Multiple solutions for a quasilinear Schrödinger equation

Andrzej Szulkin

Joint work with Xiangdong Fang
JDE 254 (2013), 2015–2032
Equation

\[i \partial_t v = \Delta v + W(x)v - \kappa \Delta h(|v|^2)h'(|v|^2)v - f(|v|^2)v \]

models different phenomena in mathematical physics. In one of these models one has \(h(t) = t \) which is the case we consider. For convenience, we take \(\kappa = 1 \).
Equation

\[i\partial_t v = \Delta v + W(x)v - \kappa \Delta h(|v|^2)h'(|v|^2)v - f(|v|^2)v \]

models different phenomena in mathematical physics. In one of these models one has \(h(t) = t \) which is the case we consider. For convenience, we take \(\kappa = 1 \).

We look for standing wave solutions \(v = e^{-i\omega t}u \). Our equation:

\[-\Delta u + V(x)u - \Delta (u^2)u = g(x, u), \quad x \in \mathbb{R}^N \]
Equation

\[i\partial_t v = \Delta v + W(x)v - \kappa \Delta h(|v|^2)h'(|v|^2)v - f(|v|^2)v \]

models different phenomena in mathematical physics. In one of these models one has \(h(t) = t \) which is the case we consider. For convenience, we take \(\kappa = 1 \).

We look for standing wave solutions \(v = e^{-i\omega t}u \). Our equation:

\[-\Delta u + V(x)u - \Delta (u^2)u = g(x, u), \quad x \in \mathbb{R}^N \]

Put $G(x, u) := \int_0^u g(x, s) \, ds$. Natural functional:

$$J(u) := \frac{1}{2} \int_{\mathbb{R}^N} (1 + 2u^2)|\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)u^2 - \int_{\mathbb{R}^N} G(x, u)$$

J not defined on all of $H^1(\mathbb{R}^N)$ if $N \geq 2$.

Known methods: constrained minimization (Liu-Wang), reduction to a semilinear case by a change of variables (Liu-Wang-Wang, Colin, Colin-Jeanjean), and very recently, singular perturbation (Liu-Liu-Wang):

$$J_{\mu}(u) := \mu^4 \int_{\Omega} |\nabla u|^4 + \frac{1}{2} \int_{\mathbb{R}^N} (1 + 2u^2)|\nabla u|^2 + \frac{1}{2} \int_{\Omega} V(x)u^2 - \int_{\mathbb{R}^N} G(x, u)$$

$\Omega \subset \mathbb{R}^N$ bounded, $u \in W^{1,4}_{0}(\Omega)$, $\mu \to 0$.

Put $G(x, u) := \int_0^u g(x, s) \, ds$. Natural functional:

$$J(u) := \frac{1}{2} \int_{\mathbb{R}^N} (1 + 2u^2)|\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)u^2 - \int_{\mathbb{R}^N} G(x, u)$$

J not defined on all of $H^1(\mathbb{R}^N)$ if $N \geq 2$.

Known methods: constrained minimization (Liu-Wang), reduction to a semilinear case by a change of variables (Liu-Wang-Wang, Colin, Colin-Jeanjean), and very recently, singular perturbation (Liu-Liu-Wang):
Put \(G(x, u) := \int_0^u g(x, s) \, ds \). Natural functional:

\[
J(u) := \frac{1}{2} \int_{\mathbb{R}^N} (1 + 2u^2)|\nabla u|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)u^2 - \int_{\mathbb{R}^N} G(x, u)
\]

\(J \) not defined on all of \(H^1(\mathbb{R}^N) \) if \(N \geq 2 \).

Known methods: constrained minimization (Liu-Wang), reduction to a semilinear case by a change of variables (Liu-Wang-Wang, Colin, Colin-Jeanjean), and very recently, singular perturbation (Liu-Liu-Wang):

\[
J_\mu(u) := \frac{\mu}{4} \int_{\Omega} |\nabla u|^4 + \frac{1}{2} \int_{\Omega} (1 + 2u^2)|\nabla u|^2
\]

\[
+ \frac{1}{2} \int_{\Omega} V(x)u^2 - \int_{\Omega} G(x, u),
\]

\(\Omega \subset \mathbb{R}^N \) bounded, \(u \in W^{1,4}_0(\Omega) \), \(\mu \to 0 \).
Our results

(eq1) \(-\Delta u + V(x)u - \Delta (u^2)u = g(x, u), \quad u \in H^1(\mathbb{R}^N)\)

(V) \(V\) is continuous, 1-periodic in \(x_1, \ldots, x_N\) and \(V(x) \geq a_0 > 0\) for all \(x \in \mathbb{R}^N\).

\((g_1)\) \(g\) is continuous, 1-periodic in \(x_1, \ldots, x_N\) and \(|g(x, u)| \leq a(1 + |u|^{p-1}), \) where \(p \in (2, 2 \cdot 2^*)\), \(2^* := 2N/(N - 2)\).

\((g_2)\) \(g(x, u) = o(u)\) uniformly in \(x\) as \(u \to 0\).

\((g_3)\) \(G(x, u)/u^4 \to \infty\) uniformly in \(x\) as \(|u| \to \infty\).

\((g_4)\) \(u \mapsto g(x, u)/u^3\) is positive for \(u \neq 0\), nonincreasing on \((-\infty, 0)\) and nondecreasing on \((0, \infty)\).
Our results

(eq1) \(-\Delta u + V(x)u - \Delta (u^2)u = g(x, u), \quad u \in H^1(\mathbb{R}^N)\)

(V) \(V\) is continuous, 1-periodic in \(x_1, \ldots, x_N\) and \(V(x) \geq a_0 > 0\) for all \(x \in \mathbb{R}^N\).

(g1) \(g\) is continuous, 1-periodic in \(x_1, \ldots, x_N\) and \(|g(x, u)| \leq a(1 + |u|^{p-1})\), where \(p \in (2, 2 \cdot 2^*)\), \(2^* := 2N/(N - 2)\).

(g2) \(g(x, u) = o(u)\) uniformly in \(x\) as \(u \to 0\).

(g3) \(G(x, u)/u^4 \to \infty\) uniformly in \(x\) as \(|u| \to \infty\).

(g4) \(u \mapsto g(x, u)/u^3\) is positive for \(u \neq 0\), nonincreasing on \((-\infty, 0)\) and nondecreasing on \((0, \infty)\).

Theorem 1

If (V), (g1)-(g4) are satisfied and \(g\) is odd in \(u\), then (eq1) has infinitely many pairs \(\pm u\) of geometrically distinct solutions.
Let \mathbb{Z}^N act on $H^1(\mathbb{R}^N)$ by $(k \ast u)(x) := u(x - k), \ k \in \mathbb{Z}^N$. Let

$$O(u) := \{k \ast u : k \in \mathbb{Z}^N\}$$

be the orbit of u under this action. By periodicity, if u is a solution of (eq1), then so is $k \ast u$ for any $k \in \mathbb{Z}^N$. Then $O(u)$ is called a critical orbit. Two solutions u_1, u_2 are called geometrically distinct if $O(u_1) \cap O(u_2) = \emptyset$.

A similar result, for a more general LHS, has been proved recently in: Liu, Wang, Guo, Multibump solutions for quasilinear elliptic equations, J. Funct. Anal. 262 (2012), 4040–4102.

Main differences: in Liu et al. g must be differentiable and satisfy an Ambrosetti-Rabinowitz type condition. An example of a function satisfying our conditions but not those in Liu et al. is $g(u) = u^3 \ln(1 + |u|)$. Our argument is different and simpler.
Let \mathbb{Z}^N act on $H^1(\mathbb{R}^N)$ by $(k \ast u)(x) := u(x - k)$, $k \in \mathbb{Z}^N$. Let

$$\mathcal{O}(u) := \{k \ast u : k \in \mathbb{Z}^N\}$$

be the orbit of u under this action. By periodicity, if u is a solution of (eq1), then so is $k \ast u$ for any $k \in \mathbb{Z}^N$. Then $\mathcal{O}(u)$ is called a critical orbit. Two solutions u_1, u_2 are called geometrically distinct if $\mathcal{O}(u_1) \cap \mathcal{O}(u_2) = \emptyset$.

A similar result, for a more general LHS, has been proved recently in: Liu, Wang, Guo, Multibump solutions for quasilinear elliptic equations, J. Funct. Anal. 262 (2012), 4040–4102.

Main differences: in Liu et al. g must be differentiable and satisfy an Ambrosetti-Rabinowitz type condition. An example of a function satisfying our conditions but not those in Liu et al. is $g(u) = u^3 \ln(1 + |u|)$. Our argument is different and simpler.
Another equation:

(V) V is continuous, 1-periodic in x_1, \ldots, x_N and $V(x) \geq a_0 > 0$ for all $x \in \mathbb{R}^N$.

(Q) q is continuous, 1-periodic in x_1, \ldots, x_N and $q(x) \geq b_0 > 0$ for all $x \in \mathbb{R}^N$.

(eq2) $-\Delta u + V(x)u - \Delta(u^2)u = q(x)u^3, \quad u \in H^1(\mathbb{R}^N)$
Another equation:

(V) \(V \) is continuous, 1-periodic in \(x_1, \ldots, x_N \) and \(V(x) \geq a_0 > 0 \) for all \(x \in \mathbb{R}^N \).

(Q) \(q \) is continuous, 1-periodic in \(x_1, \ldots, x_N \) and \(q(x) \geq b_0 > 0 \) for all \(x \in \mathbb{R}^N \).

(eq2) \[-\Delta u + V(x)u - \Delta(u^2)u = q(x)u^3, \quad u \in H^1(\mathbb{R}^N)\]

Theorem 2

If (V) and (Q) are satisfied, then (eq2) has infinitely many pairs \(\pm u \) of geometrically distinct solutions.
Let f be defined by

$$f(0) = 0, \quad f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \quad \text{for } t \in [0, +\infty)$$

and $f(t) = -f(-t)$ for $t \in (-\infty, 0]$.
Let \(f \) be defined by
\[
f(0) = 0, \quad f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \quad \text{for } t \in [0, +\infty)
\]
and \(f(t) = -f(-t) \) for \(t \in (-\infty, 0] \).

Then \(f(t)/t \to 1 \) as \(t \to 0 \), \(f(t)/\sqrt{t} \to 2^{1/4} \) as \(t \to \infty \).
Let f be defined by

\[f(0) = 0, \quad f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \quad \text{for } t \in [0, +\infty) \]

and \[f(t) = -f(-t) \quad \text{for } t \in (-\infty, 0]. \]

Then $f(t)/t \to 1$ as $t \to 0$, $f(t)/\sqrt{t} \to 2^{1/4}$ as $t \to \infty$.

Change of variables: $v := f^{-1}(u)$

New functional:

\[I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \int_{\mathbb{R}^N} G(x, f(v)) \]
Let f be defined by

$$f(0) = 0, \quad f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \text{ for } t \in [0, +\infty)$$

and $f(t) = -f(-t)$ for $t \in (-\infty, 0]$.

Then $f(t)/t \to 1$ as $t \to 0$, $f(t)/\sqrt{t} \to 2^{1/4}$ as $t \to \infty$.

Change of variables: $v := f^{-1}(u)$

New functional:

$$I(v) := \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \int_{\mathbb{R}^N} G(x, f(v))$$

For small $|v|$, $f^2(v) \sim v^2$ and $G(x, f(v)) = o(v^2)$
Let f be defined by
\[
 f(0) = 0, \quad f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \quad \text{for } t \in [0, +\infty)
\]
and $f(t) = -f(-t)$ for $t \in (-\infty, 0]$.

Then $f(t)/t \to 1$ as $t \to 0$, $f(t)/\sqrt{t} \to 2^{1/4}$ as $t \to \infty$.

Change of variables: $v := f^{-1}(u)$
New functional:
\[
 I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \int_{\mathbb{R}^N} G(x, f(v))
\]

For small $|v|$, $f^2(v) \sim v^2$ and $G(x, f(v)) = o(v^2)$
For large $|v|$, $f^2(v) \sim |v|$ and $G(x, f(v))/v^2 \to \infty$.
Let \(f \) be defined by

\[
f(0) = 0, \quad f'(t) = \frac{1}{(1 + 2f^2(t))^{1/2}} \quad \text{for} \quad t \in [0, +\infty)
\]

and \(f(t) = -f(-t) \) for \(t \in (-\infty, 0] \).

Then \(f(t)/t \to 1 \) as \(t \to 0 \), \(f(t)/\sqrt{t} \to 2^{1/4} \) as \(t \to \infty \).

Change of variables: \(v := f^{-1}(u) \)

New functional:

\[
I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \int_{\mathbb{R}^N} G(x, f(v))
\]

For small \(|v| \), \(f^2(v) \sim v^2 \) and \(G(x, f(v)) = o(v^2) \)

For large \(|v| \), \(f^2(v) \sim |v| \) and \(G(x, f(v))/v^2 \to \infty \).

In the second theorem, \(G(x, u) = \frac{1}{4} q(x)u^4 \), so

\[
G(x, f(v)) \sim q(x)v^2 \quad \text{for large} \quad |v| \quad (I \text{ asymptotically quadratic at 0 and } \infty).
\]
\[G(x, f(v)) \sim G(x, \sqrt{|v|}) \] for large \(v \) explains why \(2 \cdot 2^* \) is the critical exponent for this problem.
$G(x, f(v)) \sim G(x, \sqrt{|v|})$ for large v explains why $2 \cdot 2^*$ is the critical exponent for this problem.

$I \in C^1(H^1(\mathbb{R}^N), \mathbb{R})$

v is a critical point of I if and only if

$$-\Delta v + V(x)f(v)f'(v) = g(x, f(v))f'(v), \quad v \in H^1(\mathbb{R}^N)$$

If $I'(v) = 0$, then $u = f(v) \in H^1(\mathbb{R}^N)$ and u is a solution of our equation.
\(G(x, f(v)) \sim G(x, \sqrt{|v|}) \) for large \(v \) explains why \(2 \cdot 2^* \) is the critical exponent for this problem.

\(I \in C^1(H^1(\mathbb{R}^N), \mathbb{R}) \)

\(v \) is a critical point of \(I \) if and only if

\[-\Delta v + V(x)f(v)f'(v) = g(x, f(v))f'(v), \quad v \in H^1(\mathbb{R}^N)\]

If \(l''(v) = 0 \), then \(u = f(v) \in H^1(\mathbb{R}^N) \) and \(u \) is a solution of our equation.

Nehari manifold:

\[\mathcal{M} := \{ v \in H^1(\mathbb{R}^N) \setminus \{0\} : \langle l''(v), v \rangle = 0 \} \]
$G(x, f(v)) \sim G(x, \sqrt{|v|})$ for large v explains why $2 \cdot 2^*$ is the critical exponent for this problem.

$I \in C^1(H^1(\mathbb{R}^N), \mathbb{R})$

v is a critical point of I if and only if

$$-\Delta v + V(x)f(v)f'(v) = g(x, f(v))f'(v), \quad v \in H^1(\mathbb{R}^N)$$

If $I''(v) = 0$, then $u = f(v) \in H^1(\mathbb{R}^N)$ and u is a solution of our equation.

Nehari manifold:

$$\mathcal{M} := \{v \in H^1(\mathbb{R}^N) \setminus \{0\} : \langle I''(v), v \rangle = 0\}$$

\mathcal{M} is unlikely to be of class C^1
Let $I \in C^1(E, \mathbb{R})$ (E a Hilbert space), $I(0) = 0$, let S denote the unit sphere and set $\alpha_w(s) := I(sw)$, $w \neq 0$, and suppose for each $w \neq 0$ there exists s_w such that $\alpha'_w(s) > 0$ for $0 < s < s_w$, $\alpha'_w(s) < 0$ for $s > s_w$. There exists $\delta > 0$ such that $s_w \geq \delta$ for all $w \in S$ and s_w is uniformly bounded on compact subsets of S. $\alpha'_w(s_w) = \langle I'(s_w)w, w \rangle = 0$, so $s_w \in M$ and $sw \not\in M$ for any other $s > 0$. $m(w) := s_w$, $w \in S$. One shows m is a homeomorphism between S and M. $\Psi(w) := I(m(w))$, $w \in S$.

Modified method of Nehari manifold

(Taken from Weth-Sz, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, pp. 597–632)

Let $I \in C^1(E, \mathbb{R})$ (E a Hilbert space), $I(0) = 0$, let S denote the unit sphere and set $\alpha_w(s) := I(sw)$, $w \neq 0$, and suppose

- For each $w \neq 0$ there exists s_w such that $\alpha'_w(s) > 0$ for $0 < s < s_w$, $\alpha'_w(s) < 0$ for $s > s_w$
- There exists $\delta > 0$ such that $s_w \geq \delta$ for all $w \in S$ and s_w is uniformly bounded on compact subsets of S
Modified method of Nehari manifold

(Taken from Weth-Sz, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, pp. 597–632)

Let $l \in C^1(E, \mathbb{R})$ (E a Hilbert space), $l(0) = 0$, let S denote the unit sphere and set $\alpha_w(s) := l(sw)$, $w \neq 0$, and suppose

- For each $w \neq 0$ there exists s_w such that $\alpha'_w(s) > 0$ for $0 < s < s_w$, $\alpha'_w(s) < 0$ for $s > s_w$
- There exists $\delta > 0$ such that $s_w \geq \delta$ for all $w \in S$ and s_w is uniformly bounded on compact subsets of S

$\alpha'_w(s_w) = \langle l'(s_w w), w \rangle = 0$, so $s_w w \in M$ and $sw \not\in M$ for any other $s > 0$
Modified method of Nehari manifold

(Taken from Weth-Sz, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, International Press, Boston, 2010, pp. 597–632)

Let \(I \in C^1(E, \mathbb{R}) \) (\(E \) a Hilbert space), \(I(0) = 0 \), let \(S \) denote the unit sphere and set \(\alpha_w(s) := I(sw), \ w \neq 0 \), and suppose

- For each \(w \neq 0 \) there exists \(s_w \) such that \(\alpha'_w(s) > 0 \) for \(0 < s < s_w \), \(\alpha'_w(s) < 0 \) for \(s > s_w \)
- There exists \(\delta > 0 \) such that \(s_w \geq \delta \) for all \(w \in S \) and \(s_w \) is uniformly bounded on compact subsets of \(S \)

\[\alpha'_w(s_w) = \langle I'(s_w w), w \rangle = 0, \] so \(s_w w \in \mathcal{M} \) and \(sw \notin \mathcal{M} \) for any other \(s > 0 \)

\[m(w) := s_w w, \quad w \in S \]

One shows \(m \) is a homeomorphism between \(S \) and \(\mathcal{M} \).

\[\Psi(w) := I(m(w)), \quad w \in S \]
Proposition

(a) \(\Psi \in C^1(S, \mathbb{R}) \) and \(\langle \Psi'(w), z \rangle = \|m(w)\| \langle l'(m(w)), z \rangle \), \(z \in T_w(S) \).

(b) If \((w_n) \) is a Palais-Smale sequence for \(\Psi \), then \((m(w_n)) \) is a Palais-Smale sequence for \(l \). If \((u_n) \subset \mathcal{M} \) is a bounded Palais-Smale sequence for \(l \), then \((m^{-1}(u_n)) \) is a Palais-Smale sequence for \(\Psi \).

(c) \(w \) is a critical point of \(\Psi \) if and only if \(m(w) \) is a nontrivial critical point of \(l \). Moreover, the corresponding values of \(\Psi \) and \(l \) coincide.

(d) If \(l \) is even, then so is \(\Psi \).
Proposition

(a) \(\Psi \in C^1(S, \mathbb{R}) \) and \(\langle \Psi'(w), z \rangle = \|m(w)\|\langle l'(m(w)), z \rangle \), \(z \in T_w(S) \).

(b) If \((w_n) \) is a Palais-Smale sequence for \(\Psi \), then \((m(w_n)) \) is a Palais-Smale sequence for \(I \). If \((u_n) \subset M \) is a bounded Palais-Smale sequence for \(I \), then \((m^{-1}(u_n)) \) is a Palais-Smale sequence for \(\Psi \).

(c) \(w \) is a critical point of \(\Psi \) if and only if \(m(w) \) is a nontrivial critical point of \(I \). Moreover, the corresponding values of \(\Psi \) and \(I \) coincide.

(d) If \(I \) is even, then so is \(\Psi \).

If \(U \) is an open subset of \(S \), \(sw \notin M \) for any \(s > 0 \) and \(w \in S \setminus U \) and the other assumptions are satisfied on \(U \), then \(\Psi \in C^1(U, \mathbb{R}) \) and the conclusions of Proposition hold on \(U \).

Here \(m \) is a homeomorphism between \(U \) and \(M \).
Proof of Theorem 1

Easy to see that $\alpha_w(s) = I(sw) > 0$ for small $s > 0$
($I(v) \geq a\|v\|^2 + o(\|v\|^2)$ as $v \to 0$).

$\alpha_w(s) = I(sw) \to -\infty$ as $s \to \infty$ (recall $G(x, u)/u^4 \to \infty$
implies $G(x, f(v))/v^2 \to \infty$).

Hence $\max_{s>0} \alpha_w(s)$ exists and is > 0.

$u \mapsto g(x, u)/u^3$ nonincreasing on $(-\infty, 0)$, nondecreasing on
$(0, \infty)$ implies (after some work) that $\alpha'_w(s) = 0$ at a unique
$s = s_w > 0$.

So $\Psi(w)$ is well defined and Proposition holds. It is easy to
see that $\inf_S \Psi = c > 0$. Moreover, Ψ inherits the group
action of \mathbb{Z}^N from I.
Proof of Theorem 1

Easy to see that $\alpha_w(s) = I(sw) > 0$ for small $s > 0$
($I(v) \geq a\|v\|^2 + o(\|v\|^2)$ as $v \to 0$).

$\alpha_w(s) = I(sw) \to -\infty$ as $s \to \infty$ (recall $G(x, u)/u^4 \to \infty$
implies $G(x, f(v))/v^2 \to \infty$).

Hence $\max_{s > 0} \alpha_w(s)$ exists and is > 0.

$u \mapsto g(x, u)/u^3$ nonincreasing on $(-\infty, 0)$, nondecreasing on $(0, \infty)$ implies (after some work) that $\alpha'_w(s) = 0$ at a unique $s = s_w > 0$.

So $\Psi(w)$ is well defined and Proposition holds. It is easy to see that $\inf_S \Psi = c > 0$. Moreover, Ψ inherits the group action of \mathbb{Z}^N from I.

From now on we assume

Ψ has finitely many critical orbits
One shows that I is coercive on \mathcal{M}. This implies that if (w_n) is a PS-sequence for Ψ in $\Psi^d := \{\Psi \in S : \Psi \leq d\}$, then $(m(w_n))$ must be bounded.
One shows that I is coercive on \mathcal{M}. This implies that if (w_n) is a PS-sequence for Ψ in $\Psi^d := \{\Psi \in S : \Psi \leq d\}$, then $(m(w_n))$ must be bounded.

Lemma (Discreteness of PS-sequences)

If $(w_n^1), (w_n^2) \subset \Psi^d$ are two Palais-Smale sequences for Ψ, then either $\|w_n^1 - w_n^2\| \to 0$ or

$$\limsup_{n \to \infty} \|w_n^1 - w_n^2\| \geq \rho(d) > 0,$$

where $\rho(d)$ depends on d but not on the particular choice of Palais-Smale sequences.

Idea goes back to the work of Bartsch-Ding on Palais-Smale attractors.
One shows that I is coercive on \mathcal{M}. This implies that if (w_n) is a PS-sequence for Ψ in $\Psi^d := \{\Psi \in S : \Psi \leq d\}$, then $(m(w_n))$ must be bounded.

Lemma (Discreteness of PS-sequences)

If $(w_n^1), (w_n^2) \subset \Psi^d$ are two Palais-Smale sequences for Ψ, then either $\|w_n^1 - w_n^2\| \to 0$ or

$$\limsup_{n \to \infty} \|w_n^1 - w_n^2\| \geq \rho(d) > 0,$$

where $\rho(d)$ depends on d but not on the particular choice of Palais-Smale sequences.

Idea goes back to the work of Bartsch-Ding on Palais-Smale attractors.

Let $K := \{w : \Psi'(w) = 0\}$, $K_d := \{w \in K : \Psi(w) = d\}$. Let η be a pseudo-gradient vector field for Ψ.

\[\eta : \{ (t, w) : w \in S \setminus K, \ T^-(w) < t < T^+(w) \} \to S \setminus K \]

\((T^-(w), T^+(w))\) maximal existence time for \(\eta(\cdot, w)\)

Lemma

\[\lim_{t \to T^+(w)} \eta(t, w) \text{ exists and is a critical point of } \Psi \text{ for each } w \in S \setminus K. \]
\[\eta : \{(t, w) : w \in S \setminus K, \ T^-(w) < t < T^+(w)\} \rightarrow S \setminus K \]

\((T^-(w), T^+(w))\) maximal existence time for \(\eta(\cdot, w)\)

Lemma

\[\lim_{t \rightarrow T^+(w)} \eta(t, w) \text{ exists and is a critical point of } \Psi \text{ for each } w \in S \setminus K. \]

Since \(\Psi\) is bounded below, a well known argument shows that the limit exists if \(T^+(w) < \infty\), and if this limit were not a critical point, the flow could be continued for \(t > T^+(w)\).

If \(T^+(w) = \infty\) and the limit does not exist, then using boundedness of \(\Psi\) one can construct two PS-sequences \(\eta(t^1_n, w)\) and \(\eta(t^2_n, w)\) which are separated by a distance < \(\rho(d)\), contradicting the discreteness lemma.
Lemma

For every $\delta > 0$ there exists $\varepsilon = \varepsilon(\delta) > 0$ such that
(a) $\Psi_{d-\varepsilon} \cap K = K_d$ and
(b) $\lim_{t \to T^+(w)} \Psi(\eta(t, w)) < d - \varepsilon$ for $w \in \Psi_{d+\varepsilon} \setminus U_\delta(K_d)$, where $U_\delta(K_d)$ is the open δ-neighbourhood of K_d.
Lemma

For every $\delta > 0$ there exists $\varepsilon = \varepsilon(\delta) > 0$ such that

(a) $\Psi_{d-\varepsilon}^{d+\varepsilon} \cap K = K_d$ and

(b) $\lim_{t \to T^+(w)} \Psi(\eta(t, w)) < d - \varepsilon$ for $w \in \Psi_{d-\varepsilon}^{d+\varepsilon} \setminus U_{\delta}(K_d)$, where $U_{\delta}(K_d)$ is the open δ-neighbourhood of K_d.

Since there are finitely many critical values, (a) is clearly satisfied.

For (b) one first shows that $\|\Psi'\| \geq \tau > 0$ in $U_{\delta}(K_d) \setminus U_{\delta/2}(K_d)$. Choosing ε small enough one then shows that if $w \in \Psi_{d-\varepsilon}^{d+\varepsilon} \setminus U_{\delta}(K_d)$ and $\eta(t, w) \in U_{\delta/2}(K_d)$, then $\Psi(\eta(t, w)) < c$. So $\eta(t, w)$ will continue to a critical point below the level $c - \varepsilon$.
Let

\[c_k := \inf \{ d \in \mathbb{R} : \gamma(\Psi^d) \geq k \}, \quad k \geq 1 \]

(\(\gamma \) denotes Krasnoselskii’s genus).
Let
\[c_k := \inf \{ d \in \mathbb{R} : \gamma(\Psi^d) \geq k \}, \quad k \geq 1 \]
(\(\gamma \) denotes Krasnoselskii’s genus).
Set \(d = c_k \) and \(U = U_\delta(K_d) \).
Since the set \(K_d \) is discrete, \(\gamma(K_d) = 0 \) (if \(K_d = \emptyset \)) or \(\gamma(K_d) = 1 \).
Let
\[c_k := \inf\{d \in \mathbb{R} : \gamma(\Psi^d) \geq k\}, \quad k \geq 1 \]
(\(\gamma \) denotes Krasnoselskii’s genus).
Set \(d = c_k \) and \(U = U_\delta(K_d) \).
Since the set \(K_d \) is discrete, \(\gamma(K_d) = 0 \) (if \(K_d = \emptyset \)) or \(\gamma(K_d) = 1 \).
Using the last lemma, we have
\[
\gamma(\Psi^{d+\varepsilon}) \leq \gamma(U) + \gamma(\Psi^{d-\varepsilon}) \leq \gamma(U) + k - 1 = \gamma(K_d) + k - 1
\]
So \(\gamma(K_d) = 1 \) and \(K_d \neq \emptyset \). If \(d \equiv c_k = c_{k+1} \), then \(\gamma(K_d) > 1 \) (because \(\gamma(\Psi^{d+\varepsilon}) \geq k + 1 \)) which is impossible. Hence \(c_{k+1} > c_k \) for all \(k \) and \(\Psi \) has infinitely many critical levels, a contradiction.
Proof of Theorem 2

\[-\Delta u + V(x)u - \Delta (u^2)u = q(x)u^3, \quad u \in H^1(\mathbb{R}^N) \]

\[l(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \frac{1}{4} \int_{\mathbb{R}^N} q(x)f^4(v) \]
Proof of Theorem 2

(eq 2) \(-\Delta u + V(x)u - \Delta(u^2)u = q(x)u^3, \quad u \in H^1(\mathbb{R}^N)\)

\[I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \frac{1}{4} \int_{\mathbb{R}^N} q(x)f^4(v) \]

Let

\[U := \left\{ w \in S : \int_{\mathbb{R}^N} |\nabla w|^2 < \int_{\mathbb{R}^N} q(x)w^2 \right\} \]

Clearly, \(U \) open in \(S \) and \(U \neq \emptyset \). Recall \(\alpha_w(s) = I(sw) \).
Proof of Theorem 2

(eq2) \[-\Delta u + V(x)u - \Delta(u^2)u = q(x)u^3, \quad u \in H^1(\mathbb{R}^N)\]

\[I(v) := \frac{1}{2} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{1}{2} \int_{\mathbb{R}^N} V(x)f^2(v) - \frac{1}{4} \int_{\mathbb{R}^N} q(x)f^4(v)\]

Let

\[U := \left\{ w \in S : \int_{\mathbb{R}^N} |\nabla w|^2 < \int_{\mathbb{R}^N} q(x)w^2 \right\}\]

Clearly, \(U\) open in \(S\) and \(U \neq \emptyset\). Recall \(\alpha_w(s) = I(sw)\).

Lemma

1. For each \(w \in U\) there is a unique \(s_w > 0\) such that \(\alpha_w'(s) > 0\) for \(0 < s < s_w\) and \(\alpha_w'(s) < 0\) for \(s > s_w\). Moreover, \(sw \in \mathcal{M}\) if and only if \(s = s_w\).
2. If \(w \notin U\), then \(sw \notin \mathcal{M}\) for any \(s > 0\).
Now \(m(w) := s_w w \) is a homeomorphism between \(U \) and \(M \), and \(\Psi(w) := I(m(w)) \) is of class \(C^1 \) on \(U \).

The proof of Theorem 2 is the same as of Theorem 1 but certain modifications are necessary.
Now $m(w) := s_w w$ is a homeomorphism between U and \mathcal{M}, and $\Psi(w) := l(m(w))$ is of class C^1 on U.

The proof of Theorem 2 is the same as of Theorem 1 but certain modifications are necessary.

Unclear whether l is coercive on \mathcal{M} but one can show that all PS-sequences in \mathcal{M} are bounded. Moreover, if $w_0 \in \partial U$, then $\alpha_{w_0}(s) \equiv l(sw_0) \to \infty$ as $s \to \infty$. Hence, if $w_n \in U$, $w_n \to w_0$, then

$$\alpha_{w_n}(s_{w_n}) = \sup_{s > 0} l(sw_n) = l(s_{w_n}w_n) \to \infty \quad (s_{w_n}w_n \in \mathcal{M}).$$
Now \(m(w) := s_w w \) is a homeomorphism between \(U \) and \(\mathcal{M} \), and \(\Psi(w) := I(m(w)) \) is of class \(C^1 \) on \(U \).

The proof of Theorem 2 is the same as of Theorem 1 but certain modifications are necessary.

Unclear whether \(I \) is coercive on \(\mathcal{M} \) but one can show that all PS-sequences in \(\mathcal{M} \) are bounded. Moreover, if \(w_0 \in \partial U \), then \(\alpha_{w_0}(s) \equiv I(sw_0) \to \infty \) as \(s \to \infty \). Hence, if \(w_n \in U, w_n \to w_0 \), then

\[
\alpha_{w_n}(s_{w_n}) = \sup_{s > 0} I(sw_n) = I(s_{w_n}w_n) \to \infty \quad (s_{w_n}w_n \in \mathcal{M}).
\]

These two facts suffice to show that the flow \(\eta \) with the same properties as in Theorem 1 exists. In particular, since \(I(s_{w_n}w_n) \to \infty \), we see that \(\lim_{t \to T^+(w)} \eta(t, w) \not\in \partial U \), i.e., \(\eta(., w) \) cannot terminate at a point on \(\partial U \).
The proof continues as in the preceding theorem if we can show that U contains sets of arbitrarily large genus.

Since $q \geq b_0 > 0$, it is easy to see using the spectral decomposition of $-\Delta - q$ in $L^2(\mathbb{R}^N)$ that there exists an infinite-dimensional subspace E_0 of $H^1(\mathbb{R}^N)$ such that $E_0 \cap S \subset U$. So $\gamma(E_0 \cap S) = \infty$.
Happy birthday
Anna Maria and Giuliana!
Happy birthday
Anna Maria and Giuliana!

Buon compleanno
Anna Maria e Giulian

Google's help with this translation is gratefully acknowledged