Academic subject: Alge	oraic Geometry				
Degree Class:		Degree Course:	Academi	Academic Year:	
L-35-Scienze Matematiche		Mathematics	2020/202	2020/2021	
		Kind of class:	Year:	Period:	
		Optional	3	2	
			ECTS: 7	1	
			divided in		
				ssons: 6.5	
		ECTS exe/lab		ke/lab: 0.5	
lesson: 5: Language:	rs, in-class study hours, out-of-c exe/lab/tutor: 8 in-class Compulsory Attendance:	-	ass study: 115		
Italian	no				
Subject Teacher:	Tel: +39 080 5442664	Office:	Office days and hours:		
Francesco Bastianelli	e-mail:	Department of	See the webpages:		
Donatella Iacono	francesco.bastianelli@uniba.it	Mathematics	https://sites.google.com/site/		
	donatella.iacono@uniba.it	F.B.: floor II, room 18	francescobastianelli/		
		D.I.: floor III, room 10			
			http://galileo.dm.	.uniba.it/~ia	
			cono		

Prerequisites:

Mathematical knowledge which is usually acquired during the first two years of a degree of L-35; in particular: linear algebra, affine geometry, projective geometry, topology.

Educational objectives:

Acquiring knowledge of basic notions in Algebraic Geometry, especially in the theory of curves and algebraic varieties.

Expected learning outcomes (according to Dublin Descriptors)

Knowledge and understanding:

Acquiring fundamental concepts in affine and projective Algebraic Geometry. Acquiring main proof techniques.

Applying knowledge and understanding:

The acquired theoretical knowledge is involved in large part of mathematics such as commutative algebra.

Making judgements:

Ability to choose suitable techniques and mathematical tools necessary to prove properties dealing with the program topics.

Communication:

Acquiring mathematical language and formalism necessary to read and understand textbooks.

Lifelong learning skills:

Acquiring suitable learning methods and relating the main concepts occurring in various courses.

Course program

Projective spaces

Projective space and subspaces. Projective transformations and their properties.

Algebraic curves

Affine algebraic curves, rational curves, Fermat's curves. Relation between the theory of curves and the theory of fields. Rational and binational maps. Weierstrass normal form of a cubic. Singular and non-singular points and tangent line. Projective curves. Hessian curve. Birational maps between non-singular projective curves. Resultant of polynomials. Bezout's Theorem.

Algebraic preliminaries

Ring, ideal and properties. Notherian rings. Artinian rings. Ring of polynomials and ideals. Homogeneous ideals and properties.

Algebraic varieties

Affine algebraic varieties. Zariski topology. Projective algebraic varieties. The ideal-variety correspondence. Hypersurfaces. Projective closure of affine varieties. Reducible and irreducible varieties. Regular and rational morphisms. Dimension.

Groebner bases and Nullstellensatz.

Groebner bases and properties. Hilbert's basis Theorem. Different formulations of Nullstellensatz and Projective Nullstellensatz.

Teaching methods:

Lectures and exercise sessions

Auxiliary teaching:

Assessment methods:

Oral exam about the topic of the course, to evaluate the understanding of the themes investigated.

Bibliography:

- W. FULTON, Algebraic Curves, The Benjamin-Cummings, Publ. Comp., Menlo Park, 1969.D. COX Ideals, varieties and algorithms. Springer 1990
- D. MUMFORD, Algebraic Geometry I, Complex Projective Varieties, Springer Verlag, Berlin 1976
- M. NAMBA, Geometry of Projective Algebraic Curves, Marcel Dekker, Inc., New York, 1984.
- I.R. SHAFAREVICH, Basic Algebraic Geometry 1: Varieties in Projective Space, Springer-Verlag 1994.