

CONSIGLIO INTERCLASSE IN MATEMATICA

General information	Academic year 2022-2023
Academic subject	Calculus of probability and statistics
Degree programme	Mathematics L35
Year of course	Third
Period of course	Second semester (February 27, 2023 – May 26, 2023)
European Credit Transfer and Accumulation System credits (ECTS) 7	
Language	Italian
Attendance obligation	No

Lecturer	
Name and surname	Yungang Lu
E-mail	yungang.lu@uniba.it
Telephone	+39 080 544 2670
Department and office	Department of Mathematics, n.20, second floor
Virtual meeting room	Microsoft Teams codice: dnuvlf1
Web page	https://www.dm.uniba.it/members/lu
Office hours	Monday and Wednesday 15:00-17:00

Syllabus	
Learning objectives	Acquisition of the elements of probability calculation and mathematical statistics. Applying some mathematical models to analyze and solve
	problems in the presence of randomness.
Course prerequisites	Mathematical analysis in one or more variables, Elements of measure theory
Course contents	 Basic concepts and models of Probability theory: event, probability space and Kolmogorov's axiom; classical model; geometric model; conditional probability; the total-probability formula and the Bayes theorem; independence of events. Random variable; distribution and distribution function of a random variable; discrete distributions and discrete random variables, absolutely
	continuous distributions and random variables; independence of random variables; integration and important numerical characters of random variables such as expectation, moments, variance, co-variance. 3. The characteristic: Definition of the characteristic function for a finite measure on the Borel sigma- algebra and for a random variable; Important analytic properties of the characteristic function, including the continuity, differentiability and analyticity; the inverse formula and uniqueness theorem, which allow one to determine a measure based on its characteristic function; The weak convergence of probability measures and Levy's theorem, which relate the characteristic function to convergence of probability measures; Applications of the characteristic function to
	independence, the reproductive property and infinite divisibility. 4. Four common used convergences of a sequence of random variables: the convergences of almost everywhere, in L^2, in probability, and in law; Markov's and Kolmogorov's inequalities; Relations among different types of convergence; The 0-1 law of Borel-Cantelli and Kolmogorov; The strong and weak laws of large numbers of Kolmogorov and Kinchin (some particular cases such as the law of large numbers of Borel, Chebyshov and Bernoulli); Central limit theorems of De Moivre-Laplace, Lindeberg, and Lyapunov; The Poisson type central limit theorem; The general formulation of central limit

CONSIGLIO INTERCLASSE IN MATEMATICA

	theorem and Feller's theorem; Applications of the 0-1 law, large number law, and central limit theorem to various problems in probability theory. 5. Elementary of statistics: samples, estimate and estimator; some properties of estimator, sample mean and sample variance estimators; maximum likelihood estimator-definition, properties and calculation; confidence interval; testing of hypothesis; the test Chi-square and the Pearson's theorem.
Reference books	- B.V. Gnedenko: Teoria della Probabilità (Editori Riuniti, 1987) - W. Feller: An Introduction to Probability Theory and Its Applications. (John Weley & Sons 1971) - A.N. Shiyayev: Probability (GTM, v. 95, Springer, 1996)
Additional course materials	Lecture notes made available on the Microsoft Teams channel of the course

Work schedule				
	Total	Lectures	Hands-on learning (recitations)	Self-study
Hours	175	40	30	105
ECTS credits	7	5	2	

Teaching methods	
	Frontal teaching and guided problem solving during the exercise's sessions. The teaching course is not delivered in e-learning mode, unless modified due to the pandemic.
	due to the pandenne.

Expected learning outcomes		
Knowledge and understanding	 Fundamental knowledge of probability theory and statistics 	
	 Computation techniques 	
Applying knowledge and	o Computation of probability and conditional probability of some	
understanding	events	
	o Computation of distribution of some random variables, their	
	numerical characters	
	 Understand and interpret various random phenomena by studying 	
	the limit behavior of a sequence of random variables	
	 Comprehension of elementary statistics 	
Making judgements	At the end of the course the student should be able to:	
	 Understanding concepts, theorems and their proof 	
	 Resolving problems and exercises 	
Communication skills	At the end of the course the student must be able to acquire the necessary	
	probabilistic terminologies and formalism for:	
	 exposing acquired knowledge 	
	 understanding and solving problem 	
Learning skills	At the end of the course the student should be able to:	
	 Acquire an adequate study method with a help of the consultation 	
	of texts	
	 Solve exercises and questions 	

Assessment and feedback	
Assessment methods	Oral examination
Evaluation criteria	Knowledge and understanding: Evaluation of the knowledge of probability
	theory and statistics, technical computation

CONSIGLIO INTERCLASSE IN MATEMATICA

	 Applying knowledge and understanding: statement and proof of some important results Making judgements: Applicating main results to resolve some problems Communication skills: Evaluation of the ability in exposing knowledge Learning skills: Evaluation of autonomous studying
Grading policy	The final score is given out of thirty and the minimum score for passing the examination is 18/30. It derives from the evaluation criteria presented above. The evaluation will take into account the acquired knowledge as well as the transversal skills. To achieve a high evaluation, the student must have developed independent judgment and adequate capacity for argumentation and exposition.

Additional information	