A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

Alessio Pomponio, joint work with David Ruiz

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari

Variational and Topological Methods in Nonlinear Phenomena
We are concerned with a planar gauged Nonlinear Schrödinger Equation:

\[iD_0 \phi + (D_1 D_1 + D_2 D_2) \phi + |\phi|^{p-1} \phi = 0. \]

Here \(t \in \mathbb{R}, \ x = (x_1, x_2) \in \mathbb{R}^2, \ \phi : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{C} \) is the scalar field, \(A_\mu : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} \) are the components of the gauge potential, namely \((A_0, A_1, A_2) = (A^0, -A)\), and \(D_\mu = \partial_\mu + iA_\mu \) is the covariant derivative \((\mu = 0, 1, 2)\).
The field equations, in non-relativistic notation, are

\[\mathbf{B} = \nabla \times \mathbf{A}, \]
\[\mathbf{E} = -\nabla A^0 - \partial_t \mathbf{A}, \]

where \((\mathbf{E}, \mathbf{B})\) is the electromagnetic field.
The natural and obvious equation of gauge field dynamic is the Maxwell equation:

\[\partial_\mu F^{\mu\nu} = j^\nu, \]

where

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu, \]

and \(j^\mu\) is the conserved matter current,

\[j^0 = |\phi|^2, \quad j^i = 2\text{Im} (\bar{\phi} D_i \phi). \]
A modified gauge field equation has been introduced adding the so-called Chern-Simons term into the previous equation [Deser, Hangen, Jackiw, Schonfeld, Templeton, in the ’80s]:

\[\partial \mu F_{\mu\nu} + \frac{1}{2} \kappa \epsilon_{\nu\alpha\beta} F_{\alpha\beta} = j_{\nu}, \]

where \(\kappa \) is a parameter that measures the strength of the Chern-Simons term, \(\epsilon_{\nu\alpha\beta} \) is the Levi-Civita tensor, and super-indices are related to the Minkowski metric with signature \((1, -1, -1)\). At low energies, the Maxwell term becomes negligible and can be dropped, giving rise to:

\[\frac{1}{2} \kappa \epsilon_{\nu\alpha\beta} F_{\alpha\beta} = j_{\nu}. \]
A modified gauge field equation has been introduced adding the so-called Chern-Simons term into the previous equation [Deser, Hangen, Jackiw, Schonfeld, Templeton, in the ’80s]:

$$\partial_\mu F_{\mu\nu} + \frac{1}{2} \kappa \epsilon^{\nu\alpha\beta} F_{\alpha\beta} = j^\nu,$$

where κ is a parameter that measures the strength of the Chern-Simons term, $\epsilon^{\nu\alpha\beta}$ is the Levi-Civita tensor, and super-indices are related to the Minkowski metric with signature $(1, -1, -1)$. At low energies, the Maxwell term becomes negligible and can be dropped, giving rise to:

$$\frac{1}{2} \kappa \epsilon^{\nu\alpha\beta} F_{\alpha\beta} = j^\nu.$$
A modified gauge field equation has been introduced adding the so-called Chern-Simons term into the previous equation [Deser, Hangen, Jackiw, Schonfeld, Templeton, in the ’80s]:

\[\partial_{\mu} F^{\mu\nu} + \frac{1}{2} \kappa \epsilon^{\nu\alpha\beta} F_{\alpha\beta} = j^{\nu}, \]

where \(\kappa\) is a parameter that measures the strength of the Chern-Simons term, \(\epsilon^{\nu\alpha\beta}\) is the Levi-Civita tensor, and super-indices are related to the Minkowski metric with signature \((1, -1, -1)\).

At low energies, the Maxwell term becomes negligible and can be dropped, giving rise to:

\[\frac{1}{2} \kappa \epsilon^{\nu\alpha\beta} F_{\alpha\beta} = j^{\nu}. \]
Taking for simplicity $\kappa = 2$, we arrive to the system

\[
\begin{aligned}
&iD_0\phi + (D_1D_1 + D_2D_2)\phi + |\phi|^{p-1}\phi = 0, \\
&\partial_0A_1 - \partial_1A_0 = \text{Im}(\bar{\phi}D_2\phi), \\
&\partial_0A_2 - \partial_2A_0 = -\text{Im}(\bar{\phi}D_1\phi), \\
&\partial_1A_2 - \partial_2A_1 = \frac{1}{2}|\phi|^2,
\end{aligned}
\] (1)

where the unknowns are (ϕ, A_0, A_1, A_2).
Taking for simplicity $\kappa = 2$, we arrive to the system

$$
\begin{align*}
&D_0 \phi + (D_1 D_1 + D_2 D_2) \phi + |\phi|^{p-1} \phi = 0, \\
&D_0 A_1 - D_1 A_0 = \text{Im}(\bar{\phi} D_2 \phi), \\
&D_0 A_2 - D_2 A_0 = -\text{Im}(\bar{\phi} D_1 \phi), \\
&D_1 A_2 - D_2 A_1 = \frac{1}{2} |\phi|^2,
\end{align*}
$$

(1)

where the unknowns are (ϕ, A_0, A_1, A_2).

As usual in Chern-Simons theory, problem (1) is invariant under gauge transformation,

$$
\phi \to \phi e^{i\chi}, \quad A_\mu \to A_\mu - \partial_\mu \chi,
$$

for any arbitrary C^∞-function χ.
This model was first proposed and studied by Jackiw & Pi, in several papers in the beginning of ’90s, and sometimes has received the name of Chern-Simons-Schrödinger equation.
This model was first proposed and studied by Jackiw & Pi, in several papers in the beginning of ’90s, and sometimes has received the name of Chern-Simons-Schrödinger equation.

The initial value problem, as well as global existence and blow-up, has been addressed in [Bergé, de Bouard & Saut, 1995; Huh, 2009-2013] for the case $p = 3$.
The existence of stationary states for (1) and general $p > 1$ has been studied recently in [Byeon, Huh & Seok, JFA 2012].
The existence of stationary states for (1) and general \(p > 1 \) has been studied recently in [Byeon, Huh & Seok, JFA 2012]. They look for the classical solutions, that is, solutions \((\phi, A_0, A_1, A_2)\) of (1) in \(C^2(\mathbb{R}^2) \times C^1(\mathbb{R}^2) \times C^1(\mathbb{R}^2) \times C^1(\mathbb{R}^2) \)
The existence of stationary states for (1) and general $p > 1$ has been studied recently in [Byeon, Huh & Seok, JFA 2012]. They look for the classical solutions, that is, solutions (ϕ, A_0, A_1, A_2) of (1) in $C^2(\mathbb{R}^2) \times C^1(\mathbb{R}^2) \times C^1(\mathbb{R}^2) \times C^1(\mathbb{R}^2)$. Moreover they seek the standing wave solutions of the form

$$
\phi(t, x) = u(|x|)e^{i\omega t}, \quad A_0(x) = k(|x|), \\
A_1(t, x) = -\frac{x_2}{|x|^2}h(|x|), \quad A_2(t, x) = \frac{x_1}{|x|^2}h(|x|),
$$

where $\omega > 0$ is a given frequency and u, k, h are real valued functions on $[0, \infty)$ and $h(0) = 0$.
With this ansatz, (1) becomes

\[
\begin{cases}
-\Delta u + \omega u + A_0u + A_1^2u + A_2^2u - |u|^{p-1}u = 0, \\
\partial_1 A_0 = -A_2 u^2, \\
\partial_2 A_0 = A_1 u^2, \\
\partial_1 A_2 - \partial_2 A_1 = \frac{1}{2} u^2.
\end{cases}
\]
With this ansatz, (1) becomes

\[
\begin{aligned}
-\Delta u + \omega u + A_0 u + A_1^2 u + A_2^2 u - |u|^{p-1} u &= 0, \\
\partial_1 A_0 &= -A_2 u^2, \\
\partial_2 A_0 &= A_1 u^2, \\
\partial_1 A_2 - \partial_2 A_1 &= \frac{1}{2} u^2.
\end{aligned}
\]

First, they solve A_0, A_1, A_2 in terms of u. The ansatz implies

\[
\frac{1}{s} h'(s) = \frac{1}{2} u^2(s).
\]
With this ansatz, (1) becomes

\[
\begin{align*}
 -\Delta u + \omega u + A_0 u + A_1^2 u + A_2^2 u - |u|^{p-1} u &= 0, \\
 \partial_1 A_0 &= -A_2 u^2, \\
 \partial_2 A_0 &= A_1 u^2, \\
 \partial_1 A_2 - \partial_2 A_1 &= \frac{1}{2} u^2.
\end{align*}
\]

First, they solve \(A_0, A_1, A_2 \) in terms of \(u \). The ansatz implies

\[
\frac{1}{s} h'(s) = \frac{1}{2} u^2(s).
\]

From the condition \(h(0) = 0 \), we get

\[
h(r) = \int_0^r \frac{s}{2} u^2(s) \, ds,
\]

and so

\[
A_1(x) = -\frac{x_2}{|x|^2} \int_0^{|x|} \frac{s}{2} u^2(s) \, ds, \quad A_2(x) = \frac{x_1}{|x|^2} \int_0^{|x|} \frac{s}{2} u^2(s) \, ds.
\]
For what concerns A_0, we have

$$k'(s) = -\frac{h(s)}{s}u^2(s).$$

By integrating both sides from r to ∞, we obtain

$$A_0(x) = k(|x|) = \zeta + \int_{|x|}^{\infty} \frac{h(s)}{s}u^2(s) \, ds,$$

where ζ is an arbitrary constant which is just the value of k at infinity.
For what concerns A_0, we have

$$k'(s) = -\frac{h(s)}{s} u^2(s).$$

By integrating both sides from r to ∞, we obtain

$$A_0(x) = k(|x|) = \xi + \int_{|x|}^{\infty} \frac{h(s)}{s} u^2(s) \, ds,$$

where ξ is an arbitrary constant which is just the value of k at infinity.

If $u \in H^1_r(\mathbb{R}^2) \cap C(\mathbb{R}^2)$, then $A_0, A_1, A_2 \in L^\infty(\mathbb{R}^2) \cap C^1(\mathbb{R}^2)$.
Therefore we need only to solve, in \mathbb{R}^2, the equation:

$$-\Delta u + \left(\omega + \xi + \frac{h^2(|x|)}{|x|^2} + \int_{|x|}^{+\infty} \frac{h(s)}{s} u^2(s) \, ds \right) u = |u|^{p-1}u.$$
Therefore we need only to solve, in \mathbb{R}^2, the equation:

$$-\Delta u + \left(\omega + \xi + \frac{h^2(|x|)}{|x|^2} + \int_{|x|}^{+\infty} \frac{h(s)}{s} u^2(s) \, ds \right) u = |u|^{p-1}u.$$

Let us show that the constant $\omega + \xi$ is a gauge invariant of the stationary solutions of the problem.
Since problem (1) is invariant under gauge transformation,

\[\phi \rightarrow \phi e^{i\chi}, \quad A_\mu \rightarrow A_\mu - \partial_\mu \chi, \]

for any arbitrary \(C^\infty \) function \(\chi \), if

\[
(\phi, A_0, A_1, A_2) = \left(u(|x|)e^{i\omega t}, k(|x|), -\frac{x_2}{|x|^2}h(|x|), \frac{x_1}{|x|^2}h(|x|) \right),
\]

is a solution of (1),
Since problem (1) is invariant under gauge transformation,

\[\phi \rightarrow \phi e^{i\chi}, \quad A_\mu \rightarrow A_\mu - \partial_\mu \chi, \]

for any arbitrary \(C^\infty \) function \(\chi \), if

\[(\phi, A_0, A_1, A_2) = \left(u(|x|)e^{i\omega t}, k(|x|), -\frac{x_2}{|x|^2} h(|x|), \frac{x_1}{|x|^2} h(|x|) \right), \]

is a solution of (1), then, taking \(\chi = ct \),

\[(\tilde{\phi}, \tilde{A}_0, A_1, A_2) = \left(u(|x|)e^{i(\omega + c)t}, k(|x|) - c, -\frac{x_2}{|x|^2} h(|x|), \frac{x_1}{|x|^2} h(|x|) \right), \]

is a solution of (1), too.
The equation

We will take $\xi = 0$ in what follows, that is,

$$\lim_{|x| \to +\infty} A_0(x) = 0,$$

which was assumed in [Jackiw & Pi, Bergé, de Bouard & Saut].
The equation

We will take $\xi = 0$ in what follows, that is,

$$\lim_{|x|\to+\infty} A_0(x) = 0,$$

which was assumed in [Jackiw & Pi, Bergé, de Bouard & Saut].

Our aim is to solve, in \mathbb{R}^2, the nonlocal equation:

$$-\Delta u + \left(\omega + \frac{h^2(|x|)}{|x|^2} + \int_{|x|}^{+\infty} \frac{h(s)}{s} u^2(s) \, ds\right) u = |u|^{p-1}u, \quad (\mathcal{P})$$

where

$$h(r) = \int_0^r \frac{s}{2} u^2(s) \, ds.$$
In [Byeon, Huh, Seok, JFA 2012] it is shown that \((P)\) is indeed the Euler-Lagrange equation of the energy functional:

\[
I_\omega : H^1_r(\mathbb{R}^2) \to \mathbb{R},
\]

defined as

\[
I_\omega (u) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + \omega u^2) \, dx \\
+ \frac{1}{8} \int_{\mathbb{R}^2} \frac{u^2(x)}{|x|^2} \left(\int_0^{|x|} s u^2(s) \, ds \right)^2 \, dx - \frac{1}{p+1} \int_{\mathbb{R}^2} |u|^{p+1} \, dx.
\]
In [Byeon, Huh, Seok, JFA 2012] it is shown that (\mathcal{P}) is indeed the Euler-Lagrange equation of the energy functional:

$$I_\omega : H^1_r(\mathbb{R}^2) \to \mathbb{R},$$

defined as

$$I_\omega (u) = \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + \omega u^2) \, dx$$

$$+ \frac{1}{8} \int_{\mathbb{R}^2} \frac{u^2(x)}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 \, dx - \frac{1}{p + 1} \int_{\mathbb{R}^2} |u|^{p+1} \, dx.$$
Since

$$\frac{1}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 = \frac{C}{|x|^2} \left(\int_{B(0,|x|)} u^2(x) \, dx \right)^2 \leq C \|u\|_{L^4(\mathbb{R}^2)}^4,$$

then, for any $u \in H^1_{\text{loc}}(\mathbb{R}^2)$,
Since
\[
\frac{1}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 = \frac{C}{|x|^2} \left(\int_{B(0,|x|)} u^2(x) \, dx \right)^2 \leq C \|u\|_{L^4(\mathbb{R}^2)}^4,
\]
then, for any \(u \in H^1_r(\mathbb{R}^2)\),
\[
\int_{\mathbb{R}^2} \frac{u^2(x)}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 \, dx < +\infty.
\]
Since
\[
\frac{1}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 = \frac{C}{|x|^2} \left(\int_{B(0,|x|)} u^2(x) \, dx \right)^2 \leq C \|u\|_{L^4(\mathbb{R}^2)}^4,
\]
then, for any \(u \in H^1_r(\mathbb{R}^2) \),
\[
\int_{\mathbb{R}^2} \frac{u^2(x)}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 \, dx < +\infty.
\]
Therefore the functional is well defined in \(H^1_r(\mathbb{R}^2) \).
A useful inequality

In [Byeon, Huh & Seok], it is proved that, for any $u \in H^1_r(\mathbb{R}^2)$,

$$\int_{\mathbb{R}^2} |u(x)|^4 \, dx \leq 2 \left(\int_{\mathbb{R}^2} |\nabla u(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 \, dx \right)^{\frac{1}{2}}.$$
A useful inequality

In [Byeon, Huh & Seok], it is proved that, for any $u \in H^1_r(\mathbb{R}^2)$,

$$
\int_{\mathbb{R}^2} |u(x)|^4 \, dx
\leq 2 \left(\int_{\mathbb{R}^2} |\nabla u(x)|^2 \, dx \right)^{1/2} \left(\int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 \, dx \right)^{1/2}.
$$

Furthermore, the equality is attained by a continuum of functions

$$
\left\{ u_l = \frac{\sqrt{8}l}{1 + |lx|^2} \in H^1_r(\mathbb{R}^2) : l \in (0, +\infty) \right\}.
$$
Byeon-Huh-Seok results: case $p > 3$

- In this case the local nonlinearity dominates the nonlocal term.
Byeon-Huh-Seok results: case $p > 3$

- In this case the local nonlinearity dominates the nonlocal term.
- I_ω is unbounded from below.
Byeon-Huh-Seok results: case \(p > 3 \)

- In this case the local nonlinearity dominates the nonlocal term.
- \(I_\omega \) is unbounded from below.
- \(I_\omega \) exhibits a mountain-pass geometry.
Byeon-Huh-Seok results: case $p > 3$

- In this case the local nonlinearity dominates the nonlocal term.
- I_ω is unbounded from below.
- I_ω exhibits a mountain-pass geometry.
- The existence of a solution is not so direct, since for $p \in (3, 5)$ the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded.
Byeon-Huh-Seok results: case $p > 3$

- In this case the local nonlinearity dominates the nonlocal term.
- I_ω is unbounded from below.
- I_ω exhibits a mountain-pass geometry.
- The existence of a solution is not so direct, since for $p \in (3,5)$ the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded.
- This problem is bypassed by using a constrained minimization taking into account the Nehari and Pohozaev identities, in the spirit of [Ruiz, JFA 2006] for the Schrödinger-Poisson equation.
Byeon-Huh-Seok results: case $p > 3$

- In this case the local nonlinearity dominates the nonlocal term.
- I_ω is unbounded from below.
- I_ω exhibits a mountain-pass geometry.
- The existence of a solution is not so direct, since for $p \in (3, 5)$ the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded.
- This problem is bypassed by using a constrained minimization taking into account the Nehari and Pohozaev identities, in the spirit of [Ruiz, JFA 2006] for the Schrödinger-Poisson equation.
- Infinitely many solutions have been found in [Huh, JMP 2012] for $p > 5$ (possibly sign-changing): this case is more easy since (PS)-condition holds.
Byeon-Huh-Seok results: case $p = 3$

This is a special case:
Byeon-Huh-Seok results: case $p = 3$

This is a special case: static solutions can be found by passing to a self-dual equation, which leads to a Liouville equation that can be solved explicitly.
Byeon-Huh-Seok results: case $p = 3$

This is a special case: static solutions can be found by passing to a self-dual equation, which leads to a Liouville equation that can be solved explicitly.

Any standing wave solutions (ϕ, A_0, A_1, A_2) of the previous type with $|\phi| > 0$ have the following form:

$$(\phi, A_0, A_1, A_2) = \left(\frac{\sqrt{8}le^{i\omega t}}{1 + |l|x|^2}, \left(\frac{2l}{1 + |l|x|^2} \right)^2 - \omega, \frac{-2l^2 x_2}{1 + |l|x|^2}, \frac{2l^2 x_1}{1 + |l|x|^2} \right),$$

where $l > 0$ is an arbitrary real constant.
Byeon-Huh-Seok results: case $1 < p < 3$

In this case, the nonlocal term prevails over the local nonlinearity.
Byeon-Huh-Seok results: case $1 < p < 3$

In this case, the nonlocal term prevails over the local nonlinearity.

Solutions are found as minimizers on a L^2-sphere.
Byeon-Huh-Seok results: case $1 < p < 3$

In this case, the nonlocal term prevails over the local nonlinearity.

Solutions are found as minimizers on a L^2-sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled.
Byeon-Huh-Seok results: case $1 < p < 3$

In this case, the nonlocal term prevails over the local nonlinearity.

Solutions are found as minimizers on a L^2-sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled.

By the gauge invariance, this is not a problem if we are looking for solutions (ϕ, A_0, A_1, A_2) of the entire system (1).
In this case, the nonlocal term prevails over the local nonlinearity.

Solutions are found as minimizers on a L^2-sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled.

By the gauge invariance, this is not a problem if we are looking for solutions (ϕ, A_0, A_1, A_2) of the entire system (1).

For what concerns the single equation (\mathcal{P}), a solution u is found only for a particular value of ω.
In this case, the nonlocal term prevails over the local nonlinearity.

Solutions are found as minimizers on a L^2-sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled.

By the gauge invariance, this is not a problem if we are looking for solutions (ϕ, A_0, A_1, A_2) of the entire system (1).

For what concerns the single equation (\mathcal{P}), a solution u is found only for a particular value of ω.

The global behavior of the energy functional I_ω is not studied.
Analogy with Schrödinger-Poisson equation?

The nonlinear Schrödinger-Poisson equation is
\[\begin{align*}
-\Delta u + u + \lambda \phi u &= |u|^{p-1}u \quad \text{in } \mathbb{R}^3, \\
-\Delta \phi &= u^2 \quad \text{in } \mathbb{R}^3,
\end{align*}\]

(2)

If \(\bar{u} \) is a critical point of the functional
\[I_\lambda(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) \, dx + \lambda \frac{4}{3} \int_{\mathbb{R}^3} (|x|^2 |\bar{u}|^2 \bar{u}^2) \, dx - \frac{1}{p+1} \int_{\mathbb{R}^3} |u|^{p+1} \, dx,
\]

and if \(\phi \bar{u} = \frac{1}{2} |x|^2 |\bar{u}|^2 \),

then \((\bar{u}, \phi \bar{u})\) is a solution of (2).
Analogy with Schrödinger-Poisson equation?

The nonlinear Schrödinger-Poisson equation is

\[
\begin{aligned}
-\Delta u + u + \lambda \phi u &= |u|^{p-1}u \quad \text{in } \mathbb{R}^3, \\
-\Delta \phi &= u^2 \quad \text{in } \mathbb{R}^3,
\end{aligned}
\]

(2)

here \(\lambda > 0 \).

If \(\bar{u} \) is a critical point of the functional

\[
\mathcal{I}_\lambda(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) \, dx + \frac{\lambda}{4} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |u|^2 \right) u^2 \, dx
\]

\[
- \frac{1}{p+1} \int_{\mathbb{R}^3} |u|^{p+1} \, dx,
\]

and if

\[
\phi_{\bar{u}} = \frac{1}{|x|} * |\bar{u}|^2,
\]

then \((\bar{u}, \phi_{\bar{u}})\) is a solution of (2).
Analogy with Schrödinger-Poisson equation?

First difference: while the “critical” exponent for problem (\(\mathcal{P}\)) is \(p = 3\), for (2) it is \(p = 2\).
Analogy with Schrödinger-Poisson equation?

First difference: while the “critical” exponent for problem (P) is $p = 3$, for (2) it is $p = 2$.

The case $1 < p < 3$ for problem (P) is similar to the case $1 < p < 2$ for (2)?
Analogy with Schrödinger-Poisson equation?

First difference: while the “critical” exponent for problem \(\mathcal{P} \) is \(p = 3 \), for (2) it is \(p = 2 \).

The case \(1 < p < 3 \) for problem \(\mathcal{P} \) is similar to the case \(1 < p < 2 \) for (2)?

In particular, in [Ruiz, JFA 2006] it is proved that if \(1 < p < 2 \), for \(\lambda \) small enough, the functional \(\mathcal{I}_\lambda \) is bounded from below and it possesses at least two critical points: one is the minimum, at negative level, the other is a mountain-pass critical point, at positive level.
On the boundedness from below of I_ω

Let $p \in \left(1, \frac{3}{2}\right)$. There exists ω_0 such that:

- if $\omega \in \left(0, \omega_0\right)$, then I_ω is unbounded from below;
- if $\omega = \omega_0$, then I_{ω_0} is bounded from below, not coercive and $\inf I_{\omega_0} < 0$;
- if $\omega > \omega_0$, then I_ω is bounded from below and coercive.

ω_0 has an explicit expression:

$$\omega_0 = 3 - \frac{p}{3} + \frac{p}{3} - \frac{1}{2} \left(3 - p\right)^2 \left(3 + p\right)^2 - \frac{p}{2} \left(3 - p\right)^2,$$

with $m = \int_{-\infty}^{+\infty} \left(2p + 1 \cosh 2 \left(p - \frac{1}{2} r\right)\right)^2 \frac{1}{1 - p} dr$.

On the boundedness from below of I_ω

Theorem (A.P. & D. Ruiz)

Let $p \in (1, 3)$. There exists ω_0 such that:

- if $\omega \in (0, \omega_0)$, then I_ω is unbounded from below;

ω_0 has an explicit expression:

$$\omega_0 = 3 - \frac{p}{3} + \frac{p}{3-p} - \frac{1}{2} \left(\frac{3}{3-p} \right)^2 - \frac{1}{2} \left(\frac{3}{3-p} \right)^{1/2} \left(\frac{2p+1}{2} \right) \left(\frac{1}{2} \right)^{1/2} \left(\frac{3}{3-p} \right)^{1/2}.$$

$$m = \int_{-\infty}^{\infty} \left(2p+1 \right) \cosh \left(\frac{1}{2} \right)^{1/2} \left(\frac{3}{3-p} \right)^{1/2} \left(\frac{2p+1}{2} \right)^{1/2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{3}{3-p} \right)^{1/2} \right) \left(\frac{2p+1}{2} \right)^{1/2} \left(\frac{1}{2} \right)^{1/2} \left(\frac{3}{3-p} \right)^{1/2} \right).$$
Theorem (A.P. & D. Ruiz)

Let $p \in (1, 3)$. There exists ω_0 such that:

- if $\omega \in (0, \omega_0)$, then I_ω is unbounded from below;
- if $\omega = \omega_0$, then I_{ω_0} is bounded from below, not coercive and $\inf I_{\omega_0} < 0$;

ω_0 has an explicit expression:

$$\omega_0 = 3 - \frac{p}{3} + \frac{p}{3} - \frac{1}{2} \left(3 - p \right)^2 - p - \frac{1}{2} \left(3 - p \right)$$

with $m = \int_{-\infty}^{+\infty} \left(2p + 1 \cosh^2 \left(\frac{p - 1}{2} r \right) \right) \frac{1}{1 - p} dr$.
On the boundedness from below of I_ω

Theorem (A.P. & D. Ruiz)

Let $p \in (1, 3)$. There exists ω_0 such that:

- if $\omega \in (0, \omega_0)$, then I_ω is unbounded from below;
- if $\omega = \omega_0$, then I_{ω_0} is bounded from below, not coercive and $\inf I_{\omega_0} < 0$;
- if $\omega > \omega_0$, then I_ω is bounded from below and coercive.

ω_0 has an explicit expression:

$$\omega_0 = 3 - \frac{p}{3} + \frac{p}{3} - \frac{1}{2} \left(\frac{3}{2} - p \right)^2 - p - \frac{1}{2} \left(\frac{3}{2} - p \right),$$

with $m = \int_{-\infty}^{+\infty} \left(2p + 1 \cosh \left(\frac{1}{2} r \right) \right) dr$.

On the boundedness from below of $I_ω$

Theorem (A.P. & D. Ruiz)

Let $p \in (1, 3)$. There exists $ω_0$ such that:

- if $ω \in (0, ω_0)$, then $I_ω$ is unbounded from below;
- if $ω = ω_0$, then $I_{ω_0}$ is bounded from below, not coercive and $\inf I_{ω_0} < 0$;
- if $ω > ω_0$, then $I_ω$ is bounded from below and coercive.

$ω_0$ has an explicit expression:

$$ω_0 = \frac{3 - p}{3 + p} \left(\frac{p^2 - 1}{2(3 - p)} \right)^{\frac{1}{2 - p}} \left(\frac{m^2(3 + p)}{p - 1} \right)^{-\frac{p - 1}{2(3 - p)}}$$

with

$$m = \int_{-\infty}^{+\infty} \left(\frac{2}{p + 1} \cosh^2 \left(\frac{p - 1}{2} r \right) \right)^{\frac{2}{1 - p}} dr.$$
Rough sketch of the proof

- I_ω is coercive when the problem is posed on a bounded domain.
Rough sketch of the proof

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists a minimizer u_n on the ball $B(0,n)$ with Dirichlet boundary conditions.
Rough sketch of the proof

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists a minimizer u_n on the ball $B(0, n)$ with Dirichlet boundary conditions.
- To prove boundedness of u_n, the problem is the possible loss of mass at infinity as $n \to +\infty$. We need to study the behavior of those masses.
Rough sketch of the proof

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists a minimizer u_n on the ball $B(0, n)$ with Dirichlet boundary conditions.
- To prove boundedness of u_n, the problem is the possible loss of mass at infinity as $n \to +\infty$. We need to study the behavior of those masses.
- If unbounded, the sequence u_n behaves as a soliton, if u_n is interpreted as a function of a single real variable.
Rough sketch of the proof

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists a minimizer u_n on the ball $B(0,n)$ with Dirichlet boundary conditions.
- To prove boundedness of u_n, the problem is the possible loss of mass at infinity as $n \to +\infty$. We need to study the behavior of those masses.
- If unbounded, the sequence u_n behaves as a soliton, if u_n is interpreted as a function of a single real variable.
- I_ω admits a natural approximation through a limit functional.
Rough sketch of the proof

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists a minimizer u_n on the ball $B(0,n)$ with Dirichlet boundary conditions.
- To prove boundedness of u_n, the problem is the possible loss of mass at infinity as $n \to +\infty$. We need to study the behavior of those masses.
- If unbounded, the sequence u_n behaves as a soliton, if u_n is interpreted as a function of a single real variable.
- I_ω admits a natural approximation through a limit functional.
- The critical points of that limit functional, and their energy, can be found explicitly, so we can find ω_0.
Let u a fixed function, and define $u_{\rho}(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_{\rho})$ as $\rho \to +\infty$.
The limit functional

Let \(u \) a fixed function, and define \(u_\rho(r) = u(r - \rho) \). Let us now estimate \(I_\omega(u_\rho) \) as \(\rho \to +\infty \).

\[
(2\pi)^{-1}I_\omega(u_\rho) = \frac{1}{2} \int_0^{+\infty} (|u'_\rho|^2 + \omega u^2_\rho) r \, dr \\
+ \frac{1}{8} \int_0^{+\infty} u^2_\rho(r) \left(\int_0^r s u^2_\rho(s) \, ds \right)^2 \, dr \\
- \frac{1}{p + 1} \int_0^{+\infty} |u_\rho|^{p+1} r \, dr.
\]
The limit functional

Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

$$(2\pi)^{-1}I_\omega(u_\rho) = \frac{1}{2} \int_{-\rho}^{+\infty} (|u'|^2 + \omega u^2)(r + \rho) \, dr$$

$$+ \frac{1}{8} \int_{-\rho}^{+\infty} \frac{u^2(r)}{r + \rho} \left(\int_{-\rho}^{r} (s + \rho) u^2(s) \, ds \right)^2 \, dr$$

$$- \frac{1}{p + 1} \int_{-\rho}^{+\infty} |u|^{p+1}(r + \rho) \, dr.$$
Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

\[
(2\pi)^{-1}I_\omega(u_\rho) \sim \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2)(r + \rho) \, dr \\
+ \frac{1}{8} \int_{-\infty}^{+\infty} \frac{u^2(r)}{r + \rho} \left(\int_{-\infty}^{r} (s + \rho)u^2(s) \, ds \right)^2 \, dr \\
- \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1}(r + \rho) \, dr.
\]
The limit functional

Let \(u \) a fixed function, and define \(u_\rho(r) = u(r - \rho) \). Let us now estimate \(I_\omega(u_\rho) \) as \(\rho \to +\infty \).

\[
(2\pi)^{-1} I_\omega(u_\rho) \sim \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2)(r + \rho) \, dr \\
+ \frac{1}{8} \int_{-\infty}^{+\infty} \frac{u^2(r)}{r + \rho} \left(\int_{-\infty}^{r} (s + \rho) u^2(s) \, ds \right)^2 \, dr \\
- \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1}(r + \rho) \, dr.
\]
The limit functional

Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

$$(2\pi)^{-1} I_\omega(u_\rho) \sim \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \rho \, dr$$

$$+ \frac{1}{8} \int_{-\infty}^{+\infty} \frac{u^2(r)}{\rho} \left(\int_{-\infty}^{r} \rho u^2(s) \, ds \right)^2 \, dr$$

$$- \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1} \rho \, dr.$$
Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

$$(2\pi)^{-1} I_\omega(u_\rho) \sim \rho \left[\frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr
ight. \right.$$

$$+ \frac{1}{8} \int_{-\infty}^{+\infty} u^2(r) \left(\int_{-\infty}^{r} u^2(s) \, ds \right)^2 \, dr$$

$$- \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr \left. \right] .$$
The limit functional

Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

\[
(2\pi)^{-1} I_\omega(u_\rho) \sim \rho \left[\frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr \right. \\
+ \frac{1}{8} \int_{-\infty}^{+\infty} u^2(r) \left(\int_{-\infty}^{r} u^2(s) \, ds \right)^2 \, dr \\
- \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr \bigg].
\]
Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

$$(2\pi)^{-1}I_\omega(u_\rho) \sim \rho \left[\frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr
ight. \left. + \frac{1}{24} \left(\int_{-\infty}^{+\infty} u^2(r) \, dr \right)^3 \right. \left. + \frac{1}{p+1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr \right].$$
The limit functional

Let u a fixed function, and define $u_\rho(r) = u(r - \rho)$. Let us now estimate $I_\omega(u_\rho)$ as $\rho \to +\infty$.

$$(2\pi)^{-1} I_\omega(u_\rho) \sim \rho \left[\frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr
ight. \\
+ \frac{1}{24} \left(\int_{-\infty}^{+\infty} u^2(r) \, dr \right)^3 \\
- \frac{1}{p + 1} \left. \int_{-\infty}^{+\infty} |u|^{p+1} \, dr \right].$$
It is natural to define the limit functional $J_\omega : H^1(\mathbb{R}) \to \mathbb{R}$,

$$J_\omega(u) = \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr + \frac{1}{24} \left(\int_{-\infty}^{+\infty} u^2 \, dr \right)^3 - \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr.$$
It is natural to define the limit functional $J_\omega : H^1(\mathbb{R}) \rightarrow \mathbb{R}$,

$$J_\omega(u) = \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr + \frac{1}{24} \left(\int_{-\infty}^{+\infty} u^2 \, dr \right)^{3/2}$$

$$- \frac{1}{p + 1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr.$$

We have

$$I_\omega(u_\rho) \sim 2\pi \rho J_\omega(u), \quad \text{as } \rho \rightarrow +\infty.$$
It is natural to define the limit functional $J_\omega : H^1(\mathbb{R}) \to \mathbb{R}$,

$$J_\omega(u) = \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr + \frac{1}{24} \left(\int_{-\infty}^{+\infty} u^2 \, dr \right)^3$$

$$- \frac{1}{p+1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr.$$

We have

$$I_\omega(u_\rho) \sim 2\pi \rho J_\omega(u), \quad \text{as } \rho \to +\infty.$$

Of course

$$\inf J_\omega < 0 \Rightarrow \inf I_\omega = -\infty.$$
It is natural to define the limit functional \(J_\omega : H^1(\mathbb{R}) \to \mathbb{R} \),

\[
J_\omega(u) = \frac{1}{2} \int_{-\infty}^{+\infty} (|u'|^2 + \omega u^2) \, dr + \frac{1}{24} \left(\int_{-\infty}^{+\infty} u^2 \, dr \right)^3 \\
- \frac{1}{p+1} \int_{-\infty}^{+\infty} |u|^{p+1} \, dr.
\]

We have

\[
I_\omega(u_\rho) \sim 2\pi \rho J_\omega(u), \quad \text{as } \rho \to +\infty.
\]

Of course

\[
\inf J_\omega < 0 \Rightarrow \inf I_\omega = -\infty.
\]

We will show

\[
\inf J_\omega < 0 \iff \inf I_\omega = -\infty.
\]
Proposition

Let $p \in (1, 3)$ and $\omega > 0$. Then:

a) J_ω is coercive and attains its infimum;
The limit functional

Proposition

Let $p \in (1, 3)$ and $\omega > 0$. Then:

a) J_ω is coercive and attains its infimum;

b) 0 is a local minimum of J_ω.
The limit functional

Proposition

Let $p \in (1, 3)$ and $\omega > 0$. Then:

a) J_ω is coercive and attains its infimum;

b) 0 is a local minimum of J_ω;

c) there exists $\omega_0 > 0$ such that $\min J_\omega < 0$ if and only if $\omega \in (0, \omega_0)$.
The limit problem

The critical points of J_ω are solutions of the nonlocal equation

$$- u'' + \omega u + \frac{1}{4} \left(\int_{-\infty}^{+\infty} u^2(s) \, ds \right)^2 u = |u|^{p-1} u, \quad \text{in } \mathbb{R}. \quad (\mathcal{P}_\infty)$$
The limit problem

The critical points of J_ω are solutions of the nonlocal equation

$$- u'' + \omega u + \frac{1}{4} \left(\int_{-\infty}^{+\infty} u^2(s) \, ds \right)^2 u = |u|^{p-1}u, \quad \text{in } \mathbb{R}. \quad (P_\infty)$$

We can find the explicit solutions of problem (P_∞).
The limit problem

The critical points of J_ω are solutions of the nonlocal equation

$$-u'' + \omega u + \frac{1}{4} \left(\int_{-\infty}^{+\infty} u^2(s) \, ds \right)^2 u = |u|^{p-1}u, \quad \text{in } \mathbb{R}. \quad (\mathcal{P}_\infty)$$

We can find the explicit solutions of problem (\mathcal{P}_∞).

Observe that (\mathcal{P}_∞) can be written as

$$-u'' + \left[\omega + \frac{1}{4} \left(\int_{-\infty}^{+\infty} u^2(s) \, ds \right)^2 \right] u = |u|^{p-1}u, \quad \text{in } \mathbb{R}.$$
The limit problem

The critical points of J_ω are solutions of the nonlocal equation

$$-u'' + \omega u + \frac{1}{4} \left(\int_{-\infty}^{+\infty} u^2(s) \, ds \right)^2 u = |u|^{p-1}u, \quad \text{in} \ \mathbb{R}. \quad (\mathcal{P}_\infty)$$

We can find the explicit solutions of problem (\mathcal{P}_∞). Observe that (\mathcal{P}_∞) can be written as

$$-u'' + \left[\omega + \frac{1}{4} \left(\int_{-\infty}^{+\infty} u^2(s) \, ds \right)^2 \right] u = |u|^{p-1}u, \quad \text{in} \ \mathbb{R}. \quad (\mathcal{P}_\infty)$$
One dimensional nonlinear Schrödinger equation

For any $k > 0$, let $w_k \in H^1(\mathbb{R})$ be the unique positive radial solution of:

$$- w''_k + kw_k = w^p_k, \quad \text{in } \mathbb{R}. \quad (3)$$
One dimensional nonlinear Schrödinger equation

For any $k > 0$, let $w_k \in H^1(\mathbb{R})$ be the unique positive radial solution of:

$$-w_k'' + kw_k = w_k^p, \quad \text{in } \mathbb{R}. \tag{3}$$

Any solution of (3) is of the form $u(r) = \pm w_k(r - \xi)$, for some $\xi \in \mathbb{R}$.

Moreover, $w_k(r) = k^{1/p - 1/2} w_1(\sqrt{kr})$.

In what follows we define $m := \int_{-\infty}^{+\infty} w_k^2 \, dr$.

For any $k > 0$, let $w_k \in H^1(\mathbb{R})$ be the unique positive radial solution of:

\[-w_k'' + kw_k = w_k^p, \quad \text{in } \mathbb{R}.\] (3)

Any solution of (3) is of the form $u(r) = \pm w_k(r - \xi)$, for some $\xi \in \mathbb{R}$. Moreover,

$$w_k(r) = k^{\frac{1}{p-1}} w_1(\sqrt{kr}),$$

where

$$w_1(r) = \left(\frac{2}{p+1} \cosh^2 \left(\frac{p-1}{2} r\right)\right)^{\frac{1}{1-p}}.$$
For any $k > 0$, let $w_k \in H^1(\mathbb{R})$ be the unique positive radial solution of:

$$-w_k'' + kw_k = w_k^p, \quad \text{in } \mathbb{R}. \quad (3)$$

Any solution of (3) is of the form $u(r) = \pm w_k(r - \xi)$, for some $\xi \in \mathbb{R}$. Moreover,

$$w_k(r) = k^{\frac{1}{p-1}} w_1(\sqrt{kr}),$$

where

$$w_1(r) = \left(\frac{2}{p+1} \cosh^2 \left(\frac{p-1}{2} r\right)\right)^{\frac{1}{1-p}}.$$

In what follows we define

$$m = \int_{-\infty}^{+\infty} w_1^2 dr.$$
Proposition

u is a nontrivial solution of (P_∞) if and only if $u(r) = w_k(r - \xi)$ for some $\xi \in \mathbb{R}$ and k a root of

$$k = \omega + \frac{1}{4} m^2 k^{\frac{5-p}{p-1}}, \ k > 0.$$ \hspace{1cm} (4)
Proposition

u is a nontrivial solution of (P_∞) if and only if $u(r) = w_k(r - \xi)$ for some $\xi \in \mathbb{R}$ and k a root of

$$k = \omega + \frac{1}{4}m^2k^{\frac{5-p}{p-1}}, \ k > 0.$$ \tag{4}

Moreover, there exists $\omega_1 > \omega_0 > 0$ such that

- if $\omega > \omega_1$, (4) has no solution and there is no nontrivial solution of (P_∞);
Proposition

u is a nontrivial solution of (P_∞) if and only if $u(r) = w_k(r - \zeta)$ for some $\zeta \in \mathbb{R}$ and k a root of

$$k = \omega + \frac{1}{4}m^2k^{\frac{5-p}{p-1}}, \quad k > 0.$$ \hfill (4)

Moreover, there exists $\omega_1 > \omega_0 > 0$ such that

- if $\omega > \omega_1$, (4) has no solution and there is no nontrivial solution of (P_∞);
- if $\omega = \omega_1$, (4) has only one solution k_0 and $w_{k_0}(r)$ is the only nontrivial solution of (P_∞);
Proposition

u is a nontrivial solution of (P_∞) if and only if $u(r) = w_k(r - \zeta)$ for some $\zeta \in \mathbb{R}$ and k a root of

$$k = \omega + \frac{1}{4}m^2k^{\frac{5-p}{p-1}}, \; k > 0.$$ (4)

Moreover, there exists $\omega_1 > \omega_0 > 0$ such that

- if $\omega > \omega_1$, (4) has no solution and there is no nontrivial solution of (P_∞);
- if $\omega = \omega_1$, (4) has only one solution k_0 and $w_{k_0}(r)$ is the only nontrivial solution of (P_∞);
- if $\omega \in (0, \omega_1)$, (4) has two solutions $k_1(\omega) < k_2(\omega)$ and $w_{k_1}(r), w_{k_2}(r)$ are the only two nontrivial solutions of (P_∞).

Proposition

\(u \) is a nontrivial solution of \((P_\infty)\) if and only if \(u(r) = w_k(r - \zeta) \)
for some \(\zeta \in \mathbb{R} \) and \(k \) a root of

\[
k = \omega + \frac{1}{4} m^2 k^{\frac{5-p}{p-1}}, \; k > 0.
\] (4)

Moreover, there exists \(\omega_1 > \omega_0 > 0 \) such that

- if \(\omega > \omega_1 \), (4) has no solution and there is no nontrivial solution of \((P_\infty)\);
- if \(\omega = \omega_1 \), (4) has only one solution \(k_0 \) and \(w_{k_0}(r) \) is the only nontrivial solution of \((P_\infty)\);
- if \(\omega \in (0, \omega_1) \), (4) has two solutions \(k_1(\omega) < k_2(\omega) \) and \(w_{k_1}(r), w_{k_2}(r) \) are the only two nontrivial solutions of \((P_\infty)\).

Moreover

\[
\omega_1 = \left(\frac{(5-p)m^2}{4(p-1)} \right)^{-\frac{p-1}{2(3-p)}} - \frac{m^2}{4} \left(\frac{(5-p)m^2}{4(p-1)} \right)^{-\frac{5-p}{2(3-p)}}.
\]
The map ψ

Let us evaluate J_ω on the curve $k \mapsto w_k$. We have

$$\psi(k) = J_\omega(w_k) = m \left[\frac{p - 5}{2(3 + p)} k^{\frac{3+p}{2(p-1)}} + \frac{\omega}{2} k^{\frac{5-p}{2(p-1)}} + \frac{m^2}{24} k^{\frac{3(5-p)}{2(p-1)}} \right].$$
Let us evaluate J_ω on the curve $k \mapsto w_k$. We have

$$
\psi(k) = J_\omega(w_k) = m \left[\frac{p - 5}{2(3 + p)} k^{\frac{3+p}{2(p-1)}} + \frac{\omega}{2} k^{\frac{5-p}{2(p-1)}} + \frac{m^2}{24} k^{\frac{3(5-p)}{2(p-1)}} \right].
$$

Then:

$$
\frac{d}{dk} \psi(k) = m \ k^{\frac{7-3p}{2(p-1)}} \frac{5 - p}{4(p-1)} \left[-k + \omega + \frac{1}{4} m^2 k^{\frac{5-p}{p-1}} \right].
$$
The map ψ

Let us evaluate J_ω on the curve $k \mapsto \omega_k$. We have

$$\psi(k) = J_\omega(\omega_k) = m \left[\frac{p - 5}{2(3 + p)} k^{\frac{3+p}{2(p-1)}} + \frac{\omega}{2} k^{\frac{5-p}{2(p-1)}} + \frac{m^2}{24} k^{\frac{3(5-p)}{2(p-1)}} \right].$$

Then:

$$\frac{d}{dk} \psi(k) = m \ k^{\frac{7-3p}{2(p-1)}} \ \frac{5 - p}{4(p - 1)} \left[-k + \omega + \frac{1}{4} m^2 k^{\frac{5-p}{p-1}} \right].$$

The roots of (4) are exactly the critical points of ψ.
The map \(\psi \)

Let us evaluate \(J_\omega \) on the curve \(k \mapsto w_k \). We have

\[
\psi(k) = J_\omega(w_k) = m \left[\frac{p - 5}{2(3 + p)} k^{\frac{3+p}{2(p-1)}} + \frac{\omega}{2} k^{\frac{5-p}{2(p-1)}} + \frac{m^2}{24} k^{\frac{3(5-p)}{2(p-1)}} \right].
\]

Then:

\[
\frac{d}{dk} \psi(k) = m k^{\frac{7-3p}{2(p-1)}} \frac{5 - p}{4(p - 1)} \left[-k + \omega + \frac{1}{4} m^2 k^{\frac{5-p}{p-1}} \right].
\]

The roots of (4) are exactly the critical points of \(\psi \).

Since

\[
\frac{5 - p}{2(p - 1)} < \frac{3 + p}{2(p - 1)} < \frac{3(5 - p)}{2(p - 1)},
\]

\(\psi \) is increasing near 0 (for \(\omega > 0 \)) and near infinity.
The map ψ

- If $\omega > \omega_1$, ψ is positive and increasing without critical points.
The map ψ

- If $\omega > \omega_1$, ψ is positive and increasing without critical points.
- If $\omega = \omega_1$, ψ is still positive and increasing, but it has an inflection point at $k = k_0$.
The map ψ

- If $\omega > \omega_1$, ψ is positive and increasing without critical points.
- If $\omega = \omega_1$, ψ is still positive and increasing, but it has an inflection point at $k = k_0$.
- If $\omega \in (\omega_0, \omega_1)$, ψ has a local maximum and minimum attained at k_1 and k_2, respectively, and w_{k_2} is a local minimizer of J_ω with $J_\omega(w_{k_2}) > 0$.
The map ψ

- If $\omega > \omega_1$, ψ is positive and increasing without critical points.
- If $\omega = \omega_1$, ψ is still positive and increasing, but it has an inflection point at $k = k_0$.
- If $\omega \in (\omega_0, \omega_1)$, ψ has a local maximum and minimum attained at k_1 and k_2, respectively, and w_{k_2} is a local minimizer of J_{ω} with $J_{\omega}(w_{k_2}) > 0$.
- If $\omega = \omega_0$, $\psi(k_2) = 0$. Observe then, in this case, the minimum of J_{ω_0} is 0, and is attained at 0 and w_{k_2}.

The map ψ

- If $\omega > \omega_1$, ψ is positive and increasing without critical points.
- If $\omega = \omega_1$, ψ is still positive and increasing, but it has an inflection point at $k = k_0$.
- If $\omega \in (\omega_0, \omega_1)$, ψ has a local maximum and minimum attained at k_1 and k_2, respectively, and w_{k_2} is a local minimizer of J_ω with $J_\omega(w_{k_2}) > 0$.
- If $\omega = \omega_0$, $\psi(k_2) = 0$. Observe then, in this case, the minimum of J_{ω_0} is 0, and is attained at 0 and w_{k_2}.
- If $\omega \in (0, \omega_0)$, $\psi(k_2) < 0$ and then w_{k_2} is the unique global minimizer of J_ω and $J_\omega(w_{k_2}) < 0$.
The threshold value ω_0

In order to get the value of ω_0, observe that $J_{\omega_0}(w_{k_2}) = 0$.
The threshold value ω_0

In order to get the value of ω_0, observe that $J_{\omega_0}(w_{k_2}) = 0$.

Therefore, $\omega_0 > 0$ solves:

$$
\begin{cases}
\frac{d}{dk} \psi(k) = 0, \\
\psi(k) = 0.
\end{cases}
$$

and we infer that

$$
\omega_0 = \frac{3 - p}{3 + p} 3^{\frac{p-1}{2(3-p)}} 2^{\frac{2}{3-p}} \left(\frac{m^2(3 + p)}{p - 1} \right)^{-\frac{p-1}{2(3-p)}}.
$$
The values \(\omega_0(p) < \omega_1(p) \), for \(p \in (1, 3) \).

We cannot obtain a more explicit expression of \(m \) depending on \(p \).
The values $\omega_0(p) < \omega_1(p)$, for $p \in (1, 3)$.

We cannot obtain a more explicit expression of m depending on p.

For some specific values of p, m can be explicitly computed, and hence ω_0 and ω_1. For instance, if $p = 2$, $m = 6$, $\omega_1 = \frac{2}{9\sqrt{3}}$ and $\omega_0 = \frac{2}{5\sqrt{15}}$.
The values $\omega_0(p) < \omega_1(p)$, for $p \in (1, 3)$.

We cannot obtain a more explicit expression of m depending on p.

For some specific values of p, m can be explicitly computed, and hence ω_0 and ω_1. For instance, if $p = 2$, $m = 6$, $\omega_1 = \frac{2}{9\sqrt{3}}$ and $\omega_0 = \frac{2}{5\sqrt{15}}$. More in general, we have
On the boundedness from below of I_ω

Theorem (A.P. & D. Ruiz)

Let $p \in (1, 3)$. We have:

- if $\omega \in (0, \omega_0)$, then I_ω is unbounded from below;
- if $\omega = \omega_0$, then I_{ω_0} is bounded from below, not coercive and $\inf I_{\omega_0} < 0$;
- if $\omega > \omega_0$, then I_ω is bounded from below and coercive.
On the boundedness from below of I_ω

Theorem (A.P. & D. Ruiz)

Let $p \in (1, 3)$. We have:

- if $\omega \in (0, \omega_0)$, then I_ω is unbounded from below;
- if $\omega = \omega_0$, then I_{ω_0} is bounded from below, not coercive and $\inf I_{\omega_0} < 0$;
- if $\omega > \omega_0$, then I_ω is bounded from below and coercive.

Since $J_\omega(w_{k_2}) < 0$, if $\omega \in (0, \omega_0)$, and

$$I_\omega(w_{k_2}(\cdot - \rho)) \sim 2\pi \rho J_\omega(w_{k_2}), \text{ as } \rho \to +\infty,$$

the first part is proved.
Sketch of the proof: case $\omega \geq \omega_0$
Sketch of the proof: case $\omega \geq \omega_0$

- I_ω is coercive when the problem is posed on a bounded domain.
Sketch of the proof: case $\omega \geq \omega_0$

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists u_n a minimizer for $I_\omega|_{H^1_{0,r}(B(0,n))}$. Moreover,

$$I_\omega(u_n) \to \inf I_\omega, \text{ as } n \to +\infty.$$
Sketch of the proof: case $\omega \geq \omega_0$

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists u_n a minimizer for $I_\omega|_{H^1_{0,r}(B(0,n))}$. Moreover,
 \[I_\omega(u_n) \to \inf I_\omega, \text{ as } n \to +\infty. \]
- If u_n is bounded, then $I_\omega(u_n)$ is also bounded and therefore $\inf I_\omega$ is finite. In what follows we assume that u_n is an unbounded sequence.
Sketch of the proof: case $\omega \geq \omega_0$

- I_ω is coercive when the problem is posed on a bounded domain.
- There exists u_n a minimizer for $I_\omega|_{H^1_{0,r}(B(0,n))}$. Moreover,

$$I_\omega(u_n) \to \inf I_\omega, \text{ as } n \to +\infty.$$

- If u_n is bounded, then $I_\omega(u_n)$ is also bounded and therefore $\inf I_\omega$ is finite. In what follows we assume that u_n is an unbounded sequence.
- If u_n is interpreted as a function of a single real variable, u_n does not vanish.
Sketch of the proof: case $\omega \geq \omega_0$

- Let $\xi_n \in \mathbb{R}$ be the largest “center of mass” of u_n: we have that $\xi_n \sim \|u_n\|^2$.
Sketch of the proof: case $\omega \geq \omega_0$

- Let $\bar{\zeta}_n \in R$ be the largest “center of mass” of u_n: we have that $\bar{\zeta}_n \sim \|u_n\|^2$.
- Define $\psi_n : [0, +\infty] \to [0, 1]$ be a smooth function such that

$$
\psi_n(r) = \begin{cases}
0, & \text{if } r \leq \bar{\zeta}_n - 3\|u_n\|, \\
1, & \text{if } r \geq \bar{\zeta}_n + 2\|u_n\|.
\end{cases}
$$
Sketch of the proof: case $\omega \geq \omega_0$

- Let $\bar{\zeta}_n \in R$ be the largest “center of mass” of u_n: we have that $\bar{\zeta}_n \sim \|u_n\|^2$.
- Define $\psi_n : [0, +\infty] \to [0, 1]$ be a smooth function such that
 \[
 \psi_n(r) = \begin{cases}
 0, & \text{if } r \leq \bar{\zeta}_n - 3\|u_n\|, \\
 1, & \text{if } r \geq \bar{\zeta}_n + 2\|u_n\|.
 \end{cases}
 \]
- Let’s estimate $I_\omega(u_n)$ with $I_\omega(\psi_n u_n)$ and $I_\omega ((1 - \psi_n)u_n)$:
 \[
 I_\omega(u_n) \geq I_\omega(u_n \psi_n) + I_\omega(u_n(1 - \psi_n))
 + c\|u_n(1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(\|u_n\|).
 \]
Sketch of the proof: conclusion for $\omega > \omega_0$

Since

$$I_\omega(u_n \psi_n) = 2\pi \xi_n J_\omega(u_n \psi_n) + O(\|u_n\|).$$
Sketch of the proof: conclusion for $\omega > \omega_0$

Since

$$I_\omega(u_n \psi_n) = 2\pi \xi_n J_\omega(u_n \psi_n) + O(\|u_n\|).$$

we have

$$I_\omega(u_n) \geq 2\pi \xi_n J_\omega(u_n \psi_n) + I_\omega(u_n (1 - \psi_n))
+ c\|u_n(1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(\|u_n\|).$$
Sketch of the proof: conclusion for $\omega > \omega_0$

- Since
 \[
 I_\omega(u_n \psi_n) = 2\pi \xi_n I_\omega(u_n \psi_n) + O(\|u_n\|).
 \]
 we have
 \[
 I_\omega(u_n) \geq 2\pi \xi_n I_\omega(u_n \psi_n) + I_\omega(u_n(1 - \psi_n))
 + c\|u_n(1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(\|u_n\|).
 \]

- Since $\|u_n \psi_n\|_{H^1(\mathbb{R})} \geq c$, we can prove that $J_\omega(u_n \psi_n) \to c > 0$.
Sketch of the proof: conclusion for $\omega > \omega_0$

Since

$$I_\omega(u_n \psi_n) = 2\pi \xi_n J_\omega(u_n \psi_n) + O(\|u_n\|).$$

we have

$$I_\omega(u_n) \geq 2\pi \xi_n J_\omega(u_n \psi_n) + I_\omega(u_n(1 - \psi_n))$$

$$+ c\|u_n(1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(\|u_n\|).$$

Since $\|u_n \psi_n\|_{H^1(\mathbb{R})} \geq c$, we can prove that $J_\omega(u_n \psi_n) \to c > 0$.

Since $\xi_n \sim \|u_n\|^2$, we infer that $I_\omega(u_n) > I_\omega(u_n(1 - \psi_n)).$
Sketch of the proof: conclusion for $\omega > \omega_0$

- Since

 $$I_\omega(u_n \psi_n) = 2\pi \xi_n J_\omega(u_n \psi_n) + O(\|u_n\|).$$

 we have

 $$I_\omega(u_n) \geq 2\pi \xi_n J_\omega(u_n \psi_n) + I_\omega(u_n(1 - \psi_n)) + c\|u_n(1 - \psi_n)\|^2_{L^2(\mathbb{R}^2)} + O(\|u_n\|).$$

- Since $\|u_n \psi_n\|_{H^1(\mathbb{R})} \geq c$, we can prove that $J_\omega(u_n \psi_n) \to c > 0$.
- Since $\xi_n \sim \|u_n\|^2$, we infer that $I_\omega(u_n) > I_\omega(u_n(1 - \psi_n))$.
- Contradiction with the definition of u_n, which proves that $\inf I_\omega > -\infty$.

Sketch of the proof: conclusion for $\omega > \omega_0$

- Let us now show that I_ω is coercive.
Let us now show that I_ω is coercive.

Take $u_n \in H^1_r(\mathbb{R}^2)$ an unbounded sequence, and assume that $I_\omega(u_n)$ is bounded from above.
Let us now show that I_ω is coercive.

Take $u_n \in H^1_r(\mathbb{R}^2)$ an unbounded sequence, and assume that $I_\omega(u_n)$ is bounded from above.

$\|u_n\|_{L^2(\mathbb{R}^2)} \to +\infty$.

Sketch of the proof: conclusion for $\omega > \omega_0$

- Let us now show that I_ω is coercive.
- Take $u_n \in H^1_r(\mathbb{R}^2)$ an unbounded sequence, and assume that $I_\omega(u_n)$ is bounded from above.
- $\|u_n\|_{L^2(\mathbb{R}^2)} \to +\infty$.
- Then for any $\omega_0 < \omega' < \omega$,

$$I_{\omega'}(u_n) = I_\omega(u_n) + \frac{\omega' - \omega}{2} \|u_n\|^2_{L^2(\mathbb{R}^2)} \to -\infty,$$

a contradiction, since we know that $I_{\omega'}$ is bounded from below.
Sketch of the proof: conclusion for \(\omega = \omega_0 \)
Sketch of the proof: conclusion for $\omega = \omega_0$

- We reach a contradiction unless $J_{\omega_0}(u_n\psi_n) \to 0$.
Sketch of the proof: conclusion for $\omega = \omega_0$

- We reach a contradiction unless $J_{\omega_0}(u_n \psi_n) \to 0$.
- This implies that $\psi_n u_n (\cdot - \xi_n) \to \omega_{k_2}$, where ω_{k_2} is the nontrivial minimum of J_{ω_0}.
Sketch of the proof: conclusion for $\omega = \omega_0$

- We reach a contradiction unless $J_{\omega_0}(u_n \psi_n) \to 0$.
- This implies that $\psi_n u_n (\cdot - \xi_n) \to \omega_{k_2}$, where ω_{k_2} is the nontrivial minimum of J_{ω_0}.
- With this extra information, we have a better estimate:

\[
I_{\omega_0}(u_n) \geq 2\pi \xi_n J_{\omega_0}(u_n \psi_n) + I_{\omega_0}(u_n(1 - \psi_n)) \\
+ c\|u_n(1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(1).
\]
Sketch of the proof: conclusion for $\omega = \omega_0$

- We reach a contradiction unless $J_{\omega_0}(u_n \psi_n) \to 0$.
- This implies that $\psi_n u_n (\cdot - \xi_n) \to \omega_{k_2}$, where ω_{k_2} is the nontrivial minimum of J_{ω_0}.
- With this extra information, we have a better estimate:

$$I_{\omega_0}(u_n) \geq 2\pi \xi_n J_{\omega_0}(u_n \psi_n) + I_{\omega_0}(u_n (1 - \psi_n)) + c \|u_n (1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(1).$$

- Therefore

$$I_{\omega_0}(u_n) \geq I_{(\omega_0 + 2c)}(u_n (1 - \psi_n)) + O(1).$$
Sketch of the proof: conclusion for $\omega = \omega_0$

- We reach a contradiction unless $J_{\omega_0}(u_n \psi_n) \to 0$.
- This implies that $\psi_n u_n (\cdot - \xi_n) \to \omega_{k_2}$, where ω_{k_2} is the nontrivial minimum of J_{ω_0}.
- With this extra information, we have a better estimate:

$$I_{\omega_0}(u_n) \geq 2\pi \xi_n J_{\omega_0}(u_n \psi_n) + I_{\omega_0}(u_n(1 - \psi_n)) + c\|u_n(1 - \psi_n)\|_{L^2(\mathbb{R}^2)}^2 + O(1).$$

- Therefore

$$I_{\omega_0}(u_n) \geq I_{(\omega_0 + 2c)}(u_n(1 - \psi_n)) + O(1).$$

- We already know that $I_{(\omega_0 + 2c)}$ is bounded from below, and hence $\inf I_{\omega_0} > -\infty$.
On the solutions of (\mathcal{P})
On the solutions of (\mathcal{P})

Theorem (On the boundedness of I_ω)

Let $p \in (1,3)$. We have:

- if $\omega \in (0,\omega_0)$, then I_ω is unbounded from below;
- if $\omega = \omega_0$, then I_{ω_0} is bounded from below, not coercive and $\inf I_{\omega_0} < 0$;
- if $\omega > \omega_0$, then I_ω is bounded from below and coercive.

Theorem (A.P. & D. Ruiz)

- For almost every $\omega \in (0,\omega_0]$, (\mathcal{P}) admits a positive solution.

Moreover, there exist $\bar{\omega} > \tilde{\omega} > \omega_0$ such that:

- if $\omega > \bar{\omega}$, then (\mathcal{P}) has no solutions different from zero;
- if $\omega \in (\omega_0,\tilde{\omega})$, then (\mathcal{P}) admits at least two positive solutions: one of them is a global minimizer for I_ω and the other is a mountain-pass solution.
On the solutions of \((\mathcal{P})\)

Theorem (On the boundedness of \(I_\omega\))

Let \(p \in (1, 3)\). We have:

- if \(\omega \in (0, \omega_0)\), then \(I_\omega\) is unbounded from below;
- if \(\omega = \omega_0\), then \(I_{\omega_0}\) is bounded from below, not coercive and \(\inf I_{\omega_0} < 0\);
- if \(\omega > \omega_0\), then \(I_\omega\) is bounded from below and coercive.

Theorem (A.P. & D. Ruiz)

- For almost every \(\omega \in (0, \omega_0]\), \((\mathcal{P})\) admits a positive solution.

Moreover, there exist \(\bar{\omega} > \tilde{\omega} > \omega_0\) such that:

- if \(\omega > \bar{\omega}\), then \((\mathcal{P})\) has no solutions different from zero;
- if \(\omega \in (\omega_0, \tilde{\omega})\), then \((\mathcal{P})\) admits at least two positive solutions: one of them is a global minimizer for \(I_\omega\) and the other is a mountain-pass solution.
Sketch of the proof: case $\omega \in (0, \omega_0]$
Sketch of the proof: case $\omega \in (0, \omega_0]$

Performing the rescaling $u \mapsto u_\omega = \sqrt{\omega} \, u(\sqrt{\omega} \cdot)$, we get

$$I_\omega(u_\omega) = \omega \left[\frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + u^2) \, dx + \frac{1}{8} \int_{\mathbb{R}^2} \frac{u^2(x)}{|x|^2} \left(\int_0^{|x|} su^2(s) \, ds \right)^2 \, dx
ight. $$

$$\left. - \frac{\omega^{p-3}}{p+1} \int_{\mathbb{R}^2} |u|^{p+1} \, dx \right].$$
Sketch of the proof: case $\omega \in (0, \omega_0]$

Performing the rescaling $u \mapsto u_\omega = \sqrt{\omega} \ u(\sqrt{\omega} \cdot)$, we get

$$I_\omega(u_\omega) = \omega \left[\frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + u^2) \, dx + \frac{1}{8} \int_{\mathbb{R}^2} \frac{u^2(x)}{|x|^2} \left(\int_0^{|x|} s u^2(s) \, ds \right)^2 \, dx
ight. $$

$$- \frac{\omega^{p-3}}{p+1} \int_{\mathbb{R}^2} |u|^{p+1} \, dx \right].$$

The geometrical assumptions of the Mountain Pass Theorem are satisfied and we can apply the monotonicity trick [Struwe, Jeanjean], finding a solution for almost every $\omega \in (0, \omega_0]$.
Sketch of the proof: case $\omega > \omega_0$

Recall that, for any $u \in H^1_r(\mathbb{R}^2)$,

$$
\int_{\mathbb{R}^2} |u(x)|^4 \, dx
\leq 2\left(\int_{\mathbb{R}^2} |\nabla u(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \left(\int_0^{|x|} s u^2(s) \, ds \right)^2 \, dx \right)^{\frac{1}{2}}.
$$
Sketch of the proof: case $\omega > \omega_0$

Recall that, for any $u \in H^1_r(\mathbb{R}^2)$,

$$\int_{\mathbb{R}^2} |u(x)|^4 \, dx \leq 2 \left(\int_{\mathbb{R}^2} |\nabla u(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \left(\int_0^|x| su^2(s) \, ds \right)^2 \, dx \right)^{\frac{1}{2}}.$$

Let u be a solution of (\mathcal{P}). We multiply (\mathcal{P}) by u and integrate. By this inequality, we get

$$0 \geq \frac{1}{4} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \int_{\mathbb{R}^2} \left(\omega u^2 + \frac{3}{4} u^4 - |u|^{p+1} \right) \, dx.$$
Sketch of the proof: case $\omega > \omega_0$

Recall that, for any $u \in H^1_r(\mathbb{R}^2)$,

\[
\int_{\mathbb{R}^2} |u(x)|^4 \, dx
\leq 2 \left(\int_{\mathbb{R}^2} |\nabla u(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^2} \frac{u^2}{|x|^2} \left(\int_0^{|x|} s u^2(s) \, ds \right)^2 \, dx \right)^{\frac{1}{2}}.
\]

Let u be a solution of (\mathcal{P}). We multiply (\mathcal{P}) by u and integrate. By this inequality, we get

\[
0 \geq \frac{1}{4} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \int_{\mathbb{R}^2} \left(\omega u^2 + \frac{3}{4} u^4 - |u|^{p+1} \right) \, dx.
\]

Since there exists $\bar{\omega} > 0$ such that, for $\omega > \bar{\omega}$, the function $t \mapsto \omega t^2 + \frac{3}{4} t^4 - |t|^{p+1}$ is non-negative, then $u = 0$.
Sketch of the proof: case $\omega > \omega_0$

Since $\inf I_{\omega_0} < 0$, there exists $\tilde{\omega} > \omega_0$ such that $\inf I_{\omega} < 0$ for $\omega \in (\omega_0, \tilde{\omega})$.

Being I_{ω} coercive and weakly lower semicontinuous, the infimum is attained (at negative level). If $\omega \in (\omega_0, \tilde{\omega})$, the functional satisfies the geometrical assumptions of the Mountain Pass Theorem.

Since I_{ω} is coercive, (PS) sequences are bounded. We find a second solution (a mountain-pass solution) which is at a positive energy level.
Sketch of the proof: case $\omega > \omega_0$

- Since $\inf I_{\omega_0} < 0$, there exists $\tilde{\omega} > \omega_0$ such that $\inf I_\omega < 0$ for $\omega \in (\omega_0, \tilde{\omega})$.
Sketch of the proof: case \(\omega > \omega_0 \)

- Since \(\inf I_{\omega_0} < 0 \), there exists \(\tilde{\omega} > \omega_0 \) such that \(\inf I_\omega < 0 \) for \(\omega \in (\omega_0, \tilde{\omega}) \).

- Being \(I_\omega \) coercive and weakly lower semicontinuous, the infimum is attained (at negative level).
Sketch of the proof: case $\omega > \omega_0$

- Since $\inf I_{\omega_0} < 0$, there exists $\tilde{\omega} > \omega_0$ such that $\inf I_\omega < 0$ for $\omega \in (\omega_0, \tilde{\omega})$.
- Being I_ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level).
- If $\omega \in (\omega_0, \tilde{\omega})$, the functional satisfies the geometrical assumptions of the Mountain Pass Theorem.
Sketch of the proof: case $\omega > \omega_0$

- Since $\inf I_{\omega_0} < 0$, there exists $\tilde{\omega} > \omega_0$ such that $\inf I_\omega < 0$ for $\omega \in (\omega_0, \tilde{\omega})$.

- Being I_ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level).

- If $\omega \in (\omega_0, \tilde{\omega})$, the functional satisfies the geometrical assumptions of the Mountain Pass Theorem.

- Since I_ω is coercive, (PS) sequences are bounded.
Sketch of the proof: case $\omega > \omega_0$

- Since $\inf I_{\omega_0} < 0$, there exists $\tilde{\omega} > \omega_0$ such that $\inf I_\omega < 0$ for $\omega \in (\omega_0, \tilde{\omega})$.
- Being I_ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level).
- If $\omega \in (\omega_0, \tilde{\omega})$, the functional satisfies the geometrical assumptions of the Mountain Pass Theorem.
- Since I_ω is coercive, (PS) sequences are bounded.
- We find a second solution (a mountain-pass solution) which is at a positive energy level.