

Academic subject: Numerical Analysis

Degree Class: LM-40 – Matematica	Degree Course: Mathematics	Academic Year: 2018/2019	
	Kind of class: Mandatory/optional	Year:	Period:
		ECTS: 7 divided into ECTS lessons: 6.5 ECTS exe/lab/tutor: 0.5	

Time management, hours, in-class study hours, out-of-class study hours

lesson: 52 exe/lab/tutor: 8 in-class study: 60 out-of-class study: 115

Language: Italian	Compulsory Attendance: no		
Subject Teacher: Francesca Mazzia	Tel: 0805442702 e-mail: francesca.mazzia@uniba.it	Office: Department of Mathematics Room 7, Floor 4	Office days and hours: monday 11:30-13:30, wednesday 11:30-13:30. Other days and times by appointment.

Prerequisites: Mathematical knowledge which usually is acquired during the years of a degree of L-35 class. Especially: Numerical calculus, linear algebra and programming.

Educational objectives:

Acquiring knowledge of numerical methods for the solution of differential equations and large linear systems.

Expected learning outcomes (according to Dublin Descriptors)	Knowledge and understanding: ❖ Learn the techniques for the numerical programming of numerical methods for the solution of differential equations and large linear systems by means of iterative methods.
	Applying knowledge and understanding: ❖ Acquiring the ability to solve differential equations using optimized algorithms with good stability problems. ❖ Acquiring the ability to programming, testing interpreting the results correctly. ❖ Acquiring the ability to solve mathematical problems using problem solving environment.
	Making judgements: Acquiring ability to find the most suitable numerical method for the solution of a differential problem.
	Communication: Acquiring ability to rigorously define the mathematical problem studied in the course and to expose its numerical methods, outlining its fundamental properties
	Lifelong learning skills: Ability to study and solve problems similar but not necessarily the same as those dealt with during lessons.

Course program

1. Numerical solution of differential equations, initial value problems: linear multi-step methods, Adams methods, BDF methods, MEBDF methods; Consistency, convergence and O-stability; root conditions. Absolute and relative stability; A.stability; stiff problems, error estimation and step-variation strategies. Solution of test problems in R and/or Matlab.
2. Numerical solution of boundary value differential equations: Dicotomy and conditioning, finite difference schemes for first order and second order problems, collocation methods, mono implicit Runge-Kutta methods, boundary value linear multistep method, deferred correction, extrapolation techniques, error estimation and mesh selection. Solution of test problems in R and/or Matlab.

3. Numerical solution of partial differential equations: advection-diffusion equations (heat equation, advection equation, Laplace equation), finite difference methods, CFL condition. Semidiscretization methods, the method of lines. Staggered mesh and finite volume methods. Boundary conditions, Crank-Nicholson method, Stability and convergence for the semidiscretized problem e for the total discretization. Note on Fourier analysis and eigenvalue analysis. Variational formulation and finite element method for one dimensional problems. Solution of test problems in R and/or Matlab.

Teaching methods:

Lectures and exercises on the implementation of numerical schemes.

Auxiliary teaching:

The suggested books are completed by slides, didactic material of the teacher.

Assessment methods: Oral exam.**Bibliography:**

Uri M. Ascher, Numerical methods for evolutionary differential equations, SIAM 2008,
ISBN 9780898716528

K. Soetaert, J. Cash, Jeff, F. Mazzia, Solving Differential Equations in R, Springer,
2012, ISBN 978-3-642-28070-2.

Uri M. Ascher , Robert M. M. Mattheij and Robert D. Russell, Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations, SIAM 1995,