

**Academic subject: GEOMETRY 2**

|                                                  |                                      |                                                                                                    |                      |
|--------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|
| <b>Degree Class:</b><br>L-35-Scienze Matematiche | <b>Degree Course:</b><br>Mathematics | <b>Academic Year:</b><br>2018/2019                                                                 |                      |
|                                                  | <b>Kind of class:</b><br>Mandatory   | <b>Year:</b><br>1                                                                                  | <b>Period:</b><br>II |
|                                                  |                                      | <b>ECTS: 8</b><br>divided into<br><b>ECTS lessons: 5</b><br><b>ECTS</b><br><b>exe/lab/tutor: 3</b> |                      |

**Time management, hours, in-class study hours, out-of-class study hours**

lesson: 40 exe/lab/tutor: 30 in-class study: 70 out-of-class study: 130

|                                                |                                                                 |                                                                       |                                                                                 |
|------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <b>Language:</b><br>Italian                    | <b>Compulsory Attendance:</b><br>no                             |                                                                       |                                                                                 |
| <b>Subject Teacher:</b><br>Amici Oriella Maria | Tel: 085442691<br><b>e-mail:</b><br>oriellamaria.amici@uniba.it | <b>Office:</b><br>Department of<br>Mathematics<br>Room 14 , Floor III | <b>Office days and hours:</b><br>Wednesday 11-13, other<br>days by appointment. |

**Prerequisites:** Basic knowledge of Linear Algebra: vector spaces, linear maps and bilinear forms.

**Educational objectives:** Acquiring language and techniques of affine geometry.

|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Expected learning outcomes (according to Dublin Descriptors)</b> | <b>Knowledge and understanding:</b><br>Acquiring fundamental concepts in Affine Geometry . Acquiring basic mathematical proof techniques.<br><br><b>Applying knowledge and understanding:</b><br>Students should become able to prove properties dealing with the program topics.<br><br><b>Making judgements:</b><br>Ability to analyze the consistency of the logical arguments used in a proof.<br><br><b>Communication:</b><br>Students should acquire the mathematical language and formalism necessary to explain the assimilated knowledge and solve problems .<br><br><b>Lifelong learning skills:</b><br>Acquiring suitable learning methods necessary to read and understand textbooks dealing with the program topics. |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**Course program**
Euclidean vector spaces.

Scalar products on real vector spaces. The norm of a vector. Orthogonal and orthonormal vectors. Orthogonal complement of a vector subspace. Orthonormal bases. Gram-Schmidt process. Angle between two vectors. Spectral Theorem. Unitary operators. Orthogonal matrices. Rotations and reflections.

Affine spaces.

 Affine spaces associated to a vector space over the field K , K=C oppure K=R: elementary properties and examples. Affine subspaces: properties and examples. Affine subspace spanned by k points. Intersection of affine subspaces. Affinely independent points. Parallel subspaces and properties. Affine Grassmann identity and particular cases. Barycenter . Equations of an affine subspace. Orientation of real affine space. Affine line  $A_1(V, K; f)$ . Affine plane  $A_2(V, K; f)$ : parallel lines , equations of a line. Affine space  $A_3 (V, K; f)$ : parallel lines, parallel planes, equations of a plane and equations of a line.

Euclidean spaces.

 Euclidean space associated to a euclidean vector space. Euclidean line  $E_1$ . Euclidean plane  $E_2$  : perpendicular lines,

angle between two lines, distances in  $E_2$ . Euclidean space plane  $E_3$ : perpendicular lines, perpendicular planes, distances in  $E_3$ .

Affine maps and Affine transformations.

Affine maps and characterization of affine maps. Affine transformations: definition, main properties and equation. The affine group  $\text{Aff}(An)$  and its subgroups. Translations. Fixed points of an affine transformation. Decomposition of an affine transformation. Homotheties and equation of homotheties.

Isometries of Euclidean space.

Isometries and characterization of isometries. Examples: translations and rotations.

Complex Extension of real Affine space.

Real Affine transformations.

Complex Extension of Euclidean space.

**Teaching methods:**

Lectures and exercise sessions.

**Auxiliary teaching:**

Tutorial activity

**Assessment methods:**

Written and oral exam. Joint exam with Geometry 1

**Bibliography:**

E. Semesi, Geometria I, Ed. Boringhieri.

M.I. Stoka, Corso di Geometria, Ed. Cedam Padova.

S. Abeasis, Algebra lineare e Geometria, Ed. Zanichelli.

G. Anichini, G. Conti, Algebra lineare e geometria analitica- Eserciziario, Ed. Pearson.

G. Campanella, Affinità, isometrie, proiettività, Ed. Pearson.