On the interplay between Lorentzian Causality and Finsler metrics of Randers type

Erasmo Caponio, Miguel Angel Javaloyes and Miguel Sánchez

Universidad de Granada

International congress in Lorentzian geometry
Martina Franca, July 8-11 (2009)
Interplay between Randers metrics and stationary spacetimes
Interplay between Randers metrics and stationary spacetimes

$(\mathbb{R} \times S, l)$ is a standard stationary spacetime

S is naturally endowed with a Randers metric F called the Fermat metric
Interplay between Randers metrics and stationary spacetimes

Causal properties of \((\mathbb{R} \times S, I)\)

Hopf-Rinow properties of \((S, F)\)
Interplay between Randers metrics and stationary spacetimes

Global hyperbolicity of \((\mathbb{R} \times S, I)\)

\[\bar{B}^+(p, r) \cap \bar{B}^-(p, r) \text{ compact}\]

\(\forall p \in S\) and \(\forall r > 0\) in \((S, F)\)
Cauchy horizons of a subset A contained in a slice $\{t_0\} \times S$ are the graph of the distance function to the complementary A^c in (S, F).
Interplay between Randers metrics and stationary spacetimes

Differential properties of the Cauchy horizons in \((\mathbb{R} \times S, I)\)

\[H^+(A) \]

Differential properties of the distance function to a subset in \((S, F)\)
Program of the talk

Preliminaries:
- Causality (the causal ladder)
- Standard stationary spacetimes and Fermat metrics
- Randers and Finsler metrics

First application of the Interplay: Causal properties in terms of Hopf-Rinow properties of the Fermat metric

Second application: equivalence of differentiability of Cauchy horizons and the distance function to a subset.

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics
Program of the talk

- Preliminaries:
Program of the talk

- Preliminaries:
 - Causality (the causal ladder)
Program of the talk

- Preliminaries:
 - Causality (the causal ladder)
 - Standard stationary spacetimes and Fermat metrics
Program of the talk

- Preliminaries:
 - Causality (the causal ladder)
 - Standard stationary spacetimes and Fermat metrics
 - Randers and Finsler metrics

First application of the Interplay: Causal properties in terms of Hopf-Rinow properties of the Fermat metric

Second application: equivalence of differentiability of Cauchy horizons and the distance function to a subset.
Preliminaries:
 - Causality (the causal ladder)
 - Standard stationary spacetimes and Fermat metrics
 - Randers and Finsler metrics

First application of the Interplay: Causal properties in terms of Hopf-Rinow properties of the Fermat metric
Program of the talk

- Preliminaries:
 - Causality (the causal ladder)
 - Standard stationary spacetimes and Fermat metrics
 - Randers and Finsler metrics

- First application of the Interplay: Causal properties in terms of Hopf-Rinow properties of the Fermat metric

- Second application: equivalence of differentiability of Cauchy horizons and the distance function to a subset.
Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- Chronological if $p \not\in I^+(p)$ for every $p \in M$.
- Distinguishing if $I^+(p) = I^+(q)$ or $I^-(p) = I^-(q)$ implies $p = q$.
- Causally continuous if it is distinguishing and the Chronological cones $I^\pm(p)$ are continuous in $p \in M$.
- Causally simple if the causal cones $J^\pm(p)$ are closed for every $p \in M$.
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset S that meets exactly once every inextendible timelike curve).

Globally hyperbolic \Downarrow \ Causally simple \Downarrow \ Causally continuous \Downarrow \ Stably causal \Downarrow \ Strongly causal \Downarrow \ Distinguishing \Downarrow \ Causal \Downarrow \ Chronological \Downarrow \ Non-totally vicious
Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- **Chronological** if \(p \not\in I^+(p) \) for every \(p \in M \).

\[
\begin{array}{c}
\text{Globally hyperbolic} \\
\Downarrow \\
\text{Causally simple} \\
\Downarrow \\
\text{Causally continuous} \\
\Downarrow \\
\text{Stably causal} \\
\Downarrow \\
\text{Strongly causal} \\
\Downarrow \\
\text{Distinguishing} \\
\Downarrow \\
\text{Causal} \\
\Downarrow \\
\text{Chronological} \\
\Downarrow \\
\text{Non-totally vicious}
\end{array}
\]
Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- **Chronological** if \(p \not\in I^+(p) \) for every \(p \in M \).
- **Distinguishing** if \(I^+(p) = I^+(q) \) or \(I^-(p) = I^-(q) \) implies \(p = q \)

Globally hyperbolic \(\Downarrow \)
- **Causally simple**
- **Causally continuous**
- **Stably causal**
- **Strongly causal**
- **Distinguishing**
- **Causal**
- **Chronological**
- **Non-totally vicious**
Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- **Chronological** if \(p \not\in I^+(p) \) for every \(p \in M \).
- **Distinguishing** if \(I^+(p) = I^+(q) \) or \(I^-(p) = I^-(q) \) implies \(p = q \).
- **Causally continuous** if it is distinguishing and the Chronological cones \(I^{\pm}(p) \) are continuous in \(p \in M \).

The causal ladder:

```
Globally hyperbolic
↓
Causally simple
↓
Causally continuous
↓
Stably causal
↓
Strongly causal
↓
Distinguishing
↓
Causal
↓
Chronological
↓
Non-totally vicious
```
Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- **Chronological** if \(p \notin I^+(p) \) for every \(p \in M \).
- **Distinguishing** if \(I^+(p) = I^+(q) \) or \(I^-(p) = I^-(q) \) implies \(p = q \).
- **Causally continuous** if it is distinguishing and the Chronological cones \(I^\pm(p) \) are continuous in \(p \in M \).
- **Causally simple** if the causal cones \(J^\pm(p) \) are closed for every \(p \in M \).

\[
\text{Globally hyperbolic} \quad \Downarrow \\
\text{Causally simple} \quad \Downarrow \\
\text{Causally continuous} \quad \Downarrow \\
\text{Stably causal} \quad \Downarrow \\
\text{Strongly causal} \quad \Downarrow \\
\text{Distinguishing} \quad \Downarrow \\
\text{Causal} \quad \Downarrow \\
\text{Chronological} \quad \Downarrow \\
\text{Non-totally vicious}
\]
The causal ladder

Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- **Chronological** if \(p \not\in I^+(p) \) for every \(p \in M \).
- **Distinguishing** if \(I^+(p) = I^+(q) \) or \(I^-(p) = I^-(q) \) implies \(p = q \).
- **Causally continuous** if it is distinguishing and the Chronological cones \(I^{\pm}(p) \) are continuous in \(p \in M \).
- **Causally simple** if the causal cones \(J^{\pm}(p) \) are closed for every \(p \in M \).
- **Globally hyperbolic** if it admits a Cauchy hypersurface (a subset \(S \) that meets exactly once every inextendible timelike curve).

\[\text{Globally hyperbolic} \Downarrow \]
\[\text{Causally simple} \Downarrow \]
\[\text{Causally continuous} \Downarrow \]
\[\text{Stably causal} \Downarrow \]
\[\text{Strongly causal} \Downarrow \]
\[\text{Distinguishing} \Downarrow \]
\[\text{Causal} \Downarrow \]
\[\text{Chronological} \Downarrow \]
\[\text{Non-totally vicious} \]
Standard Stationary spacetimes

A spacetime is Stationary if it admits a timelike Killing field. Standard Stationary means that $M = \mathbb{R} \times S$ and $g((\tau, y), (\tau, y)) = g_0(y, y) + 2g_0(\delta, y)\tau - \beta(x)\tau^2$, where (S, g_0) is Riemannian and $\beta(x) > 0$.

How restrictive is to consider standard stationary spacetimes rather than stationary?
A spacetime is **Stationary** if it admits a timelike Killing field.
A spacetime is **Stationary** if it admits a timelike Killing field. **Standard Stationary** means that \(M = \mathbb{R} \times S \) and

\[
g((\tau, y), (\tau, y)) = g_0(y, y) + 2g_0(\delta, y)\tau - \beta(x)\tau^2,
\]

where \((S, g_0)\) is Riemannian and \(\beta(x) > 0\).
A spacetime is **Stationary** if it admits a timelike Killing field.

Standard Stationary means that \(M = \mathbb{R} \times S \) and

\[
g((\tau, y), (\tau, y)) = g_0(y, y) + 2g_0(\delta, y)\tau - \beta(x)\tau^2,
\]

where \((S, g_0)\) is Riemannian and \(\beta(x) > 0\).

How restrictive is to consider standard stationary spacetimes rather than stationary?
Standard Stationary spacetimes

- A spacetime is **Stationary** if it admits a timelike Killing field.
- **Standard Stationary** means that $M = \mathbb{R} \times S$ and
 \[
g((\tau, y), (\tau, y)) = g_0(y, y) + 2g_0(\delta, y)\tau - \beta(x)\tau^2,
\]
 where (S, g_0) is Riemannian and $\beta(x) > 0$.
- How restrictive is it to consider standard stationary spacetimes rather than stationary?

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime \(L \) is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard.
Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime L is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard.

Sketch of the proof:

Globally hyperbolic
\[\downarrow\]
Causally simple
\[\downarrow\]
Causally continuous
\[\downarrow\]
Stably causal
\[\downarrow\]
Strongly causal
\[\downarrow\]
Distinguishing
\[\downarrow\]
Causal
\[\downarrow\]
Chronological
\[\downarrow\]
Non-totally vicious
Causal condition to have a standard splitting

Theorem (M. A. J.-M. Sánchez)

If a stationary spacetime L is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard.

Sketch of the proof:
- A result of S. Harris $\Rightarrow L = \mathbb{R} \times Q$ (maybe $\{t_0\} \times Q$ is never spacelike)

<table>
<thead>
<tr>
<th>Globally hyperbolic</th>
<th>(\Downarrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causally simple</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Causally continuous</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Stably causal</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Strongly causal</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Distinguishing</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Causal</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Chronological</td>
<td>(\Downarrow)</td>
</tr>
<tr>
<td>Non-totally vicious</td>
<td></td>
</tr>
</tbody>
</table>
Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime \(L \) is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard

Sketch of the proof:
- A result of S. Harris \(\Rightarrow L = \mathbb{R} \times Q \) (maybe \(\{t_0\} \times Q \) is never spacelike)
- timelike Killing field complete \(\Rightarrow L \) is reflecting \((I^+(p) \subseteq I^+(q) \iff I^-(p) \supseteq I^-(q)) \)

\[
\begin{align*}
\text{Globally hyperbolic} & \quad \Downarrow \\
\text{Causally simple} & \quad \Downarrow \\
\text{Causally continuous} & \quad \Downarrow \\
\text{Stably causal} & \quad \Downarrow \\
\text{Strongly causal} & \quad \Downarrow \\
\text{Distinguishing} & \quad \Downarrow \\
\text{Causal} & \quad \Downarrow \\
\text{Chronological} & \quad \Downarrow \\
\text{Non-totally vicious}
\end{align*}
\]
Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime L is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard.

Sketch of the proof:

- A result of S. Harris $\Rightarrow L = \mathbb{R} \times Q$ (maybe $\{ t_0 \} \times Q$ is never spacelike)
- timelike Killing field complete $\Rightarrow L$ is reflecting
- Reflecting + Distinguishing \iff Causally continuous

Globally hyperbolic
\Downarrow
Causally simple
\Downarrow
Causally continuous
\Downarrow
Stably causal
\Downarrow
Strongly causal
\Downarrow
Distinguishing
\Downarrow
Causal
\Downarrow
Chronological
\Downarrow
Non-totally vicious

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics 6 / 26
Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime \(L \) is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard

Sketch of the proof:

- A result of S. Harris \(\Rightarrow \) \(L = \mathbb{R} \times Q \) (maybe \(\{ t_0 \} \times Q \) is never spacelike)
- Timelike Killing field complete \(\Rightarrow \) \(L \) is reflecting \((I^+(p) \subseteq I^+(q) \text{ iff } I^-(p) \supseteq I^-(q)) \)
- Reflecting + Distinguishing \(\Leftrightarrow \) Causally continuous
- Causally continuous \(\Rightarrow \) Stably causal

Diagram:

- **Globally hyperbolic**
 - \(\Downarrow \)
 - **Causally simple**
 - \(\Downarrow \)
 - **Causally continuous**
 - \(\Downarrow \)
 - **Stably causal**
 - \(\Downarrow \)
 - **Strongly causal**
 - \(\Downarrow \)
 - **Distinguishing**
 - \(\Downarrow \)
 - **Causal**
 - \(\Downarrow \)
 - **Chronological**
 - \(\Downarrow \)
 - **Non-totally vicious**
Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime \(L \) is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard

Sketch of the proof:

- A result of S. Harris \(\Rightarrow \) \(L = \mathbb{R} \times Q \) (maybe \(\{ t_0 \} \times Q \) is never spacelike)
- Timelike Killing field complete \(\Rightarrow \) \(L \) is reflecting
- \(I^+(p) \subseteq I^+(q) \) iff \(I^-(p) \supseteq I^-(q) \)
- Reflecting+Distinguishing \(\Leftrightarrow \) Causally continuous
- Causally continuous \(\Rightarrow \) Stably causal
- \(\Rightarrow \) there exists a temporal function \(t : L \rightarrow \mathbb{R} \)
Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime L is distinguishing and the timelike Killing field is complete, then it is causally continuous and standard

Sketch of the proof:

- A result of S. Harris $\Rightarrow L = \mathbb{R} \times Q$ (maybe $\{t_0\} \times Q$ is never spacelike)
- Timelike Killing field complete $\Rightarrow L$ is reflecting ($I^+(p) \subseteq I^+(q)$ iff $I^-(p) \supseteq I^-(q)$)
- Reflecting $+$ Distinguishing \iff Causally continuous
- Causally continuous \Rightarrow Stably causal
- \Rightarrow there exists a temporal function $t : L \rightarrow \mathbb{R}$
- $t^{-1}(0)$ is a section (it crosses all the orbits of the timelike Killing field)

\[\begin{align*}
\text{Globally hyperbolic} & \quad \Downarrow \\
\text{Causally simple} & \quad \Downarrow \\
\text{Causally continuous} & \quad \Downarrow \\
\text{Stably causal} & \quad \Downarrow \\
\text{Strongly causal} & \quad \Downarrow \\
\text{Distinguishing} & \quad \Downarrow \\
\text{Causal} & \quad \Downarrow \\
\text{Chronological} & \quad \Downarrow \\
\text{Non-totally vicious} & \quad \Downarrow
\end{align*} \]
Fermat principle in standard stationary spacetimes

Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves.

If you consider as observer
\[s \rightarrow L_1(s) = (s, x_1) \] in \((\mathbb{R} \times S^1, g)\), given a lightlike curve \(\gamma = (t, x) \), the arrival time \(AT(\gamma) \) is

\[
t(b) = t(a) + R_{b-a}^1(\dot{x}, \beta) + q_{1, \beta}g_0(\dot{x}, \dot{x}) + \frac{1}{\beta^2}g_0(\dot{x}, \delta_x)^2d\text{\,s}.
\]

because \(g_0(\dot{x}, \dot{x}) + 2g_0(\delta(x), \dot{x})\dot{t} - \beta(x)\dot{t}^2 = 0 \) \((g(\dot{\gamma}, \dot{\gamma}) = 0)\).

Let us define the Fermat (Finslerian) metric in \(S^1 \) as

\[
F(x, v) = \frac{1}{\beta}g_0(v, \delta_v) + q_{1, \beta}g_0(v, v) + \frac{1}{\beta^2}g_0(v, \delta_v)^2.
\]
Fermat principle in standard stationary spacetimes

- **Relativistic Fermat Principle**: lightlike pregeodesics are critical points of the arrival time function corresponding to an *observer* in a suitable class of lightlike curves.
Fermat principle in standard stationary spacetimes

- **Relativistic Fermat Principle**: lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves.

- If you consider as observer $s \rightarrow L_1(s) = (s, x_1)$ in $(\mathbb{R} \times S, g)$, given a lightlike curve $\gamma = (t, x)$, the arrival time $AT(\gamma)$ is

 $$t(b) = t(a) + \int_a^b \left(\frac{1}{\beta} g_0(\dot{x}, \delta) + \sqrt{\frac{1}{\beta} g_0(\dot{x}, \dot{x}) + \frac{1}{\beta^2} g_0(\dot{x}, \delta)^2} \right) ds.$$
Fermat principle in standard stationary spacetimes

- **Relativistic Fermat Principle:** lightlike pregeodesics are critical points of the arrival time function corresponding to an observer in a suitable class of lightlike curves.

- If you consider as observer $s \rightarrow L_1(s) = (s, x_1)$ in $(\mathbb{R} \times S, g)$, given a lightlike curve $\gamma = (t, x)$, the arrival time $AT(\gamma)$ is

 $$t(b) = t(a) + \int_a^b \left(\frac{1}{\beta} g_0(\dot{x}, \delta) + \sqrt{\frac{1}{\beta} g_0(\dot{x}, \dot{x}) + \frac{1}{\beta^2} g_0(\dot{x}, \delta)^2} \right) ds.$$

- Because $g_0(\dot{x}, \dot{x}) + 2g_0(\delta(x), \dot{x})\dot{t} - \beta(x)\dot{t}^2 = 0$ ($g(\dot{\gamma}, \dot{\gamma}) = 0$)
Fermat principle in standard stationary spacetimes

- **Relativistic Fermat Principle**: lightlike pregeodesics are critical points of the arrival time function corresponding to an *observer* in a suitable class of lightlike curves.

- If you consider as observer $s \rightarrow L_1(s) = (s, x_1)$ in $(\mathbb{R} \times S, g)$, given a lightlike curve $\gamma = (t, x)$, the arrival time $AT(\gamma)$ is

 $$t(b) = t(a) + \int_a^b \left(\frac{1}{\beta} g_0(\dot{x}, \delta) + \sqrt{\frac{1}{\beta} g_0(\dot{x}, \dot{x}) + \frac{1}{\beta^2} g_0(\dot{x}, \delta)^2} \right) ds.$$

- Because $g_0(\dot{x}, \dot{x}) + 2g_0(\delta(x), \dot{x})\dot{t} - \beta(x)\dot{t}^2 = 0$ ($g(\dot{\gamma}, \dot{\gamma}) = 0$)

- Let us define the Fermat (Finslerian) metric in S as

 $$F(x, v) = \frac{1}{\beta} g_0(v, \delta) + \sqrt{\frac{1}{\beta} g_0(v, v) + \frac{1}{\beta^2} g_0(v, \delta)^2}.$$
Theorem

A curve \(s \to \gamma(s) = (s, x(s)) \) is a lightlike pregeodesic of \((\mathbb{R} \times S, g)\) iff \(s \to x(s) \) is a Fermat geodesic with unit speed.

Consequences:

Gravitational lensing can be studied from geodesic connectedness in Fermat metric

Existence of \(t \)-periodic lightlike geodesics is equivalent to existence of Fermat closed geodesics (Biliotti-M.A.J. to appear in Houston J. Math.)
Theorem

A curve \(s \mapsto \gamma(s) = (s, x(s)) \) is a lightlike pregeodesic of \((\mathbb{R} \times S, g)\) iff \(s \mapsto x(s) \) is a Fermat geodesic with unit speed.
Fermat metric and lightlike geodesics

Theorem

A curve \(s \rightarrow \gamma(s) = (s, x(s)) \) is a lightlike pregeodesic of \((\mathbb{R} \times S, g)\) iff \(s \rightarrow x(s) \) is a Fermat geodesic with unit speed.

- **Consequences:**
 - **Gravitational lensing** can be studied from geodesic connectedness in Fermat metric
Fermat metric and lightlike geodesics

Theorem

A curve \(s \mapsto \gamma(s) = (s, x(s)) \) is a lightlike pregeodesic of \((\mathbb{R} \times S, g)\) iff \(s \mapsto x(s) \) is a Fermat geodesic with unit speed.

Consequences:

- **Gravitational lensing** can be studied from geodesic connectedness in Fermat metric
- Existence of \(t \)-periodic lightlike geodesics is equivalent to existence of Fermat closed geodesics (Biliotti-M.A.J. to appear in Houston J. Math.)
Randers metrics

$\text{Randers metrics in a manifold } M$ is a function $\mathbb{R}: TM \to \mathbb{R}$ defined as:

$$R(x, v) = \sqrt{h(v, v)} + \omega_x[v]$$

where h is Riemannian and ω a 1-form with $\|\omega_x\|_h < 1 \forall x \in M$, are basic examples of non-reversible Finsler metrics:

$$R(x, -v) \neq R(x, v).$$

Named after the norwegian physicist Gunnar Randers (1914-1992):

Randers metrics

Randers metrics in a manifold M is a function $R : TM \rightarrow \mathbb{R}$ defined as:

$$R(x, v) = \sqrt{h(v, v)} + \omega_x[v]$$

where h is Riemannian and ω a 1-form with $\|\omega_x\|_h < 1$ $\forall x \in M$, are basic examples of non-reversible Finsler metrics: $R(x, -v) \neq R(x, v)$.
Randers metrics

- Randers metrics in a manifold M is a function $R : TM \rightarrow \mathbb{R}$ defined as:

$$R(x, v) = \sqrt{h(v, v)} + \omega_x[v]$$

where h is Riemannian and ω a 1-form with $\|\omega_x\|_h < 1 \ \forall x \in M$, are basic examples of non-reversible Finsler metrics: $R(x, -v) \neq R(x, v)$.

- Named after the norwegian physicist Gunnar Randers (1914-1992):

Finsler metrics

Main reference:

DEFINITION: $F : TM \to [0, +\infty)$ continuous and

- Positively homogeneous of degree one: $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$.
- Fiberwise strictly convex square: $g_{ij}(x, y) = \frac{1}{2} \partial^2 (F^2) / \partial y_i \partial y_j(x, y)$ is positively defined.

It can be showed that this implies:

- F is positive in $TM \{0\}$.
- Triangle inequality holds in the fibers.
- F^2 is C^1 on TM.

E. Caponio, M. A. Javaloyes, M. Sánchez (*): Interplay between Lorentzian and Randers metrics
Finsler metrics

Main reference:

DEFINITION: \(F : TM \to [0, +\infty) \) continuous and \(C^\infty \) in \(TM \setminus \{0\} \)

Positive homogeneous of degree one:

\[F(x, \lambda y) = \lambda F(x, y) \text{ for all } \lambda > 0. \]

Fiberwise strictly convex square:

\[g_{ij}(x, y) = \frac{1}{2} \partial^2_{y^i} (F^2) \partial_{y^j}(x, y) \]

is positively defined.

It can be showed that this implies:

- \(F \) is positive in \(TM \setminus \{0\} \).
- Triangle inequality holds in the fibers.
- \(F^2 \) is \(C^1 \) on \(TM \).

Paul Finsler (1894-1970)
Finsler metrics

Main reference:

DEFINITION: $F: TM \rightarrow [0, +\infty)$ continuous and 1 C^∞ in $TM \setminus \{0\}$

1. C^∞ in $TM \setminus \{0\}$

2. Positively homogeneous of degree one

$F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$

Paul Finsler (1894-1970)
Finsler metrics

Main reference:

DEFINITION: \(F : TM \to [0, +\infty) \) continuous and

1. \(C^\infty \) in \(TM \setminus \{0\} \)
2. Positively homogeneous of degree one
 \(F(x, \lambda y) = \lambda F(x, y) \) for all \(\lambda > 0 \)
3. Fiberwise strictly convex square:
 \(g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j}(x, y) \right] \) is positively defined.

Paul Finsler (1894-1970)
Main reference:

DEFINITION: $F : TM \rightarrow [0, +\infty)$ continuous and

1. C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one

 $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$
3. Fiberwise strictly convex square:

 $g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j} (x, y) \right]$ is positively defined.

It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$
Finsler metrics

Main reference:

DEFINITION: \(F : TM \to [0, +\infty) \) continuous and

1. \(C^\infty \) in \(TM \setminus \{0\} \)
2. Positively homogeneous of degree one
 \[F(x, \lambda y) = \lambda F(x, y) \text{ for all } \lambda > 0 \]
3. Fiberwise strictly convex square:
 \[g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j} (x, y) \right] \text{ is positively defined.} \]

It can be showed that this implies:

- \(F \) is positive in \(TM \setminus \{0\} \)
- Triangle inequality holds in the fibers
Finsler metrics

Main reference:

DEFINITION: \(F : TM \to [0, +\infty) \) continuous and

1. \(C^\infty \) in \(TM \setminus \{0\} \)
2. Positively homogeneous of degree one
\(F(x, \lambda y) = \lambda F(x, y) \) for all \(\lambda > 0 \)
3. Fiberwise strictly convex square:
\[
g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j}(x, y) \right]
\]
is positively defined.

It can be showed that this implies:

- \(F \) is positive in \(TM \setminus \{0\} \)
- Triangle inequality holds in the fibers
- \(F^2 \) is \(C^1 \) on \(TM \).
Non-symmetric “distance”

We can define the length of a curve:

$$L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds$$

and then the distance between two points:

$$\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma)$$

dist is non-symmetric because F is non-reversible.

The length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(t)$!!

We have to distinguish between forward and backward balls.

Cauchy sequence
topological completeness
geodesical completeness
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_{a}^{b} F(\gamma, \dot{\gamma}) ds \)
Non-symmetric “distance”

- We can define the length of a curve: \[L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds \]
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma})ds \)
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
- dist is non-symmetric because \(F \) is non-reversible
Non-symmetric “distance”

- We can define the length of a curve:
 \[L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds \]

- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]

- dist is non-symmetric because \(F \) is non-reversible

- the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t) \)!
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds \)
- and then the distance between two points: \(\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p,q)} L(\gamma) \)
- \(\text{dist} \) is non-symmetric because \(F \) is non-reversible
- the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t) \)!!

We have to distinguish between forward and backward:
- balls
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_{a}^{b} F(\gamma, \dot{\gamma}) \, ds \)
- and then the distance between two points: \(\text{dist}(p, q) = \inf_{\gamma \in C^{\infty}(p, q)} L(\gamma) \)
- \(\text{dist} \) is non-symmetric because \(F \) is non-reversible
- the length of a curve \(t \rightarrow \gamma(t) \) is different from the length of its reverse \(t \rightarrow \gamma(t) \)

We have to distinguish between forward and backward:

- balls
- Cauchy sequence
Non-symmetric "distance"

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds \)
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
- dist is non-symmetric because \(F \) is non-reversible
- the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t) \!! \)

We have to distinguish between forward and backward:
- balls
- Cauchy sequence
- topological completeness
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_{a}^{b} F(\gamma, \dot{\gamma}) \, ds \)
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C\infty(p, q)} L(\gamma) \]
- \(\text{dist} \) is non-symmetric because \(F \) is non-reversible
- the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t)!! \)

We have to distinguish between forward and backward:

- balls
- Cauchy sequence
- topological completeness
- geodesical completeness
Causality through the Fermat metric

Let d be the non-symmetric distance in S associated to the Fermat metric $B^+ (x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls

$B^- (x_0, s) = \{ p \in S : d(p, x_0) < s \}$ backward balls

Define the symmetrized distance $d_s (p, q) = \frac{1}{2} (d(p, q) + d(q, p))$ and $B_s (x, r) = \{ p \in S : d_s(x, p) < r \}$

Let $(\mathbb{R} \times S, g)$ be a standard stationary spacetime. Then $I^\pm (t_0, x_0) = \bigcup_{s > 0} \{ t_0 \pm s \} \times B^\pm (x_0, s)$. E. Caponio, M. A. Javaloyes, M. Sánchez (*)
Causality through the Fermat metric

Let d be the non-symmetric distance in S associated to the Fermat metric.
Causality through the Fermat metric

- Let d be the non-symmetric distance in S associated to the Fermat metric
- $B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls
Causality through the Fermat metric

- Let d be the non-symmetric distance in S associated to the Fermat metric
- $B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls
- $B^-(x_0, s) = \{ p \in S : d(p, x_0) < s \}$ backward balls
Causality through the Fermat metric

- Let d be the non-symmetric distance in S associated to the Fermat metric.
- $B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls
- $B^-(x_0, s) = \{ p \in S : d(p, x_0) < s \}$ backward balls
- Define the symmetrized distance

 $$d_s(p, q) = \frac{1}{2}(d(p, q) + d(q, p))$$

 and $B_s(x, r) = \{ p \in S : d_s(x, p) < r \}$
Causality through the Fermat metric

- Let d be the non-symmetric distance in S associated to the Fermat metric.
- $B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls
- $B^-(x_0, s) = \{ p \in S : d(p, x_0) < s \}$ backward balls
- Define the symmetrized distance
 \[d_s(p, q) = \frac{1}{2} (d(p, q) + d(q, p)) \]
 and $B_s(x, r) = \{ p \in S : d_s(x, p) < r \}$
- Let $(\mathbb{R} \times S, g)$ be a standard stationary spacetime. Then
 \[I^\pm(t_0, x_0) = \bigcup_{s > 0} \{ t_0 \pm s \} \times B^\pm(x_0, s), \]
Causality through the Fermat metric

- Let \(d \) be the non-symmetric distance in \(S \) associated to the Fermat metric.
- \(B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \} \) forward balls.
- \(B^-(x_0, s) = \{ p \in S : d(p, x_0) < s \} \) backward balls.
- Define the symmetrized distance \(d_s(p, q) = \frac{1}{2}(d(p, q) + d(q, p)) \).
- \(B_s(x, r) = \{ p \in S : d_s(x, p) < r \} \).
- Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime. Then

\[
I^\pm(t_0, x_0) = \bigcup_{s > 0} \{ t_0 \pm s \} \times B^\pm(x_0, s),
\]
Causality through the Fermat metric

Theorem

- Let $(\mathbb{R} \times S, g)$ be a standard stationary spacetime.
- Then $(\mathbb{R} \times S, g)$ is causally continuous and
 - (a) $(\mathbb{R} \times S, g)$ is causally simple iff the associated Finsler manifold (S, F) is convex,
 - (b) it is globally hyperbolic if and only if $\bar{B}^+ (x, r) \cap \bar{B}^- (x, r)$ is compact for every $x \in S$ and $r > 0$,
 - (c) a slice $\{t_0\} \times S, t_0 \in \mathbb{R}$, is a Cauchy hypersurface if and only if the Fermat metric F on S is forward and backward complete.

Diagram:

- Globally hyperbolic
 - \Rightarrow
 - Causally simple
 - \Rightarrow
 - Causally continuous
 - \Rightarrow
 - Stably causal
 - \Rightarrow
 - Strongly causal
 - \Rightarrow
 - Distinguishing
 - \Rightarrow
 - Causal
 - \Rightarrow
 - Chronological
 - \Rightarrow
 - Non-totally vicious
Causality through the Fermat metric

Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime. Then \((\mathbb{R} \times S, g)\) is causally continuous and

Globally hyperbolic \(\Downarrow\)
- Causally simple \(\Downarrow\)
- Causally continuous \(\Downarrow\)
- Stably causal \(\Downarrow\)
- Strongly causal \(\Downarrow\)
- Distinguishing \(\Downarrow\)
- Causal \(\Downarrow\)
- Chronological \(\Downarrow\)
- Non-totally vicious
Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime. Then \((\mathbb{R} \times S, g)\) is \textit{causally continuous} and

(a) \((\mathbb{R} \times S, g)\) is \textit{causally simple} iff the associated Finsler manifold \((S, F)\) is convex,

Globally hyperbolic \(\Downarrow\)

Causally simple \(\Downarrow\)

Causally continuous \(\Downarrow\)

Stably causal \(\Downarrow\)

Strongly causal \(\Downarrow\)

Distinguishing \(\Downarrow\)

Causal \(\Downarrow\)

Chronological \(\Downarrow\)

Non-totally vicious
Causality through the Fermat metric

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime. Then \((\mathbb{R} \times S, g)\) is causally continuous and

(a) \((\mathbb{R} \times S, g)\) is causally simple iff the associated Finsler manifold \((S, F)\) is convex,

(b) it is globally hyperbolic if and only if \(\bar{B}^+(x, r) \cap \bar{B}^-(x, r)\) is compact for every \(x \in S\) and \(r > 0\).

<table>
<thead>
<tr>
<th>Globally hyperbolic</th>
<th>↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causally simple</td>
<td>↓</td>
</tr>
<tr>
<td>Causally continuous</td>
<td>↓</td>
</tr>
<tr>
<td>Stably causal</td>
<td>↓</td>
</tr>
<tr>
<td>Strongly causal</td>
<td>↓</td>
</tr>
<tr>
<td>Distinguishing</td>
<td>↓</td>
</tr>
<tr>
<td>Causal</td>
<td>↓</td>
</tr>
<tr>
<td>Chronological</td>
<td>↓</td>
</tr>
<tr>
<td>Non-totally vicious</td>
<td></td>
</tr>
</tbody>
</table>
Causality through the Fermat metric

Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime. Then \((\mathbb{R} \times S, g)\) is **causally continuous** and

(a) \((\mathbb{R} \times S, g)\) is **causally simple** iff the associated Finsler manifold \((S, F)\) is convex,

(b) it is **globally hyperbolic** if and only if \(\overline{B}^+(x, r) \cap \overline{B}^-(x, r)\) is compact for every \(x \in S\) and \(r > 0\).

(c) a slice \(\{t_0\} \times S, t_0 \in \mathbb{R}\), is a **Cauchy hypersurface** if and only if the Fermat metric \(F\) on \(S\) is forward and backward complete.

<table>
<thead>
<tr>
<th>Globally hyperbolic</th>
<th>↓</th>
<th>Causally simple</th>
<th>↓</th>
<th>Causally continuous</th>
<th>↓</th>
<th>Stably causal</th>
<th>↓</th>
<th>Strongly causal</th>
<th>↓</th>
<th>Distinguishing</th>
<th>↓</th>
<th>Causal</th>
<th>↓</th>
<th>Chronological</th>
<th>↓</th>
<th>Non-totally vicious</th>
</tr>
</thead>
</table>
Randers metrics with the same geodesics

Let R and R' be Randers metrics. They are associated to the same stationary spacetime if and only if $R' = R + df$. Moreover, if $R \times S$ is the splitting associated to R, the splitting associated to R' is $R \times S_f$, where $S_f = \{(f(x), x) : x \in S\}$.

E. Caponio, M. A. Javaloyes, M. Sánchez (*): Interplay between Lorentzian and Randers metrics

Page 14 / 26
Let R and R' be Randers metrics. They are associated to the same stationary spacetime if and only if $R' = R + df$.

$$S_f = \{(f(x), x) : x \in S\}$$

$$\phi_f : S \to S_f$$

$$x \mapsto (f(x), x)$$
Let R and R' be Randers metrics. They are associated to the same stationary spacetime if and only if $R' = R + df$.

Moreover, if $\mathbb{R} \times S$ is the splitting associated to R, the splitting associated to R' is $\mathbb{R} \times S_f$, where

$$S_f = \{(f(x), x) : x \in S\}$$
Generalized Hopf-Rinow theorem

Theorem (Accurate Hopf-Rinow for Randers metrics) Let \((S, R)\) a Randers manifold and given a function \(f: S \to \mathbb{R}\) define \(R_f(x, v) = R(x, v) - d_f(x)(v)\). The following conditions are equivalent:

1. \((S, R)\) is compact for every \(r > 0\) and \(x \in S\).
2. The symmetrized closed balls \(\bar{B}_s(x, r)\) of \((S, R)\) are compact for every \(r > 0\) and \(x \in S\).
3. There exists \(f\) such that \(R_f\) is geodesically complete.
4. There exists \(f\) and \(p \in S\) such that the forward and the backward exponentials of \(R_f\) are defined in \(T_p S\).
5. There exists \(f\) such that the quasi-metric \(d_f\) associated to \(R_f\) is forward and backward complete.

In such a case, \((S, R)\) is convex.

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S, R) a Randers manifold and given a function $f : S \to \mathbb{R}$ define $R_f(x, v) = R(x, v) - df_x(v)$. The following conditions are equivalent:

- **(A)** the intersection $\overline{B} + (x, r) \cap \overline{B} - (x, r)$ of (S, R) is compact for every $r > 0$ and $x \in S$.
- **(B)** the symmetrized closed balls $\overline{B}_s(x, r)$ of (S, R) are compact for every $r > 0$ and $x \in S$.
- **(C)** there exists f such that R_f is geodesically complete.
- **(D)** there exists f and $p \in S$ such that the forward and the backward exponentials of R_f are defined in $T_p S$.
- **(E)** there exists f such that the quasi-metric d_f associated to R_f is forward and backward complete.

In such a case, (S, R) is convex.
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S, R) a Randers manifold and given a function $f : S \to \mathbb{R}$ define $R_f(x, v) = R(x, v) - df_x(v)$. The following conditions are equivalent:

(A) the intersection $\bar{B}^+(x, r) \cap \bar{B}^-(x, r)$ of (S, R) is compact for every $r > 0$ and $x \in S$
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let \((S, R)\) a Randers manifold and given a function \(f : S \to \mathbb{R}\) define \(R_f(x, v) = R(x, v) - df_x(v)\). The following conditions are equivalent:

(A) the intersection \(\bar{B}^+(x, r) \cap \bar{B}^-(x, r)\) of \((S, R)\) is compact for every \(r > 0\) and \(x \in S\)

(B) the symmetrized closed balls \(\bar{B}_s(x, r)\) of \((S, R)\) are compact for every \(r > 0\) and \(x \in S\)
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S, R) a Randers manifold and given a function $f : S \to \mathbb{R}$ define $R_f(x, v) = R(x, v) - df_x(v)$. The following conditions are equivalent:

(A) the intersection $\bar{B}^+(x, r) \cap \bar{B}^-(x, r)$ of (S, R) is compact for every $r > 0$ and $x \in S$

(B) the symmetrized closed balls $\bar{B}_s(x, r)$ of (S, R) are compact for every $r > 0$ and $x \in S$

(C) there exists f such that R_f is geodesically complete
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S, R) a Randers manifold and given a function $f : S \rightarrow \mathbb{R}$ define $R_f(x, v) = R(x, v) - df_x(v)$. The following conditions are equivalent:

(A) the intersection $\bar{B}^+(x, r) \cap \bar{B}^-(x, r)$ of (S, R) is compact for every $r > 0$ and $x \in S$

(B) the symmetrized closed balls $\bar{B}_s(x, r)$ of (S, R) are compact for every $r > 0$ and $x \in S$

(C) there exists f such that R_f is geodesically complete

(D) there exists f and $p \in S$ such that the forward and the backward exponentials of R_f are defined in $T_p S$
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let \((S, R)\) a Randers manifold and given a function \(f : S \to \mathbb{R}\) define \(R_f(x, v) = R(x, v) - df_x(v)\). The following conditions are equivalent:

(A) the intersection \(\bar{B}^+(x, r) \cap \bar{B}^-(x, r)\) of \((S, R)\) is compact for every \(r > 0\) and \(x \in S\)

(B) the symmetrized closed balls \(\bar{B}_s(x, r)\) of \((S, R)\) are compact for every \(r > 0\) and \(x \in S\)

(C) there exists \(f\) such that \(R_f\) is geodesically complete

(D) there exists \(f\) and \(p \in S\) such that the forward and the backward exponentials of \(R_f\) are defined in \(T_p S\)

(E) there exists \(f\) such that the quasi-metric \(d_f\) associated to \(R_f\) is forward and backward complete
Theorem (Accurate Hopf-Rinow for Randers metrics)

Let \((S, R)\) a Randers manifold and given a function \(f : S \rightarrow \mathbb{R}\) define \(R_f(x, v) = R(x, v) - df_x(v)\). The following conditions are equivalent:

(A) the intersection \(\bar{B}^+(x, r) \cap \bar{B}^-(x, r)\) of \((S, R)\) is compact for every \(r > 0\) and \(x \in S\)

(B) the symmetrized closed balls \(\bar{B}_s(x, r)\) of \((S, R)\) are compact for every \(r > 0\) and \(x \in S\)

(C) there exists \(f\) such that \(R_f\) is geodesically complete

(D) there exists \(f\) and \(p \in S\) such that the forward and the backward exponentials of \(R_f\) are defined in \(T_p S\)

(E) there exists \(f\) such that the quasi-metric \(d_f\) associated to \(R_f\) is forward and backward complete

In such a case, \((S, R)\) is convex.
Convexity of Finsler metrics

In fact, condition (A) generalizes forward and backward completeness for any Finsler metric and it is enough to prove Palais-Smale condition of the energy functional "(A) ⇒ Convexity" holds for any Finsler metric. Morse theory can be developed assuming condition (A). E. Caponio, M. A. Javaloyes, M. Sánchez (*), Interplay between Lorentzian and Randers metrics.

As an application we obtain Morse theory for lightlike geodesics and timelike geodesics with fixed proper time from a point to a vertical line.
In fact, condition (A) generalizes forward and backward completeness for any Finsler metric and it is enough to prove Palais-Smale condition of the energy functional.
In fact, condition (A) generalizes forward and backward completeness for any Finsler metric and it is enough to prove Palais-Smale condition of the energy functional.

“(A) \Rightarrow Convexity” holds for any Finsler metric.
In fact, condition (A) generalizes forward and backward completeness for any Finsler metric and it is enough to prove Palais-Smale condition of the energy functional. “(A) \Rightarrow Convexity” holds for any Finsler metric. Morse theory can be developed assuming condition (A).
In fact, condition (A) generalizes forward and backward completeness for any Finsler metric and it is enough to prove Palais-Smale condition of the energy functional. “(A) ⇒ Convexity” holds for any Finsler metric. Morse theory can be developed assuming condition (A).

In fact, condition (A) generalizes forward and backward completeness for any Finsler metric and it is enough to prove Palais-Smale condition of the energy functional. “(A) ⇒ Convexity” holds for any Finsler metric. Morse theory can be developed assuming condition (A).

E. Caponio, M. A. Javaloyes, M. Sánchez (*), Interplay between Lorentzian and Randers metrics. Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric.
arXiv:0903.3519v2 [math.DG]

As an application we obtain Morse theory for lightlike geodesics and timelike geodesics with fixed proper time from a point to a vertical line.
A subset A of a spacetime M is achronal if no $x, y \in A$ satisfy $x \ll y$. The future (resp. past) Cauchy development of A is $D_{\pm}(A) = \{ p \in M : \text{every past (resp. future) inextendible causal curve through } p \text{ meets } A \}$. The future (resp. past) Cauchy horizon is $H_{\pm}(A) = \{ p \in D_{\pm}(A) : I_{\pm}(p) \text{ does not meet } D_{\pm}(A) \}$.
Cauchy developments and Cauchy horizons

- A subset A of a spacetime M is achronal if no $x, y \in A$ satisfy $x \ll y$
Cauchy developments and Cauchy horizons

- A subset \(A \) of a spacetime \(M \) is **achronal** if no \(x, y \in A \) satisfy \(x \ll y \)

- the future (resp. past) **Cauchy development** of \(A \) is

\[
D^{\pm}(A) = \{ p \in M : \text{ every past (resp. future) inextendible causal curve through } p \text{ meets } A \}
\]
A subset A of a spacetime M is achronal if no $x, y \in A$ satisfy $x \ll y$.

The future (resp. past) Cauchy development of A is

$$D^\pm(A) = \{p \in M : \text{ every past (resp. future) inextendible causal curve through } p \text{ meets } A\}$$
A subset A of a spacetime M is achronal if no $x, y \in A$ satisfy $x \ll y$.

The future (resp. past) Cauchy development of A is

$$D^\pm(A) = \{p \in M : \text{every past (resp. future) inextendible causal curve through } p \text{ meets } A\}$$
A subset A of a spacetime M is **achronal** if no $x, y \in A$ satisfy $x \ll y$.

The future (resp. past) Cauchy development of A is

$$D^\pm(A) = \{ p \in M : \text{every past (resp. future) inextendible causal curve through } p \text{ meets } A \}$$

$D^+(A)$ is the red region.
A subset A of a spacetime M is achronal if no $x, y \in A$ satisfy $x \ll y$.

The future (resp. past) Cauchy development of A is

$$D^\pm(A) = \{ p \in M : \text{ every past (resp. future) inextendible causal curve through } p \text{ meets } A \}$$

The future (resp. past) Cauchy horizon is

$$H^\pm(A) = \{ p \in D^\pm(A) : l^\pm(p) \text{ does not meet } D^\pm(A) \}$$
Theorem
Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

\[D^+ (A_{t_0}) = \{ (t, y) : d(x, y) > t - t_0 \quad \forall x/\in A \text{ and } t \geq t_0 \} \]

\[D^- (A_{t_0}) = \{ (t, y) : d(y, x) > t - t_0 \quad \forall x/\in A \text{ and } t \leq t_0 \} \]

\[H^+ (A_{t_0}) = \{ (t, y) : \inf_{x/\in A} d(x, y) = t - t_0 \} \]

\[H^- (A_{t_0}) = \{ (t, y) : \inf_{x/\in A} d(y, x) = t - t_0 \} \]

Cauchy horizons can be seen as the graph of the distance function to a subset.
Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

\[
D^+ (A_{t_0}) = \{(t, y) : d(x, y) > t - t_0 \forall x \not\in A \text{ and } t \geq t_0\},
\]

\[
D^- (A_{t_0}) = \{(t, y) : d(y, x) > t - t_0 \forall x \not\in A \text{ and } t \leq t_0\},
\]

\[
H^+ (A_{t_0}) = \{(t, y) : \inf_{x \in A} d(x, y) = t - t_0\},
\]

\[
H^- (A_{t_0}) = \{(t, y) : \inf_{x \in A} d(y, x) = t - t_0\}.
\]
Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

\[
D^+(A_{t_0}) = \{(t, y) : \ d(x, y) > t - t_0 \\
\forall x \not\in A \text{ and } t \geq t_0\},
\]

Cauchy horizons can be seen as the graph of the distance function to a subset.
Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

\[
D^+(A_{t_0}) = \{(t, y) : d(x, y) > t - t_0 \quad \forall x \notin A \text{ and } t \geq t_0\},
\]

\[
D^-(A_{t_0}) = \{(t, y) : d(y, x) > t - t_0 \quad \forall x \notin A \text{ and } t \leq t_0\},
\]

Cauchy horizons can be seen as the graph of the distance function to a subset!
Cauchy developments and distance function to a subset

Theorem

Let $(\mathbb{R} \times S, g)$ be a standard stationary spacetime such that $\{t_0\} \times S$ is Cauchy, and $A_{t_0} = \{t_0\} \times A$. Then

- $D^+(A_{t_0}) = \{(t, y) : d(x, y) > t - t_0 \land \forall x \notin A \land t \geq t_0\}$,

- $D^-(A_{t_0}) = \{(t, y) : d(y, x) > t - t_0 \land \forall x \notin A \land t \leq t_0\}$,

- $H^+(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(x, y) = t - t_0\}$
Cauchy developments and distance function to a subset

Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

- \(D^+(A_{t_0}) = \{(t, y) : d(x, y) > t - t_0 \quad \forall x \notin A \text{ and } t \geq t_0\}\),

- \(D^-(A_{t_0}) = \{(t, y) : d(y, x) > t - t_0 \quad \forall x \notin A \text{ and } t \leq t_0\}\),

- \(H^+(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(x, y) = t - t_0\}\)

- \(H^-(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(y, x) = t - t_0\}\)
Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

- \(D^+(A_{t_0}) = \{(t, y) : d(x, y) > t - t_0 \quad \forall x \notin A \text{ and } t \geq t_0\}\),

- \(D^-(A_{t_0}) = \{(t, y) : d(y, x) > t - t_0 \quad \forall x \notin A \text{ and } t \leq t_0\}\),

- \(H^+(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(x, y) = t - t_0\}\)

- \(H^-(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(y, x) = t - t_0\}\)

\(\inf_{x \notin A} d(x, y) = d(A^c, y)\)

\(\inf_{x \notin A} d(y, x) = d(y, A^c)\)
Cauchy developments and distance function to a subset

Theorem

Let \((\mathbb{R} \times S, g)\) be a standard stationary spacetime such that \(\{t_0\} \times S\) is Cauchy, and \(A_{t_0} = \{t_0\} \times A\). Then

\[
D^+(A_{t_0}) = \{(t, y) : d(x, y) > t - t_0, \forall x \notin A \text{ and } t \geq t_0\},
\]

\[
D^-(A_{t_0}) = \{(t, y) : d(y, x) > t - t_0, \forall x \notin A \text{ and } t \leq t_0\},
\]

\[
H^+(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(x, y) = t - t_0\}
\]

\[
H^-(A_{t_0}) = \{(t, y) : \inf_{x \notin A} d(y, x) = t - t_0\}
\]

Cauchy horizons can be seen as the graph of the distance function to a subset!!!!

\[
\inf_{x \notin A} d(x, y) = d(A^c, y)
\]

\[
\inf_{x \notin A} d(y, x) = d(y, A^c)
\]
Li-Nirenberg theorem

Theorem (Li-Nirenberg)

The function \(\partial \Omega \ni y \mapsto \min(N, \ell(y)) \in \mathbb{R}^+ \) is Lipschitz-continuous on any compact subset. As a consequence \(h_{n-1}(\Sigma \cap B) < +\infty \), being \(B \) bounded.

(S, F) Finsler and Ω ⊂ S open with ∂Ω of class $C^{2,1}_{loc}$.
(S, F) Finsler and Ω ⊂ S open with ∂Ω of class $C^{2,1}$

Σ the subset of points with more than one minimizing geodesic, and $\ell(y)$ the length of the normal geodesic from $y \in \partial\Omega$ to the first $m(y) \in \Sigma$, then
Li-Nirenberg theorem

- (S, F) Finsler and $\Omega \subset S$ open with $\partial \Omega$ of class $C^{2,1}_{\text{loc}}$
- Σ the subset of points with more than one minimizing geodesic, and $\ell(y)$ the length of the normal geodesic from $y \in \partial \Omega$ to the first $m(y) \in \Sigma$, then

Theorem (Li-Nirenberg)

The function $\partial \Omega \ni y \rightarrow \min(N, \ell(y)) \in \mathbb{R}^+$ is Lipschitz-continuous on any compact subset. As a consequence $\mathcal{H}^{n-1}(\Sigma \cap B) < +\infty$, being B bounded.
Li-Nirenberg theorem

- (S, F) Finsler and $\Omega \subset S$ open with $\partial \Omega$ of class $C^{2,1}_{\text{loc}}$
- Σ the subset of points with more than one minimizing geodesic, and $\ell(y)$ the length of the normal geodesic from $y \in \partial \Omega$ to the first $m(y) \in \Sigma$, then

Theorem (Li-Nirenberg)

The function $\partial \Omega \ni y \rightarrow \min(N, \ell(y)) \in \mathbb{R}^+$ is Lipschitz-continuous on any compact subset. As a consequence $\mathcal{H}^{n-1}(\Sigma \cap B) < +\infty$, being B bounded.

Measure of the crease set
any point in $H^+(A)$ admits a “generator”: a lightlike geodesic segment contained in $H^+(A)$ which is past-inextedible or has a past endpoint in the boundary of A.
any point in $H^+(A)$ admits a “generator”: a lightlike geodesic segment contained in $H^+(A)$ which is past-inextendible or has a past endpoint in the boundary of A.

Let $H^+_{\text{mul}}(A)$ be the set of points $p \in H^+(A) \setminus A$ admitting more than one generator.
any point in $H^+(A)$ admits a “generator”: a lightlike geodesic segment contained in $H^+(A)$ which is past-inextedible or has a past endpoint in the boundary of A.

Let $H^+_{\text{mul}}(A)$ be the set of points $p \in H^+(A) \setminus A$ admitting more than one generator.

Theorem

$(\mathbb{R} \times S, g)$ $(n+1)$-standard stationary, with S Cauchy an $\Omega \subset S$, open connected with $C^{2,1}_{\text{loc}}$-boundary $\partial \Omega$. If $A_{t_0} = \{t_0\} \times A$ and B is bounded then

$$\mathcal{H}^{n-1}((\mathbb{R} \times B) \cap H^+_{\text{mul}}(A)) < +\infty$$
any point in $H^+(A)$ admits a “generator”: a lightlike geodesic segment contained in $H^+(A)$ which is past-inextedible or has a past endpoint in the boundary of A.

Let $H^+_{\text{mul}}(A)$ be the set of points $p \in H^+(A) \setminus A$ admitting more than one generator.

Theorem

$(\mathbb{R} \times S, g)$ $(n+1)$-standard stationary, with S Cauchy an $\Omega \subset S$, open connected with $C^{2,1}_{\text{loc}}$-boundary $\partial \Omega$. If $A_{t_0} = \{t_0\} \times A$ and B is bounded then

$$\mathcal{H}^{n-1}((\mathbb{R} \times B) \cap H^+_{\text{mul}}(A)) < +\infty$$
Cut loci of Randers metrics

$S \ni R \subset \mathbb{C}$ closed $\rho_C: S \rightarrow \mathbb{R}^+$ the distance function from C to p (the infimum of the length of curves joining C to p)

A minimizing segment is a unit speed geodesic such that $\rho_C(\gamma(s)) = s$

Cut C is the cut locus, the points $x \in S \setminus C$ where the minimizing segment do not minimize anymore.

This function is studied when C is a C^2, 1 loc boundary in:

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers m.
(S, R) Randers and C ⊂ S closed
(S, R) Randers and C ⊂ S closed

ρ_C : S → ℝ⁺ the distance function from C to p (the infimum of the length of curves joining C to p)
Cut loci of Randers metrics

- (S, R) Randers and $C \subset S$ closed
- $\rho_C : S \to \mathbb{R}^+$ the distance function from C to p (the infimum of the length of curves joining C to p)
- A **minimizing segment** is a unit speed geodesic such that $\rho_C(\gamma(s)) = s$
Cut loci of Randers metrics

- (S, R) Randers and $C \subset S$ closed
- $\rho_C : S \rightarrow \mathbb{R}^+$ the distance function from C to p (the infimum of the length of curves joining C to p)
- A minimizing segment is a unit speed geodesic such that $\rho_C(\gamma(s)) = s$
(S, R) Randers and $C \subset S$ closed

$\rho_C : S \to \mathbb{R}^+$ the distance function from C to p (the infimum of the length of curves joining C to p)

A minimizing segment is a unit speed geodesic such that $\rho_C(\gamma(s)) = s$

Cut_C is the cut locus, the points $x \in S \setminus C$ where the minimizing segment do not minimize anymore
Cut loci of Randers metrics

- (S, R) Randers and $C \subset S$ closed
- $\rho_C : S \rightarrow \mathbb{R}^+$ the distance function from C to p (the infimum of the length of curves joining C to p)
- A minimizing segment is a unit speed geodesic such that $\rho_C(\gamma(s)) = s$
- Cut_C is the cut locus, the points $x \in S \setminus C$ where the minimizing segment do not minimize anymore
- This function is studied when C is a $C^{2,1}_{\text{loc}}$ boundary in:

Cauchy horizons

Construct a standard stationary spacetime with \(\tilde{R} \) (the reverse metric of \(R \)) as Fermat metric

If \(\tilde{R} = \sqrt{h + \omega} \) ⇒

\[
\begin{align*}
g_0(v, w) &= h(v, w) - \omega(v)\omega(w), \\
\beta(x) &= 1,
\end{align*}
\]

\(H = \{ (-\rho C(x), x) : x \in S \setminus C \} \) is a future horizon, that is, an achronal, closed, future null geodesically ruled topological hypersurface.

There are several results for the differentiability of future horizons:

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics
Construct a standard stationary spacetime with \(\tilde{R} \) (the reverse metric of \(R \)) as Fermat metric.
Construct a standard stationary spacetime with \tilde{R} (the reverse metric of R) as Fermat metric.

If $\tilde{R} = \sqrt{h} + \omega \Rightarrow$

$$g_0(v, w) = h(v, w) - \omega(v)\omega(w), \quad \beta(x) = 1, \quad g_0(\delta(x), v) = \omega(v)$$
Construct a standard stationary spacetime with \tilde{R} (the reverse metric of R) as Fermat metric

If $\tilde{R} = \sqrt{h} + \omega \Rightarrow$

$$g_0(v, w) = h(v, w) - \omega(v)\omega(w), \beta(x) = 1, g_0(\delta(x), v) = \omega(v)$$

$\mathcal{H} = \{(-\rho_C(x), x) : x \in S \setminus C\}$ is a future horizon, that is, an achronal, closed, future null geodesically ruled topological hypersurface.
Cauchy horizons

- Construct a standard stationary spacetime with \tilde{R} (the reverse metric of R) as Fermat metric

If $\tilde{R} = \sqrt{h + \omega}$ ⇒

$$g_0(v, w) = h(v, w) - \omega(v)\omega(w), \beta(x) = 1, g_0(\delta(x), v) = \omega(v)$$

$\mathcal{H} = \{-\rho_C(x), x\} : x \in S \setminus C\}$ is a future horizon, that is, an achronal, closed, future null geodesically ruled topological hypersurface.

There are several results for the differentiability of future horizons:

Cut loci of Randers metrics via Cauchy horizons

Putting all together we obtain:
Putting all together we obtain:

Theorem

\[\rho_C \text{ is differentiable at } p \in S \setminus C \text{ iff it is crossed by exactly one minimizing segment.} \]
Putting all together we obtain:

Theorem

\[\rho_C \text{ is differentiable at } p \in S \setminus C \iff \text{it is crossed by exactly one minimizing segment.} \]

Corollary

The n-dimensional Haussdorf measure of \(\text{Cut}_C \) *is zero.*
Open problems

(1) Is there any relation between the flag curvature of the Fermat metric and the Weyl tensor of the spacetime?

(2) In the paper G. W. Gibbons, C. A. R. Herdeiro, C. M. Warnick, M. C. Werner, Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry, Phys.Rev.D79: 044022, 2009, the authors show that Fermat metrics with constant flag curvature correspond with locally conformally flat stationary spacetimes, but the converse is not true.

(3) Which is the condition in the Fermat metric that characterizes conformally flatness for the stationary spacetime?

(4) Does Generalized Hopf-Rinow theorem hold for any Finsler metric?

(5) and the results for the distance ρ_C from a closed subset?
Open problems

(1) Is there any relation between the flag curvature of the Fermat metric and the Weyl tensor of the spacetime?:

(2) In the paper G. W. Gibbons, C. A. R. Herdeiro, C. M. Warnick, M. C. Werner, Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry, Phys.Rev.D79: 044022, 2009, the authors show that Fermat metrics with constant flag curvature correspond with locally conformally flat stationary spacetimes, but the converse is not true.

(3) Which is the condition in the Fermat metric that characterizes conformally flatness for the stationary spacetime?

(4) Does Generalized Hopf-Rinow theorem hold for any Finsler metric?

(5) and the results for the distance ρ_C from a closed subset?
Open problems

(1) Is there any relation between the flag curvature of the Fermat metric and the Weyl tensor of the spacetime?:

(2) In the paper

the authors show that Fermat metrics with constant flag curvature correspond with locally conformally flat stationary spacetimes, but the converse is not true.
Open problems

(1) Is there any relation between the flag curvature of the Fermat metric and the Weyl tensor of the spacetime?

(2) In the paper

the authors show that Fermat metrics with constant flag curvature correspond with locally conformally flat stationary spacetimes, but the converse is not true.

(3) Which is the condition in the Fermat metric that characterizes conformally flatness for the stationary spacetime?
Open problems

(1) Is there any relation between the flag curvature of the Fermat metric and the Weyl tensor of the spacetime?

(2) In the paper

the authors show that Fermat metrics with constant flag curvature correspond with locally conformally flat stationary spacetimes, but the converse is not true.

(3) Which is the condition in the Fermat metric that characterizes conformally flatness for the stationary spacetime?

(4) Does Generalized Hopf-Rinow theorem hold for any Finsler metric?
Open problems

(1) Is there any relation between the flag curvature of the Fermat metric and the Weyl tensor of the spacetime?

(2) In the paper

the authors show that Fermat metrics with constant flag curvature correspond with locally conformally flat stationary spacetimes, but the converse is not true.

(3) Which is the condition in the Fermat metric that characterizes conformally flatness for the stationary spacetime?

(4) Does Generalized Hopf-Rinow theorem hold for any Finsler metric?

(5) and the results for the distance ρ_C from a closed subset?

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers m.
E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics

More information in:

More information in:

Further Bibliography about Fermat metrics

E. Caponio, M. A. Javaloyes, M. Sanchez (*) Interplay between Lorentzian and Randers metrics

This page contains additional references related to Fermat metrics, including works on gravitational lensing, t-periodic light rays, and various aspects of Finsler geometry and spacetime. The bibliography includes contributions from researchers V. Perlick, L. Biliotti, M. A. J., G. W. Gibbons, C. A. R. Herdeiro, C. M. Warnick, M. C. Werner, R. Bartolo, A. M. Candela, E. Caponio, J.L. Flores, J. Herrera, M. Sanchez, and R. Bartolo. The references cover a range of topics from theoretical physics to geometric analysis, highlighting the interdisciplinary nature of research in this field.
Further Bibliography about Fermat metrics

Further Bibliography about Fermat metrics

Further Bibliography about Fermat metrics

E. Caponio, M. A. Javaloyes, M. Sánchez (*), Interplay between Lorentzian and Randers metrics
Further Bibliography about Fermat metrics

Further Bibliography about Fermat metrics

Further Bibliography about Fermat metrics

