triangoli rettangoli aventi la stessa ipotenusa, potrebbe aver
\ richiamato 1’attenzione di Talete sull’invarianza della distanza tra il punto
\ medio della stessa e il vertice opposto, gettando le basi per I’altro famoso
\ - teorema. Si noti come tutte queste considerazioni riguardino unicamente le
posizioni reciproche fra le linee.
Benché si tratti ancora di linee nate per effettuare una suddivisione, non si tratta
piu di una ripartizione di aree, ma dello spazio nel suo complesso, illimitato,
come puo essere, ad esempio, la volta celeste.

\)_}: due angoli retti. La stessa proprieta si puo dedurre, nella seconda figura, per un

Non a caso proprieta di questo tipo sono alla base dell’enunciato noto come Teorema di Tolomeo,
riguardante i quadrilateri ciclici (ossia inscrivibili in una circonferenza). La proprieta — non si sa se
gia presente nell’opera di Ipparco di Nicea (200-120 a. C.), andata perduta — si trova all’inizio
dell’Almagesto (meta del I secolo d.C.). Il titolo originale del trattato, redatto in greco, e Collezione
matematica, mentre il nome con cui é passato alla storia e invenzione del primo traduttore arabo (0
forse, secondo alcuni, persiano), che si sarebbe ispirato al termine greco per indicare il massimo
(uéyotoc). E un compendio di astronomia, ed ebbe grande diffusione nel Vicino Oriente e in
Occidente, fino al Cinquecento. In Europa la fonte principale fu la traduzione in latino effettuata da
Gherardo da Cremona, ultimata a Toledo nel 1175, cui segui la non meno nota epitome a cura del

B~ - matematico tedesco Regiomontano (Johannes Miiller da
Konigsberg), iniziata dal suo maestro Georg von Purbach,
da lui portata a termine a VVenezia, e pubblicata postuma nel
1496 (nell’immagine qui a lato, il frontespizio).

Nel sistema tolemaico, geocentrico, la Luna, il Sole ed i
cinque pianeti (Mercurio, Venere, Marte, Giove, Saturno)
ruotano intorno alla Terra, in quiete; il loro moto avviene
su circonferenze poste su un piano, inclinato rispetto
all’equatore, detto eclittica, che compie un giro completo,
procedendo da est ad ovest, in 24 ore. Il tutto € racchiuso
dalla sfera delle cosiddette stelle fisse, che ruota anch’essa
intorno alla Terra. La proiezione del cielo sul piano
dell’equatore ¢ un cerchio, che viene suddiviso in 360 gradi
(riprendendo una tradizione tardo-mesopotamica), e nel
quale sono individuati 12 settori di 30 gradi, corrispondenti
ai dodici segni dello Zodiaco. Il diametro del cerchio é
suddiviso in 120 parti uguali, assunte come unita di misura.
A questa viene riferita la misura dei vari settori circolari,
che viene ricondotta, perd, non alla lunghezza del relativo
arco, bensi a quella della corda ad esso sottesa. Nasce cosi la disciplina che molto piu tardi, nel
Cinquecento, comincera ad essere chiamata trigonometria. Si tratta, di fatto, di uno studio riguardante
la misura (sia pur indiretta) degli angoli (goniometria) al centro di settori circolari, ma il riferimento
al tpiyovov € giustificato, a posteriori, dal fatto che la determinazione delle corde viene ricondotta
alle proprieta degli angoli interni dei triangoli ed alle loro relazioni con i lati.




La geometria delle linee ¢ una geometria di precisione che, da un lato, richiede un’attenta misurazione
degli angoli, dall’altro ¢ fondata su un sapiente uso della proporzione. Questi elementi si trovano
riassunti nel teorema sulla proporzionalita dei lati dei triangoli equiangoli, che é alla base dei
calcoli tolemaici, ma che si puo collocare anche all’origine delle funzioni trigonometriche (seno,
coseno, tangente, che associano all’ampiezza di un angolo interno di un triangolo rettangolo il
rapporto tra le lunghezze di due lati): la forma di una figura, in questo caso, interamente determinata
dalla misura di un angolo, viene codificata, in maniera equivalente, tramite una relazione aritmetica
tra misure di segmenti.

Questi elementi acquistano rilevanza nella tecnica del disegno, inteso come raffigurazione
esteticamente apprezzabile (effetto ottenibile con I’applicazione di particolari proporzioni
canoniche) ma anche come progetto di una costruzione o carta geografica (fedele riproduzione in
scala di un oggetto reale). La geometria delle linee interviene in particolare laddove, superando
I’ambito strettamente economico-amministrativo, si iniziano ad intraprendere attivita artistiche ed
architettoniche.

1 Paume

Ipotesi di suddivisione di un bassorilievo tardo-babilonese (X-VII secolo a.C.)



L’Almagesto ed il Teorema di Tolomeo

Nel seguito, riportiamo alcuni brani della traduzione in inglese dell’opera, effettuata da G. J. Toomer
(1984).
Sono tratti dal Libro I, dedicato alle generalita di carattere astronomico ed ai fondamenti geometrici.

Theorem: - Let there be a circle with an arbitrary quadrilateral ABGD
inscribed in it. Join AG and BD.

G

We must prove that

= + AD.BG.
[Proot:] Makel ABE = £ DBG.

Then, if we add £ EBD common,
Z ABD = £ EBG

Butk BDA = /£ BGd also, since they subtend the same segment. G,BA.‘ ) . )
~. triangle ABD | triangle BGE. <proporzionalita dei lati di triangoli equiangoli

~ BG:GE = BD:DA.

Again, sincm

and Z BAE = / BDG.
triangle ABE ||| trianglie BGD.
- BA:AE = BD:DG.
> BA.DG = BD.AE.
But it was shown that
BG.AD = BD.GE.
Therefore, by addition, AG.BD = AB.DG + AD.BG.
Q.E.D.



Al teorema principale sui quadrilateri ciclici segue una prima, importante applicazione, finalizzata
alla compilazione di una tavola delle corde.

Having established this preliminary theorem, we draw the semi-circle
ABGD on diameter AD, and draw from A two chords, AB, AG, each giv.cn in
size in terms of a diameter of 120°. Join BG.

I say that BG too is given.

[Proot:] Join BD,GD.

H D

Then, clearly, BD and GD too will be given, since they are chords of [arcs].
supplementary [to the arcs of the given chords AB and AG].

Now since ABGD 1s a cyclic quadrilateral, ,
AB.GD + AD.BG = AG.BD.
But AG.BD and AB.GD are given. Teorema di Talete +
. AD.BG is given by subtraction. Teorema di Pitagora

And AD 1s a diameter.
Therefore chord BG is given.
And we have shown that, if two arcs and the corresponding chords are given,
the chord of the difference between the two arcs will also be given. )

It is obvious that by means of this theorem we shall be able to enter [in the
table] quite a few chords derived from the difference between the individually
calculated chords, and notably the chord of 12°, since we have those of 60° and
72°. )

L’osservazione finale riguarda note costruzioni (con riga e compasso), relative all’esagono e al
pentagono regolari inscritti in una circonferenza, i cui angoli al centro hanno precisamente le
ampiezze indicate.



Dall’epitome di Regiomontano
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Liber Primus, Propositio V (epitome di Regiomontano all’ Almagesto)

. > S RAVPOVNLY LV, .
Py Sinfeungs arcus infemicirenlo choxdaoata fires
N rit:chozdammedietatis talis arcugnotam ficri,
4l Sit in femicirculo.a.b.g.fup diametro.a.g.collocatus ar/
/§lcus.b.g.z faa choda 0ata.z punctus.d.per.29.tertij fccet ar,
<. g cum.b.g.p equalia. Dico chordam.b.d.aut.d.g.fieri datam,
: @ Ductiseni choxdis.a.blb.dfz.d.gfz per.s2.primi a puncto
d.eatd.s.perpédicularis fuper.a.gloftendendum prmoeft.5.g.clic medics
tatem cxceflyslince.a.g.fiper.aib.fic: Sitper tertid primi.a.e.cqualis.a.b.
[ buctaqs.d.e.ouo latera.d.a.z.a.b.frianguli.d.a.b.fant equalia duobus la,
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N rit:chozdammedietatis talis arcusnotam ficri,

L@ Sit in femicirculo.a.b.g.fup diametro.a.g.collocatus ar/
/3 \cus.b.g.z ma choxda vata.z punctus.d.per.29.tertij fecct ar,
<o cun.b.g.p equalia, Dico chozdam.b.d.aut.d.g.fieri datam,
1 @ Ductis eni choxdis.a.blb.dfz.d.gfz pera2.primi a puncto
eat.d.;.perpgdlgularns fuper.a.gfoftendendum p:imo eft.5.g.cllemedic
tatem cxcefluslince.a.g.fiper.a:b.fic: Sitper tertid primi.a.e.cqualis.a.b,
[buctags.d.c.ouo latera.d.a.z.a.b.trianguli.d.a.b.fint equalia duobus La,
:ll'erlbﬂqsdog;z.a.e.pcr vltimd fextizvel per.2 6.tertij.co g arcus dictos angu
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L’enunciato afferma la costruibilita della corda sottesa ad un arco che sia la meta di un arco dato (bg).
L’approccio € inizialmente analitico: si suppone dapprima dato il punto medio d dell’arco bg, e si
osserva che allora le corde bd e dg rispondono al requisito. Quindi si cala da d la perpendicolare al
diametro ag, e si chiama r il piede della perpendicolare. Si afferma quindi che rg e la meta
dell’eccesso della lunghezza di ag rispetto ad ab. La parte successiva & dedicata alla dimostrazione
di questa proprieta. Una volta che sara stata provata, ne risultera, per via sintetica, un procedimento
di costruzione del punto d, ottenuto invertendo i passi del precedente ragionamento. Precisamente, si
prescrive di
- riportare la lunghezza ab sul diametro ag, tracciando il secondo estremo e: in tal modo eg sara
1I’eccesso di ag rispetto ad ab;
- determinare il punto medio r del segmento eg;
- condurre la perpendicolare ad ag dal punto r, determinando il punto d come intersezione tra
questa e la semicirconferenza.

| passi della dimostrazione sono illustrati con i colori: i triangoli gialli sono uguali in quanto hanno
uguali due lati (uno dei quali € in comune) ed un angolo (gli angoli indicati in verde sono angoli alla
circonferenza che insistono su corde uguali). Ne consegue che hanno uguale anche il rimanente lato
(in blu, bd = de). Il triangolo dge é quindi isoscele, essendo d il vertice comune ai due lati uguali.
Quindi, calando da d la perpendicolare sul lato opposto, si traccia 1’asse di quest’ultimo, ossia il piede
r della perpendicolare € il suo punto medio.
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