

CONSIGLIO INTERCLASSE IN MATEMATICA

COURSE OF STUDY TWO-YEAR MASTER OF SCIENCE PROGRAMME

IN MATHEMATICS

ACADEMIC YEAR 2023-2024

ACADEMIC SUBJECT ANALYTICAL METHODS IN FINANCE

General information		
Programme year	Second	
Term	First semester (September 25, 2023 – December 22, 2023)	
European Credit Transfer and Accumulation System credits (ECTS)	7	
SSD	MAT/05 – Mathematical Analysis	
Language	Italian	
Mode of attendance	Not mandatory	

Lecturer		
Name and surname	Carlo Sgarra	
E-mail		
Telephone	+39 080	
Department and office	Department of Mathematics	
Virtual meeting room		
Web page		
Office hours		

Work schedule				
	Total	Lectures	Hands-on learning	Self-study
Hours	175	56		119
ECTS credits	7	7		

Learning objectives	
	Arbitrage theory in continuous time. Derivatives pricing methods for
	continuous time models.

Course prerequisites	
	Stochastic Calculus and Stochastic Processes. Basic notions of Partial
	Differential Equations.

Syllabus	
Course contents	Stochastic Calculus reminder: Ito Integral, Ito Lemma, stochastic differential
	equations, Feynman-Kac representation theorem. The concept of arbitrage
	and the fundamental theorems of Asset Pricing. European Options pricing
	and hedging. The Black-Scholes- Merton model. Exotic options pricing:
	Barrier, Lookback, Asian options. The optimal stopping problem in a Black-
	Scholes-Merton setting and American options valuation. Its connection with
	free-boundary parabolic problems. Interest rates derivatives in continuous
	time. The change of-numéraire technique for derivatives valuation.
Reference books	Bjork, T., Arbitrage Theory in Continuous Time, Oxford University Press, 3-rd
	Ed. 2019.
	Pascucci, A., PDE and Martingale Methods in Option Pricing, Springer, 2010.

CONSIGLIO INTERCLASSE IN MATEMATICA

	Rosazza Gianin, E., Sgarra, C., Mathematical Finance (Theory Review and Exercises), Springer, 2-nd Ed., 2023.
Additional course materials	
Repository	

Expected learning outcomes	
Knowledge and understanding	Basic Notions achievements of arbitrage theory in continuous time and
	applications to derivatives valuation in continuous time models.
Applying knowledge and	Ability to apply the basic notions provided to evaluate financial derivatives in
understanding	continuous time models.
Soft skills	Making judgements: ability to verify theoretical consistency in valuating and
	constructing hedging strategies with more complex derivatives instruments.
	Communication skills: familiarity with the language of more complex tools of
	financial markets and ability to express and interpret valuation and hedging
	results.
	Learning skills: achievements of the basic mathematical methodologies in
	financial instruments valuation and hedging in continuous time models.

Teaching methods	
	The course will be given in the classroom.

Assessment	
Assessment methods	Oral Exam with 3 questions (4 for "laude"), one of which related to some numerical application. The questions will be strongly aimed at verifying the achievement of the expected learning outcomes.
Evaluation criteria	 Knowledge and understanding: familiarity with the basic notions of arbitrage theory and with the basic valuation methods provided by the course. Applying knowledge and understanding: ability to apply the methodologies illustrated in the course to specific valuation and hedging problems in continuous time financial models. Making judgement: ability to develop a critical approach to the choice of valuation and hedging strategies for specific financial instruments. Communication skills: familiarity with the language of more complex financial markets, ability to illustrate rigorously methods and ideas. Learning skills: ability to approach critically and autonomously new concepts and ideas related to the contents of the course.
Grading policy	Each question will be evaluated with points 0-10, if all three will obtain 10, a fourth question will be proposed in view of the "Laude".

Further information	
	Attending the course is strongly suggested.