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Abstract. Let X be a matrix with entries in a polynomial ring over an algebraically closed �eld
K. We prove that, if the entries of X outside some (t × t)-submatrix are algebraically dependent
over K, the arithmetical rank of the ideal It(X) of t-minors of X drops at least by one with respect
to the generic case; under suitable assumptions, it drops at least by k if X has k zero entries. This
upper bound turns out to be sharp if charK = 0, since it then coincides with the lower bound
provided by the local cohomological dimension.
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1. Introduction

Let X be an (m × n)-matrix, where m ≤ n, with entries in the polynomial ring R over a �eld
K. A celebrated result by Bruns and Schwänzl [6, Theorem 1] states that, if X is generic (i.e., its
entries are algebraically independent over K), then for every t = 1, . . . ,m, the ideal It(X) generated
by the t-minors of X can be generated by mn− t2 + 1, but not fewer, elements up to radical. This
means that there exist q1(X), . . . , qmn−t2+1(X) ∈ R such that√

It(X) =
√

(q1(X), . . . , qmn−t2+1(X))

and mn− t2 + 1 is the minimum number of elements for which the above equality holds. This result
is independent of the �eld.

Given an ideal I in a Noetherian ring S, the minimum number of elements of S that generate an
ideal whose radical is the same as I is called the arithmetical rank of I and denoted by ara I. In
general, the following inequalities hold (see, e.g., [9, Proposition 9.12]):

ht I ≤ cd I ≤ ara I,

where ht I is the height of I, cd I = max{i ∈ Z : H i
I(S) 6= 0} is the cohomological dimension of I

and H i
I(S) denotes the i-th local cohomology module of S with support in I.

Lyubeznik, Singh and Walther asked in [10, Question 8.1] whether the arithmetical rank of It(X)
is smaller than in the generic case, when the entries of X are algebraically dependent. In [3] the
second author and others studied the case of (2×n)-matrices of linearly dependent linear forms and
gave a positive answer for large classes of examples.

In the present paper we consider matrices of arbitrary size whose entries are algebraically depen-
dent over an algebraically closed �eld. In our main result, Theorem 3.1, we prove that if the entries of
X lying outside some (t×t)-submatrix are algebraically dependent overK, then ara It(X) ≤ mn−t2.
In particular this holds if some entry of X is zero.

In Section 4, we improve Theorem 3.1 for sparse generic matrices, i.e, matrices whose entries are
pairwise distinct variables and zeros. Sparse determinantal ideals have recently been considered in
[4], where a minimal free resolution is computed for the ideals of maximal minors. In Proposition 4.1
we prove that, ifX is a sparse matrix with k zeros, where k ≤ min{2t+1,m+n−2t} and the zeros are
placed on consecutive antidiagonals starting from the upper-left corner, then the arithmetical rank
of It(X) drops at least by k with respect to the generic case. We actually have that, in characteristic
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0, ara It(X) = cd It(X) = mn− t2 − k + 1, which, for k = 0, gives the equality for generic matrices
proven in [6]. Our result is sharp, because, in general, it fails to be true if the number k of zeros
exceeds the prescribed upper bound.

A similar result holds for the ideal of maximal minors of a sparse matrix with exactly k ≤ n−m
zeros, see Proposition 4.5.

In Section 5 we consider the case of (2×n)-matrices of linearly dependent linear forms, for which
we give a complete positive answer to [10, Question 8.1].

2. Preliminaries

Let m and n be positive integers, where m ≤ n. Let R be a commutative unit ring, and A
an (m × n)-matrix with entries in R. For all positive integers t such that t ≤ m, we consider
the t-minors of A. More precisely, for all sequences of indices 1 ≤ a1 < a2 < · · · < at ≤ m and
1 ≤ b1 < b2 < · · · < bt ≤ n, we denote by [a1, . . . , at|b1, . . . , bt] the determinant of the submatrix
of A formed by the rows of indices a1, . . . , at and the columns of indices b1, . . . , bt. By abuse of
terminology, the term minor will also be referred to this submatrix. The following facts are taken
from Chapters 4 and 5 of the monograph by Bruns and Vetter [7], to which we refer for further
details. The set of all minors of A can be endowed with the following partial order. We set

[a1, . . . , at|b1, . . . , bt] ≤ [c1, . . . , cu|d1, . . . , du],

if t ≥ u and ai ≤ ci, bi ≤ di for all i = 1, . . . , u. In this poset, all maximal chains with a �xed bottom
and a �xed top have the same length. We will call rank of an element the cardinality of all maximal
chains having this element as the top. The maximum t-minor is [m− t+ 1, . . . ,m|n− t+ 1, . . . , n],
the minimum t-minor is [1, . . . , t|1, . . . , t], all intermediate poset elements are t-minors. Given a
t-minor [a1, . . . , at|b1, . . . , bt] > [1, . . . , t|1, . . . , t], its lower neighbours that are t-minors are obtained
by lowering one of its indices by one. Hence the distance between two t-minors is measured by the
di�erence between the sums of their row and column indices. In particular, the sum of all row and
column indices is constant for all t-minors of equal rank, and increases with the rank. Since the rank
of [m−t+1, . . . ,m|n−t+1, . . . , n] ismn−t2+1, the rank of [1, . . . , t|1, . . . , t] ismn+t2−t(m+n)+1.

For all h = 1, . . . ,mn − t2 + 1 let qh(A) be the sum of all minors of A having order at least
t and rank h. We thus have that qmn−t2+1(A) = [m − t + 1, . . . ,m|n − t + 1, . . . , n]. Since the
maximum rank of the minors of order greater than t is mn − t2 − 2t = mn − t2 + 1 − (2t + 1), for
all h = 1, . . . , 2t+ 1, qmn−t2−h+2(A) is a sum of t-minors. Let It(A) be the ideal of R generated by
all t-minors of A. Then, according to [7, Corollary 5.21],

(1)
√
It(A) =

√
(q1(A), . . . , qmn−t2+1(A)),

so that ara It(A) ≤ mn − t2 + 1. More precisely, we have that, for all h = 1, . . . ,mn − t2 + 1, if

I
(h)
t (A) is the ideal of R generated by all minors of It(A) whose rank is at most h, then

(2)

√
I
(h)
t (A) =

√
(q1(A), . . . , qh(A)).

By [6, Corollary, p. 440], we have ara It(A) = mn− t2 + 1 if A is a generic matrix of indeterminates
over a �eld of characteristic zero, since, in this case, cd It(A) = mn− t2 + 1.

3. The Main Theorem

Let X be an (m×n)-matrix (m ≤ n) with entries in the polynomial ring R = K[x1, . . . , xN ] over
the algebraically closed �eld K. For all h = 1, . . . ,mn− t2 + 1, let qh = qh(X).
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Theorem 3.1. Let t be an integer such that 1 ≤ t ≤ m and t < n. If the entries of X outside the

minor ∆ = [m− t+ 1, . . . ,m|n− t+ 1, . . . , n] are algebraically dependent over K, then

ara It(X) ≤ mn− t2.

Proof. Let u1, . . . , uk be algebraically dependent entries of X outside ∆, and let F be a nonzero poly-
nomial over K in k indeterminates - which will be denoted by the letter y - such that F (u1, . . . , uk) =
0 (∗). We perform the following algorithm.
Step 1 If there is some indeterminate y such that y divides some, but not all monomials of F ,
write F = F ′ + yF ′′, where no monomial of F ′ is divisible by y. Then replace F by F ′, which by
assumption is nonzero, and return to Step 1. Else (i.e., if all monomials of F have the same support),
go to Step 2.
Step 2 Let y1, . . . , yr be the indeterminates forming the support of all monomials of F . Proceed
recursively as follows. For all j = 1, . . . , r, let αj be the maximum (positive) integer such that

y
αj

j divides F , and set F1 = F . Let G1 be such that F1 = G1y
α1
1 . For all indices j ≥ 2, set

Fj = Gj−1|yj−1=0
and let Gj be such that Fj = Gjy

βj
j , where, for all j, βj is the maximum (positive)

integer such that y
βj
j divides Fj . Note that βj ≥ αj . Also note that Fj is a nonzero polynomial in

the indeterminates yh with j ≤ h ≤ r, and Gj is a polynomial in the same indeterminates and it
contains some monomial not divisible by yj . In particular, Gr is a polynomial in yr with nonzero
constant term (∗∗). Now identify each indeterminate yj , for j = 1, . . . , r, with the entry of X that
replaces yj in relation (∗), and substitute this entry with yj+Gj∆. Call X ′ the new matrix obtained
in this way, and, for all h = 1, . . . ,mn− t2, set q′h = qh(X ′).
Let M ′ be the set of t-minors of X ′ other than ∆ (this minor remains unchanged). Then, in view
of equation (2) we have: √

(M ′) =
√

(q′1, . . . , q
′
mn−t2).

We prove that √
It(X) =

√
(q′1, . . . , q

′
mn−t2).

The inclusion ⊃ is clear, since each q′h di�ers from qh by a multiple of ∆ in R. For the inclusion ⊂
it su�ces to prove that whenever, for some x ∈ Kmn, all polynomials q′h vanish at x, then ∆ also
vanishes at x: in this case the same is true for all polynomials qh, hence, by (1), for all t-minors
of X, and the claim follows by Hilbert's Nullstellensatz. Suppose by contradiction that, under the
given assumption, ∆ does not vanish at x. In the sequel, for the sake of simplicity, we will identify
each polynomial with its evaluation at x; by a similar convention, we will also call X ′ the matrix
obtained by evaluating all entries of X ′ at x. First observe that, since ∆ 6= 0, the last t columns of
X ′ are linearly independent. On the other hand, if i is any index such that 1 ≤ i ≤ n− t, then, for
every index j such that n− t+ 1 ≤ j ≤ n, and every sequence of indices 1 ≤ a1 < · · · < at ≤ m, we
also have that, in X ′,

[a1, . . . , at|i, n− t+ 1, . . . , ĵ, . . . , n] = 0,

which implies that each set formed by the i-th column and t−1 of the last t columns of X ′ is linearly
dependent. This can only be true if the i-th column of X ′ is zero. A similar argument can be applied
to the rows of X ′ with indices between 1 and m − t. This proves that all entries of X ′ outside ∆
are zero. Now consider F . The entries of X corresponding to the indeterminates y involved in
Step 1 remain unchanged; hence they are also entries of X ′. Moreover, they lie outside ∆, so that
they vanish. It follows that F also vanishes after all iterations of Step 1 are completed. We show
that, for all i = 1, . . . , r, both yi and Gi are zero; by virtue of (∗∗), when i = r, this provides a
contradiction. For the inductive basis note that y1 +G1∆ = 0, so that y1 6= 0 would imply G1 6= 0.
But F = F1 = G1y

α1
1 = 0, thus, in return, we would deduce that y1 = 0. Since ∆ 6= 0, it then
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follows that G1 = 0. Now, for some index h, 1 < h ≤ r, suppose that yh−1 = Gh−1 = 0. We then

have 0 = Gh−1|yh−1=0
= Fh = Ghy

βh
h , whence Gh = 0 or yh = 0. But yh + Gh∆ = 0, which implies

yh = Gh = 0, as claimed. �

Corollary 3.2. Let t be an integer such that 1 ≤ t ≤ m and t < n. If some entry of X is zero, then

ara It(X) ≤ mn− t2.

The next Proposition 4.1 provides additional information for the case in which k = 1: namely, if
charK = 0 and X has one zero entry, whereas the remaining entries are pairwise distinct indeter-
minates, then ara It(X) = cd It(X) = mn− t2.

4. Improving the upper bound for sparse matrices

The result in Corollary 3.2 can be improved for certain classes of matrices having some zero
entries.
Given an (m× n)-matrix A = (aij), for all h = 1, . . . ,m+ n, the h-th antidiagonal is the sequence
(ai,h−i+1)i=1,...,h.

Proposition 4.1. Suppose that, for some integer k such that 1 ≤ k ≤ min{2t + 1,m + n − 2t}, k
entries of X, lying on consecutive antidiagonals starting from the upper-left corner, are zero. Then

ara It(X) ≤ mn− t2 − k + 1.

Proof. We perform on X the following recursive procedure. Number the zero entries according to the
following ordering: the zero at (r, s) precedes the zero at (u, v) if either r+s < u+v or r+s = u+v
and r < u. Thus, in particular, the �rst zero entry is the one at (1, 1). First obtain a new matrix
X1 from X0 = X by replacing the k-th zero entry with pk = qmn−t2+1(X). For all h = 2, . . . , k, the
h-th step consists in obtaining a new matrix Xh from Xh−1 by replacing the (k−h+1)-th zero entry
with pk−h+1 = qmn−t2−h+2(Xh−1).The last step consists in putting p1 = qmn−t2−k+2(Xk−1) at (1,1).
For all i = 1, . . . ,mn − t2 + 1, let q′i = qi(Xk). Also set X ′ = Xk. Fix an index h with 1 ≤ h ≤ k.
Since k ≤ 2t+ 1, all summands of p1, . . . , ph are t-minors. Let µ = [a1, . . . , at|b1, . . . , bt] be a minor
appearing as a summand in ph. According to the above recursive procedure, ph is inserted in an
antidiagonal of index at most h. Hence, if (r, s) is its position in the matrix, we have r+ s ≤ h+ 1.
Now, given a t-minor greater than [1, . . . , t|1, . . . , t], each of its lower neighbours that is a t-minor
is obtained by lowering one of its indices by 1. Thus the sum of any subset of indices is lowered at
most by k − h when passing from [m − t + 1, . . . ,m|n − t + 1, . . . , n] (the only summand of pk) to
µ (a summand of ph). In particular this holds, for any i, j = 1, . . . , t, for the set formed by i-th row
index (that changes from m − t + i to ai) and the j-th column index (that changes from n − t + j
to bj). Hence

(3) ai+bj ≥ (m−t+i)+(n−t+j)−k+h ≥ (m−t+1)+(n−t+1)−k+h = m+n−2t−k+h+2 > h+1,

where the last inequality follows from the assumption that k ≤ m + n − 2t. This means that all
entries of µ lie on antidiagonals with indices greater than h. Hence the subsequent steps of the
algorithm leave these minors unchanged. Thus, for all h = 1, . . . , k, ph = q′mn−t2−k+1+h. We show
that √

It(X) =
√

(q′1, . . . , q
′
mn−t2−k+1

).

Note that the polynomials appearing on the right-hand side are those not involved in the above
procedure. We �rst show the inclusion ⊃: we inductively prove that, for all i = 1, . . . , k, It(Xi) ⊂
It(Xi−1). This is clear for i = 1. For i ≥ 2, it su�ces to note that every t-minor of Xi di�ers
from the corresponding minor in Xi−1 by a multiple of qmn−t2−i+2(Xi−1). We now prove ⊂. Once
again, we use Hilbert's Nullstellensatz. We assume that at some x ∈ Kmn all polynomials q′i, for
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1 ≤ i ≤ mn − t2 − k + 1, vanish, and we deduce that the same is true for the remaining (last) k
polynomials q′i, with mn− t2−k+2 ≤ i ≤ mn− t2 +1. Since, for 1 ≤ i ≤ mn− t2 +1, q′i di�ers from
qi by an element of the ideal (q′mn−t2−k+2, . . . , q

′
mn−t2+1), it will follow that for 1 ≤ i ≤ mn−t2+1, qi

also vanishes at x, which, in view of equation (1), will imply our claim. We will proceed inductively
on h ≥ 1. In the inductive step, we assume that all polynomials q′1, . . . , q

′
mn−t2−k+1, p1, . . . , ph−1

vanish at x. In view of (2), this implies that all minors of Xk appearing as summands in the
polynomials q′1, . . . , q

′
mn−t2−k+1, p1, . . . , ph−1 vanish at x. From this we will deduce that ph also

vanishes at x. Suppose by contradiction that ph does not vanish at x. Let (r, s) be the position
taken by ph in the matrix X ′. Then r+s ≤ h+1. Let µ = [a1, . . . , at|b1, . . . , bt] be a minor appearing
as a summand in ph. Thus, by (3), we have a1 + b1 > r + s, whence a1 > r or b1 > s. Suppose
that a1 > r. Then µ does not involve any entry of the r-th row. By assumption all the following
minors of X ′ vanish at x (we admit the possibility of repeated column indices, which give rise to
zero minors):

[r, a1, . . . , âi, . . . , at|b1, . . . , bt], [r, a1, . . . , âi, . . . , at|s, b1, . . . , b̂j , . . . , bt],
for i, j = 1, . . . , t (in our notation we disregard the fact that the index s could be greater than
b1). The reason is that, in view of (3), for each of these minors (without repeated column indices),
the sum of all row and column indices is smaller than that of µ, whence each of these minors
has rank smaller than that of µ and therefore appears as a summand in one of the polynomials
q′1, . . . , q

′
mn−t2−k+1, p1, . . . , ph−1. Let Y be the submatrix of X ′ formed by the rows with indices

r, a1, . . . , at and by the columns with indices s, b1, . . . , bt, evaluated at x. We have just shown that
all sets formed by the r-th row of Y and other t − 1 rows of Y are linearly dependent. But as the
r-th row of Y is nonzero (because, by assumption, its entry ph(x) does not vanish), it follows that,
in Y , the rows with indices a1, . . . , at are linearly dependent. Hence, in particular, µ vanishes at x.
The same conclusion is drawn if b1 > s, by a similar argumentation, in which the roles of rows and
columns are interchanged. This proves that ph vanishes at x, a contradiction. �

Example 4.2. Notice that, if k does not ful�l the upper bound in Proposition 4.1, then it could be
that ara It(X) > mn− t2 − k + 1. In fact, let us consider the matrix

X =

 0 x1 x2 x3
0 x4 x5 x6
x7 x8 x9 x10


and the ideal of maximal minors I = I3(X) in the polynomial ring R = K[x1, . . . , x10], where
charK = 0. Here m = 3, n = 4, t = 3 and k = 2, so that the inequality k ≤ m + n − 2t does not
hold. We show that, in this case, ara I = cd I = 3 > 2. First of all, ara I ≤ 12− 9 = 3 by Corollary
3.2. Now consider the following Brodmann sequence of local cohomology (see [5, Proposition 8.1.2]):

· · · −→ H3
I+(x7)

(R) −→ H3
I (R) −→ H3

I (Rx7) −→ H4
I+(x7)

(R) −→ · · · .

Notice that I + (x7) is generated by two elements, hence H3
I+(x7)

(R) = H4
I+(x7)

(R) = 0, so that

H3
I (R) ' H3

I (Rx7). On the other hand, by virtue of the Independence Theorem [5, Theorem 4.2.1],
H3
I (Rx7) ' H3

Ix7
(Rx7), where Ix7 = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5) ⊂ Rx7 is the ideal of

maximal minors of a generic (2 × 3)-matrix. Therefore cd Ix7 = 3 by [6, Corollary p. 440], so that
H3
I (Rx7) 6= 0. It follows that H3

I (R) 6= 0, whence cd I ≥ 3.

Corollary 4.3. Let k be an integer such that 0 ≤ k ≤ min{2t + 1,m + n − 2t}. Suppose that X
has exactly k zero entries, which lie on consecutive antidiagonals starting from the left, whereas the

remaining entries are pairwise distinct indeterminates. If charK = 0, then

ara It(X) = cd It(X) = mn− t2 − k + 1.
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Proof. In view of Proposition 4.1 it su�ces to prove that cd It(X) ≥ mn − t2 − k + 1. Note that
X is obtained from a generic (m× n)-matrix by setting k entries, say x1, . . . , xk, equal to zero. Let
Ak = R/(x1, . . . , xk). We show that

Hmn−t2−k+1
It(X) (Ak) 6= 0,

which will immediately yield the claim. We proceed by induction on k ≥ 0. For all h = 0, . . . , k
let Xh be the matrix obtained from the generic matrix by setting x1, . . . , xh equal to zero, so that
Xk = X. The inductive basis (k = 0 case) is [6, Corollary, p. 440]. So let k > 0 and suppose that
the claim is true for k − 1. The short exact sequence of Ak−1-modules

0→ Ak−1
·xk→ Ak−1 → Ak → 0

induces the following long exact sequence of local cohomology

· · · → Hmn−t2−k+1
It(Xk−1)

(Ak)
δ→ Hmn−t2−k+2

It(Xk−1)
(Ak−1)

·xk→ Hmn−t2−k+2
It(Xk−1)

(Ak−1)→ · · ·

In view of [10, Lemma 4.1], It(Xk−1)xk is the same as It−1(Y ) for some (m− 1)× (n− 1) matrix Y
with entries in (Ak−1)xk . Since local cohomology commutes with localization, we thus have that

Hmn−t2−k+2
It(Xk−1)

(Ak−1)xk = Hmn−t2−k+2
It(Xk−1)xk

((Ak−1)xk) = Hmn−t2−k+2
It−1(Y ) ((Ak−1)xk).

But

ara It−1(Y ) ≤ (m− 1)(n− 1)− (t− 1)2 + 1 < mn− t2 − k + 2,

where the last inequality follows from the assumption that k ≤ m + n − 2t. This implies that

Hmn−t2−k+2
It−1(Y ) ((Ak−1)xk) = 0. Thus the module

Hmn−t2−k+2
It(Xk−1)

(Ak−1),

which, by the inductive hypothesis, is nonzero, vanishes when localized at xk. Therefore the endo-

morphism ·xk is not injective, so that, in the above long exact sequence, Hmn−t2−k+1
It(Xk−1)

(Ak) 6= 0. But,

by virtue of the Independence Theorem, applied to the canonical epimorphism from Ak−1 to Ak, we
have

Hmn−t2−k+1
It(X) (Ak) ' Hmn−t2−k+1

It(Xk−1)
(Ak),

whence our claim follows. �

Example 4.4. Consider the polynomial ring R = K[x1, . . . , x7], where charK = 0, and the sparse
matrix

X =

 0 0 x1
x2 x3 x4
x5 x6 x7

 .
Then ara I2(X) = 9 − 4 − 2 + 1 = 4 by Corollary 4.3. In fact, I2(X) =

√
(q′1, q

′
2, q
′
3, q
′
4), where

q′i = qi(X
′) and

X ′ =

 x2x7 − x4x5 + (x3x7 − x4x6)x7 − x1x6 x3x7 − x4x6 x1
x2 x3 x4
x5 x6 x7

 , i.e.,
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q′1=[123|123] = x24x
2
6x7 − 2x3x4x6x

2
7 + x23x

3
7 + x1x4x

2
6 − x1x3x6x7 − x1x3x5 + x1x2x6

q′2=[12|12] = −x3x4x6x7 + x23x
2
7 − x3x4x5 − x1x3x6 + x2x4x6

q′3=[12|13]+[13|12] = −x24x6x7 − x4x26x7 + x3x4x
2
7 + x3x6x

2
7 − x24x5

− x1x4x6 − x1x26 + x2x4x7 − x3x5x7 + x2x6x7 − x1x2,
q′4=[12|23]+[13|13]+[23|12] = −x4x6x27 + x3x

3
7 − x24x6 + x3x4x7 − x4x5x7

− x1x6x7 + x2x
2
7 − x1x3 − x1x5 − x3x5 + x2x6.

Using arguments similar to those developed in the proof of Proposition 4.1 and of Corollary 4.3,
one can show the following result about determinantal ideals of maximal minors.

Proposition 4.5. Let 0 ≤ k ≤ n−m and suppose that k entries of X are zero. Then ara Im(X) ≤
mn−m2−k+1. If charK = 0 and the remaining entries of X are pairwise distinct indeterminates,

then

ara Im(X) = cd Im(X) = mn−m2 − k + 1.

Proposition 4.5 generalizes [3, Theorem 6.4], where the result was proven for k = m = 2, in the
case where the zeros lie on di�erent rows and columns. The technique applied in our proof, however,
is completely di�erent, and so are the generators up to radical that we obtain. We present our
construction in the following example.

Example 4.6. Consider the polynomial ring R = K[x1, . . . , x6] and the sparse matrix

X =

[
0 x1 x2 x3
x4 0 x5 x6

]
.

If charK = 0, then ara I2(X) = 8− 4− 2 + 1 = 3 by Proposition 4.5. In fact, I2(X) =
√

(q′1, q
′
2, q
′
3),

where q′i = qi(X
′), with

X ′ =

[
x1x6 − x3(x2x6 − x3x5) x1 x2 x3

x4 x2x6 − x3x5 x5 x6

]
, i.e.,

q′1 = [12|12] = x1x2x
2
6 − x1x3x5x6 − x22x3x26 + 2x2x

2
3x5x6 − x33x25 − x1x4

q′2 = [12|13] = x1x5x6 − x2x3x5x6 + x23x
2
5 − x2x4

q′3 = [12|14] + [12|23] = x1x
2
6 − x2x3x26 + x23x5x6 − x3x4 + x1x5 − x22x6 + x2x3x5.

5. (2× n)-matrices

In this section we consider the case of matrices with 2 rows.
Using Corollary 3.2 we give an a�rmative answer to [3, Question 1, p. 274].

Corollary 5.1. Let n ≥ 3, and let X be a (2× n)-matrix of linearly dependent linear forms. Then

ara I2(X) ≤ 2n− 4.

Proof. According to the Kronecker-Weierstrass theory of matrix pencils (see [8, Chapter 8]), the
matrix X is equivalent to a concatenation of nilpotent, Jordan and scroll blocks (see [3, Section 3]
for details). If X contains at least one nilpotent or Jordan block, then one of the entries of X is
zero or can be annihilated by elementary row operations, so that ara I2(X) ≤ 2n − 4 by Corollary
3.2. If, on the other hand, X is a concatenation of scroll blocks, then some of them have at least
two columns, so that the claim follows by [1, Theorem 2] or by [3, Theorem 4.2] (and, for n > 3,
also from Theorem 3.1). �
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The next result is a consequence of Proposition 4.5. In the special case of a (2 × n)-matrix, the
claim is true without any additional restrictions on k.

Corollary 5.2. Let n ≥ 3, k ≥ 0, and let X be a (2 × n)-matrix. Suppose that k entries of X
outside the minor ∆ = [1, 2|n− 1, n] are zero, then ara I2(X) ≤ 2n− 3− k. If charK = 0 and the

remaining entries are pairwise distinct indeterminates, then

ara I2(X) = cd I2(X) = 2n− 3− k.

Proof. Let 0 ≤ h ≤ n − 2 be the number of columns of X containing only zero entries. Hence,
I2(X) = I2(X

′), where X ′ is the matrix obtained from X by dropping the zero columns. Thus X ′

has n− h ≥ 1 columns. By Proposition 4.5 it follows that

ara I2(X) = ara I2(X
′) ≤ 2(n− h)− 3− (k − 2h) = 2n− 3− k.

The last part of the claim follows from Proposition 4.5 applied to X ′. �

6. Conclusions

The proofs of Theorem 3.1 and Proposition 4.1 are based on explicit constructions of the polyno-
mials generating the ideal It(X) up to radical. The following example shows a special case in which
these methods can be combined in order to produce mn− t2−k+1 polynomials when the matrix X
contains k pairwise disjoint sets S1, S2, . . . , Sk of algebraically dependent entries, all lying outside
the minor ∆. The polynomials are obtained by a recursive procedure: it starts at X = X0 and,
at the i-th step, transforms the matrix Xi−1 into a new matrix Xi by replacing the entries in Si
according to the algorithm described in the proof of Theorem 3.1 and taking F to be the polynomial
expressing the algebraic dependence in Si. The resulting matrix is X ′ = Xk and the polynomials
q1(X

′), . . . , qmn−t2−k+1(X
′) generate the ideal It(X) up to radical.

Example 6.1. Consider the polynomial ring K[x, y, z, a, b, c, d] and the matrix

X =

[
x2 y2 z2 a b
x3 y3 z3 c d

]
.

The �rst three columns are sets of algebraically dependent entries. We apply the construction
recursively with respect to the third, the second and the �rst column. We then obtain√

I2(X) =
√

([12|12], [12|13], [12|14] + [12|23], [12|15] + [12|24]),

where the minors on the right-hand side are minors of the matrix Y obtained by the following
transformations

X ′ =

[
x2 y2 z2 + α a b
x3 y3 z3 c d

]
, where α = [12|45] = ad− bc,

X ′′ =

[
x2 y2 + β z2 + α a b
x3 y3 z3 c d

]
, where β = [12|35] = (z2 + α)d− z3b

Y =

[
x2 + γ y2 + β z2 + α a b
x3 y3 z3 c d

]
, where γ=[12|25]+[12|34]=(y2+β)d−y3b+(z2+α)c−z3a.

We �nally propose some open questions.
Let X be an (m× n)-matrix with entries in a polynomial ring over a �eld K. Theorem 3.1 gives

an a�rmative answer to [10, Question 8.1] when the entries of X outside some (t× t)-submatrix of
X are algebraic dependent over K. But the answer is also known to be true in some cases where
the algebraically dependent entries do not ful�l this condition (see, e.g., [10, Example 8.3]). The
general case is still open.
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Problem 6.2. Let X be an (m × n)-matrix whose algebraically dependent entries belong to all
(t× t)-submatrices of X. Is it true that ara It(X) ≤ mn− t2?

In Corollary 4.3 and Proposition 4.5, we proved that, for some sparse generic matrices with k zero
entries, ara It(X) = cd It(X) = mn− t2 − k + 1 in characteristic zero. For k = 0, we know from [6]
that this equality still holds in positive characteristics, but cd It(X) < ara It(X).

Problem 6.3. In the assumptions of Corollary 4.3 and Proposition 4.5, if charK = p > 0, is
ara It(X) = mn− t2 − k + 1?

Two important classes of matrices are the symmetric and alternating matrices. The cohomological
dimension and the arithmetical rank of determinantal and Pfa�an ideals of these matrices have been
computed in [2] and [11].

Let X be an alternating (n × n)-matrix with k symmetric pairs of zero entries outside the main
diagonal. If k ful�ls the assumptions of Proposition 4.1, using similar arguments, one could compute
the arithmetical rank and, in characteristic zero, the cohomological dimension, showing that they
are equal and their value is k less than in the generic case.

Problem 6.4. If X is a symmetric (n×n)-matrix with exactly k zero entries, what are the cohomo-
logical dimension and the arithmetical rank of It(X)? Notice that, for generic symmetric matrices,
if charK = 2, ara It(X) depends on the parity of t and for even t it di�ers from the value of the
arithmetical rank in characteristic zero.
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