

A NOTE ON COHEN-MACAULAY GRAPHS

MARGHERITA BARILE AND ANTONIO MACCHIA

ABSTRACT. We show that the edge ideal of a Cohen-Macaulay graph on $2n$ non-isolated vertices, whose height is n , is always a set-theoretic complete intersection. This result, in particular, applies to all Cohen-Macaulay bipartite graphs.

1. INTRODUCTION

Let K be a field, and let V be a set of indeterminates over K . Let I be a homogeneous ideal of the polynomial ring $R = K[V]$. As a consequence of the graded Auslander-Buchsbaum formula, the equality $\text{pd}(R/I) = \text{ht } I$, where pd denotes the projective dimension and ht the height, holds if and only if the quotient ring R/I is Cohen-Macaulay. On the other hand, if I is generated by squarefree monomials, we have the following well-known inequalities:

$$(0) \quad \text{ht } I \leq \text{pd}(R/I) \leq \text{ara } I,$$

where ara denotes the arithmetical rank, i.e., the minimum number of elements of R that generate an ideal whose radical is I . Recall that an ideal is called a set-theoretic complete intersection whenever its arithmetical rank equals its height. If I is generated by squarefree monomials, in view of the above remarks, this condition implies that the quotient ring R/I is Cohen-Macaulay. Furthermore, it is well-known that, if R/I is Cohen-Macaulay, then I is unmixed.

Now suppose that the generators of I are squarefree quadratic monomials. In this case I can be associated with a graph G on the vertex set $V(G) = V$, whose edge set $E(G)$ is formed by all subsets $\{u, v\}$ of V such that $uv \in I$. (We will write uv for $\{u, v\}$.) In this setting, I is called the *edge ideal* of G and is denoted by $I(G)$. Its minimal monomial generators are called the *edge monomials* of G . The idea of introducing this notion is due to Villarreal [7], and dates back to 1990. Since then, edge ideals have been the object of thorough investigations concerning the connections between their graph-theoretic and their ring-theoretic properties. In [1], Crupi, Rinaldo and Terai considered the graphs G on $2n$ non-isolated vertices for

2010 *Mathematics Subject Classification.* 05C25; 13A15; 14M10.

Key words and phrases. Arithmetical rank, unmixed graph, bipartite graph, Cohen-Macaulay graph, edge ideal.

which $I(G)$ has height n . They gave a combinatorial criterion for the unmixedness of $I(G)$, which, in this case, implies (hence, is equivalent to) the Cohen-Macaulay property of the quotient ring $R/I(G)$. It is reported here as Theorem 3.2 and consists of three conditions, which generalize those given by Herzog and Hibi [3] for bipartite graphs. In this paper we shed a new light on this result by proving that the edge ideal of a graph fulfilling these three conditions is always a set-theoretic complete intersection. The main tool used here is a theorem due to Kimura [4], which gives an upper bound of the arithmetical rank of a monomial ideal in terms of certain divisibility relations on the set of generators.

All the results quoted or proven here are independent of the field K , a fact that emphasizes their strongly combinatorial nature.

2. PRELIMINARIES

Let I be an ideal of R generated by monomials, and let $S : \alpha_1, \dots, \alpha_r$ be an ordered sequence of its minimal monomial generators. The following definition can be given for an arbitrary monomial ideal of R . In brackets we will add an equivalent formulation for the case where I is generated by squarefree monomials of degree two.

Definition 2.1. For all subsequences $\alpha_{i_1}, \dots, \alpha_{i_t}$ of S , we set

$$L(\alpha_{i_1}, \dots, \alpha_{i_t}) = \{\alpha_{i_1}, \dots, \alpha_{i_t}\},$$

and we call it an *admissible symbol* of dimension s if α_q does not divide $\text{lcm}(\alpha_{i_h}, \alpha_{i_{h+1}}, \dots, \alpha_{i_t})$ for any $h < t$ such that $q < i_h$ (i.e., equivalently, if α_q does not divide any product $\alpha_{i_h} \alpha_{i_k}$ for any h, k such that $h < k \leq t$ and $q < i_h$).

Set $L_0 = R$ and for all $t = 1, \dots, r$, let L_t be the free R -module generated by all admissible symbols of dimension t . Define the map $d_t : L_t \rightarrow L_{t-1}$ by setting

$$\begin{aligned} d_t(L(\alpha_{i_1}, \dots, \alpha_{i_t})) = \\ \sum_{j=1}^t (-1)^{j+1} \frac{\text{lcm}(\alpha_{i_1}, \dots, \alpha_{i_t})}{\text{lcm}(\alpha_{i_1}, \dots, \widehat{\alpha_{i_j}}, \dots, \alpha_{i_t})} L(\alpha_{i_1}, \dots, \widehat{\alpha_{i_j}}, \dots, \alpha_{i_t}). \end{aligned}$$

Then one has the following

Theorem 2.2. ([6], p. 193) *The complex*

$$0 \rightarrow L_r \xrightarrow{d_r} L_{r-1} \xrightarrow{d_{r-1}} \dots \xrightarrow{d_1} L_0 \rightarrow 0 \quad (\star)$$

is a free resolution of R/I .

The resolution (\star) is called a *Lyubeznik resolution* of I . Note that the Lyubeznik resolution of I in general strictly depends on the order of the

sequence $\alpha_1, \dots, \alpha_r$: different permutations of the α_i can give rise to non-isomorphic resolutions.

Also note that any subset of an admissible symbol is again admissible.

We now recall a crucial result due to Kimura:

Theorem 2.3. ([4], Theorem 1) *Let I be a monomial ideal of R . If I has a Lyubeznik resolution of length ℓ , then $\text{ara } I \leq \ell$.*

We will say that an admissible symbol is *maximal* (with respect to S) if it is of maximum dimension among the admissible symbols.

3. ON A SPECIAL CLASS OF COHEN-MACAULAY GRAPHS

We recall that a graph G is called Cohen-Macaulay if the quotient ring $R/I(G)$ is Cohen-Macaulay for all fields K . It is called unmixed if so is the ideal $I(G)$ (over every field K).

Let G be an unmixed graph on $2n$ vertices $x_1, \dots, x_n, y_1, \dots, y_n$, all non-isolated, and such that $\text{ht } I(G) = n$. Since G has a perfect matching (see [1], Lemma 2.1), we may assume that

- (*) $X = \{x_1, \dots, x_n\}$ is a minimal vertex cover of G and $Y = \{y_1, \dots, y_n\}$ is a maximal independent set of G such that $\{x_1y_1, \dots, x_ny_n\} \subset E(G)$. (Since Y is an independent set, it follows that there are no edges of the form y_iy_j .)

In addition, if G is Cohen-Macaulay (see [1], Section 3), we may also assume that

- (**) if $x_iy_j \in E(G)$, then $i \leq j$.

Definition 3.1. Let G be a graph without isolated vertices and such that all maximal independent sets have the same cardinality. If furthermore this cardinality is n , where $2n$ is the number of vertices of G , then G is called *very well covered*.

The very well covered graphs were studied in [2]. The next result by Crupi, Rinaldo and Terai extends Theorem 3.4 of [3].

Theorem 3.2. ([1], Theorem 3.6) *Let G be a graph without isolated vertices. Let $V(G) = \{x_1, \dots, x_n, y_1, \dots, y_n\}$ and suppose that $\text{ht } I(G) = n$. Also assume that G fulfils conditions (*) and (**). Then the following conditions are equivalent:*

- (1) G is Cohen-Macaulay,
- (2) G is unmixed,
- (3) the following conditions hold:
 - (i) if $z_ix_j, y_jx_k \in E(G)$, then $z_ix_k \in E(G)$ for distinct i, j, k and for $z_i \in \{x_i, y_i\}$,
 - (ii) if $x_iy_j \in E(G)$, then $x_ix_j \notin E(G)$.

Remark 3.3. Note that conditions (*), (**) and (3) are preserved when we remove a set of vertices of the form $\{x_i, y_i \mid i \in S\}$ with $S \subset \{1, \dots, n\}$.

Theorem 3.4. *Let G be a very well covered graph on $2n$ vertices $x_1, \dots, x_n, y_1, \dots, y_n$ fulfilling conditions $(*)$ and $(**)$. Then $\text{ara } I(G) = \text{ht } I(G) = n$, i.e., $I(G)$ is a set-theoretic complete intersection.*

Proof. Suppose that G fulfils condition (3). We show that $I(G)$ has a Lyubeznik resolution of length at most n . In view of (0) and Theorem 2.3, this will prove our claim.

Consider the lexicographic order with respect to the following arrangement of the variables:

$$x_1 > x_2 > \dots > x_n > y_n > y_{n-1} > \dots > y_1.$$

Arrange the edge monomials of G according to the induced ordering, i.e. the ordering induced by

$$\begin{array}{cccccccccc} x_1x_2 & x_1x_3 & \cdots & x_1x_n & x_1y_n & x_1y_{n-1} & \cdots & x_1y_2 & x_1y_1 \\ x_2x_3 & \cdots & x_2x_n & x_2y_n & x_2y_{n-1} & \cdots & x_2y_2 & & \\ \ddots & & \vdots & & \vdots & & \vdots & \ddots & \\ x_{n-1}x_n & x_{n-1}y_n & x_{n-1}y_{n-1} & & & & & & \\ & & x_ny_n & & & & & & \end{array}$$

We prove that every admissible symbol with respect to this ordering has dimension at most n . We proceed by induction on n . For $n = 1$ the claim is trivial, since, in this case, x_1y_1 is the only edge monomial of G .

Now suppose that $n > 1$ and that the claim is true for all smaller n . Let u be an admissible symbol of maximum dimension and suppose that there are exactly r monomials in u containing the variable x_1 , i.e., appearing in the first row of the above table, and precisely $x_1z_{i_1}, x_1z_{i_2}, \dots, x_1z_{i_r}$, where $i_1 < \dots < i_r$ and $z_{i_h} \in \{x_{i_h}, y_{i_h}\}$ for every h . If $r \leq 1$, then the remaining monomials in u form an admissible symbol for a graph of the same type of G on the vertex set $\{x_2, \dots, x_n, y_2, \dots, y_n\}$ (see Remark 3.3). By induction, this symbol has dimension at most $n - 1$, hence u has dimension at most n . Thus suppose that $r \geq 2$. Then every monomial of u lying outside the first row cannot contain any of the variables $z_{i_1}, \dots, z_{i_{r-1}}$, because, for all $h = 1, \dots, r-1$, the monomial $x_1z_{i_h}$ precedes $x_1z_{i_r}$ and divides $x_1z_{i_r}z_{i_h}$.

Let $1 \leq h \leq r-1$. We want to prove that u does not contain any monomial divisible by $\{x_{i_h}, y_{i_h}\} \setminus \{z_{i_h}\}$.

First suppose that $z_{i_h} = x_{i_h}$. Then $i_h \neq 1$. Moreover, $x_{i_h}y_{i_h} \notin u$, because, as we have just remarked, no monomial of u outside the first row is divisible by x_{i_h} . We prove that u does not contain any monomial divisible by y_{i_h} . Suppose, by contradiction, that $x_ky_{i_h} \in u$ for some k . Then $k \neq i_h$ and, on the other hand, $k \leq i_h$ by virtue of condition $(**)$. Moreover, since $x_1x_{i_h} \in E(G)$, from condition (3) (ii) it follows that $k \neq 1$. Finally, since $x_1x_{i_h}, x_ky_{i_h} \in E(G)$, and $1, i_h, k$ are pairwise distinct, condition (3) (i) implies that $x_1x_k \in E(G)$. Thus u is not admissible, because the monomial x_1x_k precedes both the monomials $x_1x_{i_h}$ and $x_ky_{i_h}$ (since $1 < k < i_h$) and divides their product. This provides a contradiction.

Now suppose that $z_{i_h} = y_{i_h}$. Since $h \leq r-1$, $x_1 y_{i_h}$ cannot be the last monomial of the first row of the above table. Hence $i_h \neq 1$. We prove that u does not contain any monomial divisible by x_{i_h} . Suppose, by contradiction, that $x_{i_h} z_k \in u$ for some k . Once again, since $x_{i_h} y_{i_h} \notin u$, we have $k \neq i_h$. Now, $z_k = y_1$ would imply $i_h = 1$ by condition (**), against our assumption. On the other hand, we also have $z_k \neq x_1$, because $x_1 y_{i_h} \in E(G)$, which, in view of condition (3) (ii), implies that $x_{i_h} x_1 \notin E(G)$. This proves that $k \neq 1$. Moreover, since $x_1 y_{i_h}, x_{i_h} z_k \in E(G)$, from condition (3) (i) it follows that $x_1 z_k \in E(G)$. We observe that the monomial $x_1 z_k$ precedes $x_1 y_{i_h}$ in the above order: if $z_k = x_k$, this is clear; if $z_k = y_k$, then $x_{i_h} y_k \in E(G)$, so that $i_h < k$ by virtue of condition (**). Hence $x_1 y_k$ precedes $x_1 y_{i_h}$. Further, since $i_h > 1$, the monomial $x_1 z_k$ also precedes $x_{i_h} z_k$. But $x_1 z_k$ divides $x_1 y_{i_h} x_{i_h} z_k$, which implies that u is not admissible and provides a contradiction. We have thus proven that the monomials in u following $x_1 z_{i_1}, x_1 z_{i_2}, \dots, x_1 z_{i_r}$, i.e., those lying in the rows below the first one, form an admissible symbol v for a graph of the same type of G on the vertex set

$$\{x_2, \dots, x_n, y_2, \dots, y_n\} \setminus \{x_{i_1}, \dots, x_{i_{r-1}}, y_{i_1}, \dots, y_{i_{r-1}}\}.$$

By induction, v has length at most $n-1-(r-1)=n-r$. Therefore u has length at most $r+n-r=n$, so that the claim follows. \square

Corollary 3.5. *Let G be a very well covered graph. Then the following conditions are equivalent:*

- (1) $R/I(G)$ is Cohen-Macaulay,
- (2) $I(G)$ is a set-theoretic complete intersection.

In particular, this equivalence is true if G is a bipartite graph.

Remark 3.6. The arithmetical rank of the edge ideals of some Cohen-Macaulay bipartite graphs had already been computed by Kummini [5].

REFERENCES

- [1] M. CRUPI, G. RINALDO, N. TERAI, *Cohen-Macaulay edge ideal whose height is half of the number of vertices*, Nagoya Math. J. **201** (2011), 117-131.
- [2] O. FAVARON, *Very well covered graphs*, Discrete Math. **42** (1982), 177-187.
- [3] J. HERZOG, T. HIBI, *Distributive lattices, bipartite graphs and Alexander duality*, J. Alg. Comb. **22** (2005), 3, 289-302.
- [4] K. KIMURA, *Lyubeznik resolutions and the arithmetical rank of monomial ideals*. Proc. Amer. Math. Soc. **137** (2009), 11, 3627-3635.
- [5] M. KUMMINI, *Regularity, depth and arithmetic rank of bipartite edge ideals*, J. Alg. Comb. **30** (2009), 4, 429-445.
- [6] G. LYUBEZNIK, *A new explicit finite free resolution of ideals generated by monomials in an R-sequence*. J. Pure Appl. Algebra **51** (1988), 1-2, 193-195.
- [7] R.H. VILLARREAL, *Cohen-Macaulay graphs*, Manuscripta Math. **66** (1990), 2, 277-293.
- [8] R.H. VILLARREAL, *Unmixed bipartite graphs*, Rev. Col. Mat. **41** (2007), 2, 393-395.

ACKNOWLEDGMENTS

The authors thank the referee for a careful reading of the paper.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI BARI “ALDO MORO”,
VIA ORABONA 4, 70125 BARI, ITALY
E-mail address: `margherita.barile@uniba.it`

FACHBEREICH MATHEMATIK UND INFORMATIK, PHILIPPS-UNIVERSITÄT MARBURG, HANS-
MEERWEIN-STRASSE 6, 35032 MARBURG, GERMANY
E-mail address: `macchia.antonello@gmail.com`