Degree Class: LM-40 – Matematica		Degree Course: Mathematics		Academic Year: 2020/2021	
		Kind of class: Mandatory/optional		Year:	Period
				ECTS	
Time management, ho lesson:	urs, in–class study hours, out–of– 52 exe/lab/tutor: 8 in–cla	2	class study:	:115	
Language: Italian	Compulsory Attendance:				
Subject Teacher:	Phone and e-mail:	Office:	Office days and hours:		
Roberto Garrappa	080.5442685 roberto.garrappa@uniba.it	Dept. of Mathematics Room 7, Floor 3	Wednesday 15:00-17:00 (Other days by appointment)		
	0805442702	Dept. of Mathematics	Wednesday 11:30-13:30 (Other days by appointment)		

Educational objectives:

Acquiring knowledge of numerical methods for the solution of differential equations and large linear systems.

Expected learning outcomes (according to Dublin Descriptors)

Knowledge and understanding:

 Learn the techniques for the numerical programming of numerical methods for the solution of differential equations and large linear systems by means of iterative methods.

Applying knowledge and understanding:

- Acquiring the ability to solve differential equations using optimized algorithms with good stability problems.
- Acquiring the ability to programming, testing interpreting the results correctly.
- Acquiring the ability to solve mathematical problems using problem solving environment.

Making judgements: acquiring ability to find the most suitable numerical method for the solution of a differential problem.

Communication: acquiring ability to rigorously define the mathematical problem studied in the course and to expose its numerical methods, outlining its fundamental properties

Lifelong learning skills: ability to study and solve problems similar but not necessarily the same as those dealt with during lessons.

Course program

- 1. Numerical solution of differential equations, initial value problems: linear multi-step methods, Adams methods, BDF methods, MEBDF methods; Consistency, convergence and 0-stability; root conditions. Absolute and relative stability; A-stability; stiff problems, error estimation and step-variation strategies. Solution of test problems in R and/or Matlab.
- 2. Numerical solution of boundary value differential equations: Dicotomy and conditioning, finite difference schemes for first order and second order problems, collocation methods, mono implicit Runge-Kutta methods, boundary value linear multistep method, deferred correction, extrapolation techniques, error estimation and mesh selection. Solution of test problems in R and/or Matlab.
- 3. Numerical solution of partial differential equations: advection-diffusion equations (heat equation, advection equation, Laplace equation), finite difference methods, CFL condition. Semidiscretization methods, the method of lines. Staggered mesh and finite volume methods. Boundary conditions, Crank-Nicholson method, Stability and convergence for the semidiscretized problem e for the total discretization. Note on Fourier analysis and eigenvalue analysis. Variational formulation and finite element method for one dimensional problems. Solution of test problems in R and/or Matlab.
- 3. Numerical solution of partial differential equations. Poisson and Laplace equations. Finite differences methods: 5-points and 9-points stencils. Ordering of variables. Dirichlet and Neumann boundary conditions. Consistency and convergence, inverse of discretization matrix bounded in norm, ill-conditioning. Evolutionary problems. Diffusion equation: explicit schemes and stability issues; the method of lines; consistency, stability and convergence. Crank-Nicolson method. Advection equations: generality and theoretical solution; stability issues with forward differences. Mid-point and Leapfrog method; Lax-Friederisch method; boundary numerical conditions. Fourier and eigenvalues analysis. Variational formula and finite element methods. Matlab programming.
- 4 Numerical methods for the solution of large systems of algebraic equations. Splitting methods and convergence for problems coming from discretization of Poisson equations. Krylov subspace methods: theory and implementation. Arnoldi algorithm and Lanczos symmetric algorithm; FOM, MinRes, GMRes and GC methods. Restart. Convergence.

Teaching methods:

Lectures and exercises on the implementation of numerical schemes.

Auxiliary teaching:

The suggested books can be completed by slides and other possible didactic material from the teacher.

Assessment methods: Oral exam.

Bibliography:

- R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady State and Time Dependent Problems. SIAM, 2007
- Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2013
- U.M. Asher, Numerical methods for evolutionary differential equations, SIAM 2008
- K. Soetaert, J. Cash, Jeff, F. Mazzia, Solving Differential Equations in R, Springer, 2012
- U.M. Ascher, R.M. Mattheij and R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM 1995,