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ON DETERMINANTAL IDEALS AND ALGEBRAIC DEPENDENCE
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ABSTRACT. Let X be a matrix with entries in a polynomial ring over an algebraically closed field
K. We prove that, if the entries of X outside some (¢ X t)-submatrix are algebraically dependent
over K, the arithmetical rank of the ideal I;(X) of t-minors of X drops at least by one with respect
to the generic case; under suitable assumptions, it drops at least by k if X has k zero entries. This
upper bound turns out to be sharp if char K = 0, since it then coincides with the lower bound
provided by the local cohomological dimension.
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1. INTRODUCTION

Let X be an (m X n)-matrix, where m < n, with entries in the polynomial ring R over a field
K. A celebrated result by Bruns and Schwinzl [0, Theorem 1| states that, if X is generic (i.e., its
entries are algebraically independent over K), then for every t = 1,...,m, the ideal I;(X) generated
by the t-minors of X can be generated by mn — t> + 1, but not fewer, elements up to radical. This
means that there exist ¢1(X), ..., ¢nn_241(X) € R such that

V [t(X) = \/(Ql(X), e aqmn—tQ-‘rl(X))

and mn —t? 4+ 1 is the minimum number of elements for which the above equality holds. This result
is independent of the field.

Given an ideal I in a Noetherian ring S, the minimum number of elements of S that generate an
ideal whose radical is the same as [ is called the arithmetical rank of I and denoted by aral. In
general, the following inequalities hold (see, e.g., [0, Proposition 9.12|):

htI <cdI <aral,

where ht I is the height of I, cd I = max{i € Z : Hi(S) # 0} is the cohomological dimension of I
and H!(S) denotes the i-th local cohomology module of S with support in I.

Lyubeznik, Singh and Walther asked in [10, Question 8.1] whether the arithmetical rank of I;(X)
is smaller than in the generic case, when the entries of X are algebraically dependent. In [3] the
second author and others studied the case of (2 x n)-matrices of linearly dependent linear forms and
gave a positive answer for large classes of examples.

In the present paper we consider matrices of arbitrary size whose entries are algebraically depen-
dent over an algebraically closed field. In our main result, Theorem [3.1] we prove that if the entries of
X lying outside some (¢ x t)-submatrix are algebraically dependent over K, then ara I;(X) < mn—t2.
In particular this holds if some entry of X is zero.

In Section [}, we improve Theorem for sparse generic matrices, i.e, matrices whose entries are
pairwise distinct variables and zeros. Sparse determinantal ideals have recently been considered in
[4], where a minimal free resolution is computed for the ideals of maximal minors. In Proposition
we prove that, if X is a sparse matrix with k zeros, where k < min{2t+1, m+n—2t} and the zeros are
placed on consecutive antidiagonals starting from the upper-left corner, then the arithmetical rank
of I;(X) drops at least by k with respect to the generic case. We actually have that, in characteristic
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0, araI;(X) = cd I,(X) = mn — t2 — k + 1, which, for k = 0, gives the equality for generic matrices
proven in [6]. Our result is sharp, because, in general, it fails to be true if the number & of zeros
exceeds the prescribed upper bound.

A similar result holds for the ideal of maximal minors of a sparse matrix with exactly k <n —m
zeros, see Proposition

In Section |5| we consider the case of (2 x n)-matrices of linearly dependent linear forms, for which
we give a complete positive answer to [10, Question 8.1].

2. PRELIMINARIES

Let m and n be positive integers, where m < n. Let R be a commutative unit ring, and A
an (m x n)-matrix with entries in R. For all positive integers ¢ such that ¢ < m, we consider

the t-minors of A. More precisely, for all sequences of indices 1 < a1 < as < -+ < ay < m and
1<b <by<--+<b <n, wedenote by [ai,...,a|b1,...,b] the determinant of the submatrix
of A formed by the rows of indices aq,...,a; and the columns of indices b1,...,b;. By abuse of

terminology, the term minor will also be referred to this submatrix. The following facts are taken
from Chapters 4 and 5 of the monograph by Bruns and Vetter [7], to which we refer for further
details. The set of all minors of A can be endowed with the following partial order. We set

[al,. . .,at\bl,... ,bt] < [Cl,...,cu|d1,...,du],
ift >wvwand a; < ¢, b; <d;foralli=1,...,u. In this poset, all maximal chains with a fixed bottom
and a fixed top have the same length. We will call rank of an element the cardinality of all maximal
chains having this element as the top. The maximum ¢-minor is [m—t+1,...,mn—t+1,...,n],
the minimum ¢-minor is [1,...,¢1,...,¢], all intermediate poset elements are ¢-minors. Given a
t-minor [ay, ..., at|b1,..., b > [1,...,t1,...,¢], its lower neighbours that are ¢-minors are obtained

by lowering one of its indices by one. Hence the distance between two ¢-minors is measured by the
difference between the sums of their row and column indices. In particular, the sum of all row and
column indices is constant for all t-minors of equal rank, and increases with the rank. Since the rank
of [m—t+1,...,mn—t+1,...,n]is mn—t2+1, therank of [1,...,t[1,...,t]is mn+t>—t(m+n)+1.

For all h = 1,...,mn — t?> + 1 let g4(A) be the sum of all minors of A having order at least
t and rank h. We thus have that g,,, 121(4) = m —t+1,...,mln —t+1,...,n|. Since the
maximum rank of the minors of order greater than ¢ is mn — t? — 2t = mn —t> + 1 — (2t 4 1), for
all h=1,...,2t+ 1, ¢np_s2_ns2(A) is a sum of t-minors. Let I;(A) be the ideal of R generated by
all ¢-minors of A. Then, according to [7, Corollary 5.21],

(1) VEA) = (@A), i1 (A)),

so that aral;(A) < mn — t?> + 1. More precisely, we have that, for all h = 1,...,mn — t> + 1, if
It(h)(A) is the ideal of R generated by all minors of I;(A) whose rank is at most h, then

(2) VI A) = Va(A), - an(A)).

By [6, Corollary, p. 440], we have ara I;(A) = mn — 2+ 1 if A is a generic matrix of indeterminates
over a field of characteristic zero, since, in this case, cd [;(A) = mn — t? + 1.

3. THE MAIN THEOREM

Let X be an (m x n)-matrix (m < n) with entries in the polynomial ring R = Klz1,...,zN] over
the algebraically closed field K. For all h = 1,...,mn —t> + 1, let g, = qu(X).
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Theorem 3.1. Let t be an integer such that 1 <t < m and t < n. If the entries of X outside the
minor A=[m—t+1,....,mln—t+1,...,n| are algebraically dependent over K, then

ara I;(X) < mn — t2.

Proof. Let uq, ..., ux be algebraically dependent entries of X outside A, and let F be a nonzero poly-
nomial over K in k indeterminates - which will be denoted by the letter y - such that F(uq,...,ug) =
0 (x). We perform the following algorithm.

Step 1 If there is some indeterminate y such that y divides some, but not all monomials of F,
write F' = F’/ 4+ yF"”, where no monomial of F” is divisible by y. Then replace F' by F’, which by
assumption is nonzero, and return to Step 1. Else (i.e., if all monomials of F" have the same support),
go to Step 2.

Step 2 Let y1,...,y, be the indeterminates forming the support of all monomials of F'. Proceed
recursively as follows. For all j = 1,...,7, let a; be the maximum (positive) integer such that
y?j divides F, and set Fy = F. Let G; be such that F; = Gyy{'. For all indices j > 2, set

F; =G and let G; be such that I} = Gjyfj, where, for all j, 8; is the maximum (positive)

Yyj—1=0
integer such that yfj divides F}j. Note that 8; > «a;. Also note that F} is a nonzero polynomial in
the indeterminates y;, with j < h < r, and G is a polynomial in the same indeterminates and it
contains some monomial not divisible by y;. In particular, G, is a polynomial in y, with nonzero
constant term (¥x). Now identify each indeterminate y;, for j = 1,...,r, with the entry of X that
replaces y; in relation (x), and substitute this entry with y; +G;A. Call X’ the new matrix obtained
in this way, and, for all h = 1,...,mn — t?, set ¢}, = qn(X’).

Let M’ be the set of t-minors of X’ other than A (this minor remains unchanged). Then, in view

of equation we have:
VOP) =\ [(dh, - a2

VIE) =)@ 0, )

The inclusion D is clear, since each ¢, differs from ¢;, by a multiple of A in R. For the inclusion C
it suffices to prove that whenever, for some x € K", all polynomials ¢; vanish at x, then A also
vanishes at x: in this case the same is true for all polynomials gy, hence, by , for all t-minors
of X, and the claim follows by Hilbert’s Nullstellensatz. Suppose by contradiction that, under the
given assumption, A does not vanish at x. In the sequel, for the sake of simplicity, we will identify
each polynomial with its evaluation at x; by a similar convention, we will also call X’ the matrix
obtained by evaluating all entries of X’ at x. First observe that, since A # 0, the last ¢ columns of
X' are linearly independent. On the other hand, if i is any index such that 1 < ¢ < n —t, then, for
every index j such that n —t 4+ 1 < j < n, and every sequence of indices 1 < ay < -+ < a; < m, we
also have that, in X’,

We prove that

[al,...,ath’,n—t—i-1,...,3,...,71} =0,
which implies that each set formed by the i-th column and ¢ —1 of the last ¢ columns of X" is linearly
dependent. This can only be true if the i-th column of X’ is zero. A similar argument can be applied
to the rows of X’ with indices between 1 and m — t. This proves that all entries of X’ outside A
are zero. Now consider F'. The entries of X corresponding to the indeterminates y involved in
Step 1 remain unchanged; hence they are also entries of X’. Moreover, they lie outside A, so that
they vanish. It follows that F' also vanishes after all iterations of Step 1 are completed. We show
that, for all 4 = 1,...,r, both y; and G; are zero; by virtue of (xx), when i = r, this provides a
contradiction. For the inductive basis note that y; + G1A = 0, so that y; # 0 would imply G # 0.
But F = F; = Ghyy"* = 0, thus, in return, we would deduce that y; = 0. Since A # 0, it then
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follows that G; = 0. Now, for some index h, 1 < h < r, suppose that y,_1 = Gp_1 = 0. We then
have 0 = Gh—llyh,lzo =Fy = Ghygh, whence Gy, = 0 or y, = 0. But y, + GpA = 0, which implies
yn = Gy = 0, as claimed. O

Corollary 3.2. Let t be an integer such that 1 <t < m and t <n. If some entry of X is zero, then
ara I;(X) < mn — t2.

The next Proposition provides additional information for the case in which k = 1: namely, if
char K = 0 and X has one zero entry, whereas the remaining entries are pairwise distinct indeter-
minates, then ara I,(X) = cd I;(X) = mn — t2.

4. IMPROVING THE UPPER BOUND FOR SPARSE MATRICES

The result in Corollary can be improved for certain classes of matrices having some zero
entries.
Given an (m x n)-matrix A = (a;;), for all h = 1,...,m + n, the h-th antidiagonal is the sequence
(@i h—it1)i=1,...h-

Proposition 4.1. Suppose that, for some integer k such that 1 < k < min{2t + 1,m +n — 2t}, k
entries of X, lying on consecutive antidiagonals starting from the upper-left corner, are zero. Then

aral{(X) < mn —t? —k+ 1.

Proof. We perform on X the following recursive procedure. Number the zero entries according to the
following ordering: the zero at (r, s) precedes the zero at (u,v) if either r+s < u+vorr+s=u+v
and r < w. Thus, in particular, the first zero entry is the one at (1,1). First obtain a new matrix
X from X = X by replacing the k-th zero entry with py = ¢, _2.1(X). For all h =2,...,k, the
h-th step consists in obtaining a new matrix X}, from Xj_; by replacing the (k— h+1)-th zero entry
with pr_nt1 = Gun_z_n12(Xn—1).The last step consists in putting p1 = ¢n_2_g1o(Xk—1) at (1,1).
Foralli=1,...,mn —t>+ 1, let ¢, = ¢;(X). Also set X' = X}.. Fix an index h with 1 < h < k.
Since k < 2t + 1, all summands of pq,...,pp are t-minors. Let p = [a,...,a|b1,..., b be a minor
appearing as a summand in pp. According to the above recursive procedure, py is inserted in an
antidiagonal of index at most h. Hence, if (r, s) is its position in the matrix, we have r +s < h+ 1.
Now, given a t-minor greater than [1,...,¢|1,...,t], each of its lower neighbours that is a ¢-minor
is obtained by lowering one of its indices by 1. Thus the sum of any subset of indices is lowered at
most by k — h when passing from [m —t+1,...,m|n —t+1,...,n| (the only summand of px) to
p (a summand of pp). In particular this holds, for any i,j = 1,...,¢, for the set formed by i-th row
index (that changes from m — ¢ + ¢ to a;) and the j-th column index (that changes from n —t¢+j
to b;). Hence

(3) ai+b; > (m—t+i)+(n—t+j)—k+h > (m—t+1)+(n—t+1)—k+h = m+n—2t—k+h+2 > h+1,
where the last inequality follows from the assumption that & < m 4 n — 2¢. This means that all

entries of p lie on antidiagonals with indices greater than h. Hence the subsequent steps of the
algorithm leave these minors unchanged. Thus, for all h = 1,....k, pp, = ¢ We show

mn—t2—k+1+h"
that
V) = [(@hs - )

Note that the polynomials appearing on the right-hand side are those not involved in the above
procedure. We first show the inclusion D: we inductively prove that, for all : = 1,... k, I,(X;) C
I;(X;-1). This is clear for ¢ = 1. For ¢ > 2, it suffices to note that every ¢t-minor of X; differs
from the corresponding minor in X;_; by a multiple of ¢,,,,_s2_;12(X;—1). We now prove C. Once
again, we use Hilbert’s Nullstellensatz. We assume that at some x € K™" all polynomials ¢, for
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1 <i<mn—1t?>—k+1, vanish, and we deduce that the same is true for the remaining (last) k
polynomials ¢, with mn —t2—k+2 <i < mn—t?+1. Since, for 1 <i < mn—t*>+1, ¢/ differs from
¢; by an element of the ideal (q;rmitgikﬁ, ... ’q1/nn7t2+1)’ it will follow that for 1 < i < mn—t>+1, ¢;
also vanishes at x, which, in view of equation , will imply our claim. We will proceed inductively
on h > 1. In the inductive step, we assume that all polynomials ¢f, .. "q;nnfthkJrl’pl’ ey Ph—1
vanish at x. In view of (2), this implies that all minors of X} appearing as summands in the
polynomials ¢i,...,g),. > ;. 1;P1,---,Ph—1 Vanish at x. From this we will deduce that pj also
vanishes at x. Suppose by contradiction that p; does not vanish at x. Let (r,s) be the position
taken by pj in the matrix X'. Then r+s < h+1. Let u = [aq,...,a¢|b1, ..., b] be a minor appearing
as a summand in p,. Thus, by , we have a1 + by > r + s, whence a1 > r or by > s. Suppose
that a; > r. Then pu does not involve any entry of the r-th row. By assumption all the following
minors of X’ vanish at x (we admit the possibility of repeated column indices, which give rise to
zero minors):
7y a1, ..., G5, ae|br, . by, [ an, .., Gay . ae]s, b, by, by

for i,7 = 1,...,t (in our notation we disregard the fact that the index s could be greater than
b1). The reason is that, in view of , for each of these minors (without repeated column indices),
the sum of all row and column indices is smaller than that of u, whence each of these minors
has rank smaller than that of p and therefore appears as a summand in one of the polynomials
Qs s Dpyy2_ 12 Pls- - s Ph—1. Let Y be the submatrix of X' formed by the rows with indices
r,ai,...,a; and by the columns with indices s, b1, ..., b, evaluated at x. We have just shown that
all sets formed by the r-th row of ¥ and other ¢ — 1 rows of Y are linearly dependent. But as the
r-th row of Y is nonzero (because, by assumption, its entry pp(x) does not vanish), it follows that,
in Y, the rows with indices a1, ..., a; are linearly dependent. Hence, in particular, g vanishes at x.
The same conclusion is drawn if b; > s, by a similar argumentation, in which the roles of rows and
columns are interchanged. This proves that p, vanishes at x, a contradiction. (I

Example 4.2. Notice that, if k does not fulfil the upper bound in Proposition then it could be
that ara I;(X) > mn — t> — k + 1. In fact, let us consider the matrix
0 x1 x2 x3
X = 0 T4 I5 g
T7 Ty T9 T10
and the ideal of maximal minors I = I3(X) in the polynomial ring R = Klz1,...,x10], where
char K = 0. Here m =3, n =4, t = 3 and k = 2, so that the inequality £ < m 4+ n — 2t does not
hold. We show that, in this case, aral =cd I =3 > 2. First of all, aral < 12 —9 = 3 by Corollary
Now consider the following Brodmann sequence of local cohomology (see B, Proposition 8.1.2|):
- — H}, oy (R) — HF(R) — H}(Ryy) — Hiy (o) (R) — -+
Notice that I + (z7) is generated by two elements, hence H?Jr(x?)(R) = Hﬁr(x?)(R) = 0, so that
H3}(R) ~ H}(Ry,). On the other hand, by virtue of the Independence Theorem [5, Theorem 4.2.1],
H})’(Rw) ~ H}”z7 (Ry,), where I,. = (x125 — xo%4, X126 — T3T4, TaXe — T325) C R, is the ideal of

maximal minors of a generic (2 x 3)-matrix. Therefore cd I, = 3 by [6, Corollary p. 440], so that
H3}(Ry,) # 0. It follows that H}(R) # 0, whence cd I > 3.

Corollary 4.3. Let k be an integer such that 0 < k < min{2t + 1,m + n — 2t}. Suppose that X
has exactly k zero entries, which lie on consecutive antidiagonals starting from the left, whereas the
remaining entries are pairwise distinct indeterminates. If char K = 0, then

aral;(X) = cd [;(X) = mn — t? — k + 1.
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Proof. In view of Proposition it suffices to prove that cd I;(X) > mn — t> — k + 1. Note that
X is obtained from a generic (m x n)-matrix by setting k entries, say z1,...,xk, equal to zero. Let
A = R/(z1,...,x). We show that

mn—t2—
Hlt(X)t k:+1(Ak) 7& 0’

which will immediately yield the claim. We proceed by induction on k¥ > 0. For all h = 0,...,k
let X}, be the matrix obtained from the generic matrix by setting x1,...,x, equal to zero, so that
Xk = X. The inductive basis (k = 0 case) is [6, Corollary, p. 440]. So let k£ > 0 and suppose that
the claim is true for k£ — 1. The short exact sequence of Aj_1-modules

0—>Ak_1£§Ak_1—>Ak—>0
induces the following long exact sequence of local cohomology

—t?—k+1 J —t?—k+2 z — 2 k42
s HEOT S (Ay) = HYOCT S (Ap) =5 HY D P2 () = -

In view of [I0, Lemma 4.1], I;(Xk_1)s, is the same as I;_1(Y") for some (m — 1) X (n — 1) matrix YV’
with entries in (Ag_1)g,. Since local cohomology commutes with localization, we thus have that

mn—t2— mn—t2— mn—t2—
Hjt(th_l)k-i_Q(Ak—l)xk - HIt(th_l)IZZ_Q((Ak—l)xk) = HIt—l(;) k+2((Ak—1)xk).

But
aral; 1(Y)<(m—-1n-1)—t—-1)2+1<mn—t>—k+2,

where the last inequality follows from the assumption that £ < m 4+ n — 2t. This implies that
H;??i?;k+2((Ak—1)xk) = 0. Thus the module

—t2—k+2
Hy e (Ak-1),

which, by the inductive hypothesis, is nonzero, vanishes when localized at xj. Therefore the endo-
2

morphism -z is not injective, so that, in the above long exact sequence, HZL&_;I_)I“H(A;C) # 0. But,

by virtue of the Independence Theorem, applied to the canonical epimorphism from Ag_; to Ag, we

have

mn—t2—k+1 ~ pymn—t2—k+1
HIt(X) (Ak) - H[t(Xk—l) (Ak)’

whence our claim follows. O

Example 4.4. Consider the polynomial ring R = K|[z1,...,z7], where char K = 0, and the sparse
matrix

0 0 T
X = T2 I3 T4
I5 Te X7

Then araly(X) = 9—4—2+4 1 = 4 by Corollary In fact, Io(X) = \/(q, ¢, ¢4, 4)), where
! /
¢, = ¢;(X’) and

ToX7 — T4 + (x3x7 — $4$6):U7 — X1xg X3T7 — T4Tg T1
X' = o 3 T4 5 i.e.,
T5 T6 xTr
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¢} =[1231123] = 22aker — 2w3wawex? + 2303 + piwgxd — ix3T6TT — TiT3TS + T1TRTE
b =[12|12] = —z3242677 + T35 — T3T4T5 — T1T3T6 + T2T4Tg
L=[12[13]+[13|12] = —a? — zax? 2 2 _ 2
q5=[12113]+[13|12] = —zjre27 — T4T§TT + 32425 + T3TeT7 — THT5
— T1T4T6 — T1TG + TTATT — TIT5T7 + ToTeT7 — T172,
q) =[12]23]+[13|13]+[23|12] = —242623 + T37%F — 776 + T3T4T7 — TAT5T7
— T1Tex7 + le’% — X1T3 — T1T5 — T3T5 + TaXg.

Using arguments similar to those developed in the proof of Proposition .1} and of Corollary
one can show the following result about determinantal ideals of maximal minors.

Proposition 4.5. Let 0 < k < n —m and suppose that k entries of X are zero. Then aral,,(X) <
mn—m?—k+1. If char K = 0 and the remaining entries of X are pairwise distinct indeterminates,
then

aral,,(X) =cd I[,(X) =mn—m? —k+ 1.

Proposition generalizes [3, Theorem 6.4], where the result was proven for k = m = 2, in the
case where the zeros lie on different rows and columns. The technique applied in our proof, however,
is completely different, and so are the generators up to radical that we obtain. We present our
construction in the following example.

Example 4.6. Consider the polynomial ring R = K|z, ...,x¢| and the sparse matrix

0 oz oz 3
zy 0 x5 x¢ |-

If char K = 0, then ara I3(X) = 8 —4 — 241 = 3 by Proposition . In fact, I2(X) = \/(q}, 45, 45),
where ¢} = ¢;(X’), with

! | 126 — x3(Tox6 — x35) 1 T2 w3
7 Toxe — XT3x5 Ty Te |

/ 2 2. .2 2 2
¢ = [12|12] = zy2002 — z1230506 — TiT30E 4+ 2r003 0506 — TITE — 1114

/ 2.2
gy = [12|13] = z12506 — T2T3T5T6 + TZTE — Taxy

/ 2 2 2 2
g5 = [12|14] 4 [12|23] = z125 — x2x3TF + T5X5T6 — T3T4 + T1T5 — TrX6 + TaT3T5.

5. (2 X n)-MATRICES

In this section we consider the case of matrices with 2 rows.
Using Corollary we give an affirmative answer to [3, Question 1, p. 274].

Corollary 5.1. Let n > 3, and let X be a (2 x n)-matriz of linearly dependent linear forms. Then
aralo(X) < 2n — 4.

Proof. According to the Kronecker-Weierstrass theory of matrix pencils (see [8, Chapter 8|), the
matrix X is equivalent to a concatenation of nilpotent, Jordan and scroll blocks (see [3, Section 3]
for details). If X contains at least one nilpotent or Jordan block, then one of the entries of X is
zero or can be annihilated by elementary row operations, so that araI2(X) < 2n — 4 by Corollary
If, on the other hand, X is a concatenation of scroll blocks, then some of them have at least
two columns, so that the claim follows by [1, Theorem 2] or by [3| Theorem 4.2| (and, for n > 3,
also from Theorem |3.1|). [l
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The next result is a consequence of Proposition . In the special case of a (2 x n)-matrix, the
claim is true without any additional restrictions on k.

Corollary 5.2. Letn > 3, k > 0, and let X be a (2 x n)-matriz. Suppose that k entries of X
oulside the minor A = [1,2|n — 1,n| are zero, then araly(X) < 2n —3 — k. If char K = 0 and the
remaining entries are pairwise distinct indeterminates, then

aralo(X) =cdo(X)=2n—-3— k.

Proof. Let 0 < h < n — 2 be the number of columns of X containing only zero entries. Hence,
I,(X) = I,(X'), where X’ is the matrix obtained from X by dropping the zero columns. Thus X’
has n — h > 1 columns. By Proposition [£.5 it follows that

araly(X) =aralo(X') <2(n—h)—3—(k—2h) =2n—3 — k.
The last part of the claim follows from Proposition applied to X’. O

6. CONCLUSIONS

The proofs of Theorem and Proposition are based on explicit constructions of the polyno-
mials generating the ideal I;(X) up to radical. The following example shows a special case in which
these methods can be combined in order to produce mn —t> — k + 1 polynomials when the matrix X
contains k pairwise disjoint sets Sy, So,..., Sk of algebraically dependent entries, all lying outside
the minor A. The polynomials are obtained by a recursive procedure: it starts at X = X and,
at the i-th step, transforms the matrix X;_; into a new matrix X; by replacing the entries in S;
according to the algorithm described in the proof of Theorem and taking F' to be the polynomial
expressing the algebraic dependence in S;. The resulting matrix is X’ = X and the polynomials
@ (X)), dmn_s2_p11(X’) generate the ideal I;(X) up to radical.

Example 6.1. Consider the polynomial ring K[x,y, z,a,b,c,d] and the matrix
S [ar y? 22 a b
Tl oyt 2 e d|”

The first three columns are sets of algebraically dependent entries. We apply the construction
recursively with respect to the third, the second and the first column. We then obtain

V(X)) = /([1212], [12]13], [12[14] + [12]23], [12|15] + [12]24]),

where the minors on the right-hand side are minors of the matrix Y obtained by the following
transformations

2 .2
’ ¢ Yy z°4+a a b _ B B
X' = [ ICRNE d }, where o = [12]|45] = ad — be,
T 248 224a a b
=l AT TR L] e 5= 2 = (2 g -

d }, where = [12|25]4[12|34] = (y* + 8)d —y>b+ (2* +a)c— 23a.

We finally propose some open questions.

Let X be an (m X n)-matrix with entries in a polynomial ring over a field K. Theorem gives
an affirmative answer to [10, Question 8.1] when the entries of X outside some (¢ X t)-submatrix of
X are algebraic dependent over K. But the answer is also known to be true in some cases where
the algebraically dependent entries do not fulfil this condition (see, e.g., [10, Example 8.3]). The
general case is still open.
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Problem 6.2. Let X be an (m x n)-matrix whose algebraically dependent entries belong to all
(t x t)-submatrices of X. Is it true that ara I;(X) < mn — t2?

In Corollary [4.3] and Proposition we proved that, for some sparse generic matrices with k zero
entries, ara I;(X) = cd I;(X) = mn — t> — k + 1 in characteristic zero. For k = 0, we know from [6]
that this equality still holds in positive characteristics, but ¢d I;(X) < ara I;(X).

Problem 6.3. In the assumptions of Corollary and Proposition if charK = p > 0, is
araly(X) =mn —t> —k+ 17

Two important classes of matrices are the symmetric and alternating matrices. The cohomological
dimension and the arithmetical rank of determinantal and Pfaffian ideals of these matrices have been
computed in [2] and [I1].

Let X be an alternating (n x n)-matrix with k symmetric pairs of zero entries outside the main
diagonal. If k fulfils the assumptions of Proposition using similar arguments, one could compute
the arithmetical rank and, in characteristic zero, the cohomological dimension, showing that they
are equal and their value is k less than in the generic case.

Problem 6.4. If X is a symmetric (n X n)-matrix with exactly k zero entries, what are the cohomo-
logical dimension and the arithmetical rank of I;(X)? Notice that, for generic symmetric matrices,
if char K = 2, ara I;(X) depends on the parity of ¢ and for even ¢ it differs from the value of the
arithmetical rank in characteristic zero.
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