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Conoscenze preliminari:

Le conoscenze che in genere vengono acquisite nei primi due anni di una laurea della classe L.—35. In particolare:
analisi matematica classica in una e piu variabili, topologia generale, algebra lineare.

Obiettivi formativi:

Acquisizione degli strumenti di base dell’analisi moderna, con particolare riferimento alla teoria della misura, alla
teoria elementare degli spazi di Hilbert e degli spazi LP e agli elementi di base dell’analisi delle funzioni di una

variabile complessa.

Risultati di
apprendimento previsti

Conoscenza e capacita di comprensione:
Acquisizione di concetti fondamentali dell’analisi moderna e dell’analisi complessa
elementare. Acquisizione delle relative tecniche dimostrative.

Conoscenza e capacita di comprensione applicate:
Le conoscenze teoriche acquisite si utilizzano in vasta parte della matematica e delle sue
applicazioni.

Autonomia di giudizio:

Capacita di valutare la coerenza del ragionamento logico utilizzato in una
dimostrazione. Capacita di individuare i giusti strumenti matematici e le giuste tecniche
per affrontare problemi matematica complessi.

Abilita comunicative:

Acquisizione del linguaggio e del formalismo matematico avanzato, necessario per la
consultazione e comprensione dei testi, 1’esposizione delle conoscenze acquisite, la
descrizione, I’analisi e la risoluzione dei problemi.

Capacita di apprendere:
Acquisizione di un metodo di studio adeguato, supportato della consultazione dei testi e
dalla risoluzione di esercizi e quesiti proposti periodicamente durante il corso.

Programma del corso

1. Teoria della misura e dell'integrazione astratta: o—algebre, insiemi misurabili, funzioni misurabili —
proprieta elementari della misura — integrazione di funzioni positive e di funzioni a valori complessi —
proprieta di convergenza per successioni di integrali: teoremi di Beppo Levi, di Fatou, di Lebesgue — serie di
integrali — completamento di una misura — teorema di Severini—-Egoroff — teorema di passaggio al limite di

Vitali.

2. Misura di Lebesgue in R": pluriintervalli, misura esterna di Lebesgue, misura interna di Lebesgue —
insiemi misurabili secondo Lebesgue — esistenza di insiemi non misurabili secondo Lebesgue in R™ — misure




boreliane invarianti per traslazione — misura di Lebesgue e applicazioni lineari: l'interpretazione geometrica
del determinante di una matrice.

3. Gli spazi LP: disuguaglianze di Jensen, di Holder e di Minkowsky — completezza degli spazi L°(p) —
proprieta di continuita delle funzioni misurabili in R™: il teorema di Lusin — proprieta di densita negli spazi
LP(R") delle funzioni continue a supporto compatto — Co(R") come completamento in norma uniforme di
C(RM).

4. Teoria elementare degli spazi di Hilbert: definizione, disuguaglianza di Schwarz, disuguaglianza
triangolare — teorema di minima norma per convessi chiusi — teorema dei proiettori ortogonali — teorema di
rappresentazione di Riesz dei funzionali su uno spazio di Hilbert — problema della migliore approssimazione
— insiemi ortonormali, caratterizzazione degli insiemi ortonormali massimali, esistenza di insiemi
ortonormali massimali — identita di Bessel, identita di Parseval, isomorfismo tra H e 1°(A) — lo spazio L}(T) e
le serie di Fourier — gli spazi H*(T) e H(T") e relativi teoremi di immersione in C(T) e C(T") — Applicazioni
alle equazioni differenziali e disuguaglianza isoperimetrica nel piano.

Analisi complessa

5. Introduzione alla teoria delle funzioni olomorfe: derivabilita in senso complesso: proprieta,
interpretazione geometrica — olomorfia e differenziabilita — equazioni di Cauchy—Riemann e corollari —
alcune funzioni elementari: funzione esponenziale, funzioni trigonometriche, funzioni polidrome e loro
selezioni, funzione logaritmo, funzione potenza — curve, cammini e circuiti — richiami sulle forme
differenziali — omotopia — semplice connessione — relazioni tra chiusura ed esattezza di una forma
differenziale — integrazione di funzionmi complesse su cammini — primitive di funzioni complesse — forme
differenziali associate a una funzione olomorfa — caratterizzazione dell'esistenza di primitive — serie di
potenze complesse: raggio di convergenza, convergenza uniforme, teorema di Cauchy—Hadamard — test di
Abel-Dirichlet — teorema di Abel — prodotto alla Cauchy — funzioni analitiche — analiticita dell'integrale di
Cauchy.

6. Teorema di Cauchy e analiticita delle funzioni olomorfe: teorema dell’indice di avvolgimento -
teorema di Goursat — esistenza di primitive locali — formula integrale di Cauchy — analiticita delle funzioni
olomorfe — teorema di Morera — formula di Cauchy per le derivate — stime di Cauchy per le derivate —
teorema fondamentale dell'algebra — teorema di Liouville per funzioni olomorfe limitate e sue
generalizzazioni — teorema di Morera—Weierstrass — applicazioni al calcolo di integrali.

7. Teorema degli zeri e funzioni armoniche: teorema degli zeri di una funzione olomorfa e corollari —
unicita del prolungamento analitico — caratterizzazione dell'analiticita di funzioni di variabile reale —
funzioni olomorfe e funzioni armoniche — proprieta del valor medio — formula di Pizzetti — caratterizzazione
delle funzioni sub—armoniche e super—armoniche attraverso il loro valor medio — teorema di Liouville per
funzioni positive e sue estensioni — principio di massimo per funzioni sub—armoniche — teorema della media
per funzioni olomorfe — principio del massimo modulo, principio del minimo modulo.

8. Teorema dei residui e applicazioni: singolarita isolate — serie di Laurent — teorema sulla sviluppabilita
in serie di Laurent — classificazione delle singolarita isolate e loro caratterizzazioni — il teorema di Picard
(enunciato) — definizione di residuo — calcolo del residuo in un polo — teorema dei residui — teorema di
Cauchy (caso generale) — lemma di Jordan — funzioni meromorfe — teorema dell'indice logaritmico —
teorema di Rouché e corollari — teorema dell'applicazione aperta — teorema dell'invertibilita locale —
applicazioni al calcolo di integrali, serie ed equazioni alle differenze

Metodi di insegnamento:
Lezioni ed esercitazioni in aula.

Supporti alla didattica:
Dispense disponibili alla pagina

Istituzioni di Analisi Superiore
https://lorenzodambrosio.altervista.org/blog/didattica/istituzioni-analisi-superiore/



https://lorenzodambrosio.altervista.org/blog/didattica/istituzioni-analisi-superiore/

Controllo dell'apprendimento e modalita d'esame:
Prova orale.

Testi di riferimento principali:
Per tutto il programma: W. RUDIN, Real and Complex Analysis, McGraw—Hill Book Company

Per la sola costruzione della misura di Lebesgue in RY: N. FUSCO, P. MARCELLINI & C. SBORDONE, Analisi
Matematica due, Liguori

Per l'analisi complessa e inoltre utile consultare
G. GILARDI, Analisi 3, Ed. Mc Graw—Hill; S. LANG, Complex Analysis, Springer—Verlag

Si vedano, inoltre, le dispense del corso.
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