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Conoscenze preliminari:

Le conoscenze che in genere vengono acquisite in una laurea di I livello della classe L-35. In particolare: analisi
matematica classica in una e piu variabili, topologia generale, algebra lineare, teoria della misura e dell’integrazione di
Lebesgue.

Obiettivi formativi:
Acquisizione di strumenti avanzati dell’analisi moderna, fra i quali: trasformata di Fourier, spazi di Banach,
convergenza debole, distribuzioni, spazi di Sobolev.

Conoscenza e capacita di comprensione:
Acquisizione di concetti fondamentali dell’analisi matematica pit avanzata e dell’analisi
funzionale. Acquisizione delle relative tecniche dimostrative.

Risultati di

apprendimento previsti Conoscenza e capacita di comprensione applicate:
Le conoscenze teoriche acquisite si utilizzano in vasta parte della matematica e delle sue
applicazioni.

Autonomia di giudizio:

Capacita di valutare la coerenza del ragionamento logico utilizzato in una
dimostrazione. Capacita di individuare i giusti strumenti matematici e le giuste tecniche
per affrontare problemi matematica complessi.

Abilita comunicative:

Acquisizione del linguaggio e del formalismo matematico avanzato, necessario per la
consultazione e comprensione dei testi, 1’esposizione delle conoscenze acquisite, la
descrizione, I’analisi e la risoluzione dei problemi.

Capacita di apprendere:
Acquisizione di un metodo di studio adeguato, supportato della consultazione dei testi e
dalla risoluzione di esercizi e quesiti proposti periodicamente durante il corso.

Programma del corso
Analisi reale

1. Misure in spazi prodotto: i teoremi astratti di Halmos ¢ Hahn Kolmogorov — la misura prodotto — il teorema di
Fubini—Tonelli — il prodotto di convoluzione — il teorema di Young — il supporto della convoluzione — regolarita della
convoluzione — le successioni approssimanti dell'unita — convergenza in LP, puntuale e uniforme del prodotto con
approssimanti dell'unita — la delta di Dirac come unita del prodotto di convoluzione — il lemma fondamentale del
calcolo delle variazioni.

2. Trasformata di Fourier: definizione, prime proprieta della trasformata di Fourier — il teorema di inversione in L' —




calcolo della trasformata di Fourier di importanti nuclei di convoluzione — comportamento della trasformata rispetto
alla derivazione — applicazioni alle equazioni differenziali ordinarie — lo spazio S — la trasformata di Fourier nello
spazio S — trasformata di Fourier in L% il teorema di Plancherel — Teorema di Riesz Thorin (solo enunciato) — la
trasformata di Fourier in L? — equazione di Laplace nel semipiano — equazione del calore — equazione di Schrodinger —
equazione delle onde.

Analisi funzionale

3. Teoria elementare degli spazi di Banach: definizione, equivalenza fra continuita e limitatezza per funzionali
lineari — il teorema di Baire — il teorema di Banach—Steinhaus — il teorema dell'applicazione aperta — alcuni aspetti
delle serie di Fourier in spazi diversi da L — il teorema di Hahn—Banach.

4. La convergenza debole (I): spazio duale di uno spazio normato — spazio biduale — spazi riflessivi — relazioni fra
separabilita di uno spazio e separabilita del suo duale — definizione di convergenza debole e di convergenza debole—*
— proprieta elementari dei limiti deboli — insiemi debolmente limitati — teoremi di compattezza rispetto alla
convergenza debole—* e alla convergenza debole.

5. La convergenza debole (II): semicontinuitd della norma rispetto alla convergenza debole — cenni sugli spazi
uniformemente convessi — convessitd e convergenza debole — debole semicontinuita per funzionali convessi — un
teorema di minimo per funzionali convessi — immersioni continue e compatte per gli spazi H¥(T) e H*(T").

Distribuzioni e spazi di Sobolev

6. Introduzione alle distribuzioni: lo spazio D(2) — definizione e prime proprieta delle distribuzioni, ordine di una
distribuzione — le funzioni L', come distribuzioni — operazioni sulle distribuzioni: somma, derivazione,
moltiplicazione per funzioni test — supporto di una distribuzione — lo spazio E(Q2) — ordine di una distribuzione, ogni
distribuzione ¢ localmente di ordine finito — le distribuzioni a supporto compatto — convoluzione fra funzioni e
distribuzioni — convoluzione fra distribuzioni — il concetto di soluzione fondamentale — soluzione fondamentale
dell'operatore A — lo spazio S’ delle distribuzioni temperate — le funzioni a crescenza lenta — trasformata di Fourier
delle distribuzioni temperate — esempi di calcolo della trasformata di Fourier di distribuzioni temperate — trasformata
di Fourier a simmetria radiale.

7. Spazi di Sobolev: definizione di W™P(Q) e di H™(Q) — completezza degli spazi di Sobolev — definizione di W ™"
(Q) e di Hy"(Q) — Teorema: W™ (RN)=W,™?(R") — definizione di spazi H(R"), s>0 — teorema di immersione di H(R")
in CR") — la disuguaglianza di Poincaré — spazi di Sobolev su intervalli: immersione continua per le funzioni W'?(I)
in L*(I) — teorema di Ascoli Arzela — immersione compatta di W'?(I) in C(I) — teoremi di immersione continua per gli
spazi W™ (solo enunciati) — cenni su operatori di prolungamento — teoremi di Rellich per spazi W™ (solo enunciato)
— necessitd degli esponenti critici — lo spazio W™ (Q) come duale di W¢™ (Q) — alcuni esempi di problemi
variazionali ambientati in spazi di Sobolev: problema per -A e -A +I con condizioni di Dirichlet e di Neumann — un
problema nonlineare — gli autovalori del laplaciano — Identita di Pohozaev.

Metodi di insegnamento:
Lezioni ed esercitazioni in aula.

Supporti alla didattica:
Dispense disponibili alla pagina
http://www.dm.uniba.it/~jannelli/didattica/analisi3/analisi3.htm

Controllo dell'apprendimento e modalita d'esame:
Prova orale.

Testi di riferimento principali:

W. RUDIN, Analisi reale e complessa, Boringhieri

H. BREZIS, Analisi funzionale, Liguori

G. GILARDI , Analisi 3, Mc Graw-Hill

S. KESAVAN, Functional Analysis and Applications, J. Wiley & Sons
S. SALSA , Equazioni a derivate parziali, Springer—Verlag Italia

Si vedano, inoltre, le dispense del corso.
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